lvan Beschastnikh

Computer Science
COMPUTER | | h |
SCIENCE University of British Columbia

Vancouver, Canada

Practices Networks Systems Security

g Ity T Gy

of VW

Norm
BIIA I
| |eo Hutchinson

I\/Ilke Feeley j

e AL w—-:.?:- ;

Ron Garmaf; Margo Alan

Seltzer Wagner

William

lvan Beschastnikh

Computer Science
SCIENCE University of British Columbia

Vancouver, Canada

COMPUTER

‘Practices Networks Systems Security

B EEL S_— ' Norm
Murphy S K|cz§1les M Feeley BlHAIe”O " Hutchinson

e il B

lvan Beschastnikh BC
[
Computer Science \\I47
COMPUTER | _ a |
SCIENCE University of British Columbia \/

Vancouver, Canada

)
)

)
|

Program analysis for
distributed systems

Bridging gap between design and implementation

Dinv, Dara, PGo

lvan Beschastnikh

Vaastav Anand, Hendrik Cech, Renato Costa, Matthew Do,
Stewart Grant, Finn Hackett, Brandon Zhang

Oy |

Networks, Systems and Security Lab \\M4/
§‘c”.‘2‘.fc“§ Software Practices Lab \/

Distributed systems are widely-used

® Distributed systems are
widely deployed | |]

e Graph processing @ ‘ G\ ébm.l.\

e Stream processing Je

e Distributed databases % ‘6‘ S5&
cassandra Qr K @

e Failure detectors .-? Serf a % P

e Cluster schedulers HBRASE

e \ersion control 0 glt i’x U\Q

e ML frameworks

e Blockchains

e KV stores

o

[1] Mark Cavage. 2013. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30 (April 2013)

Cloud systems/apps ecosystem

® Distributed systems are
widely deployed | |]

—6‘ Spo"\;
& D

e amazon
Google’s data center, Council Bluffs, TA web services

[1] Mark Cavage. 2013. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30 (April 2013)

Google app engine

Cloud systems/apps ecosystem

Che New York Times Lo slack

-}:yelp amazon & airbnb

Large-scale apps

(‘\)¢ I:
mwm@ AAAAAA NN
cassandra —6 Spr K '

HEHEE jm “"\Q

® Distributed systems are
widely deployed | |]

Google’s data center, Council Bluffs, TA Web services

[1] Mark Cavage. 2013. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30 (April 2013)

Google app engine

Issue 1: Cloud creates costly fate sharing

e Distributed systems are Qe'g‘s%?e'g
widely deployed |||

X,
® Failures are very costly / \
D - D

® DynamoDB’s outage in 2015 caused

downtime on Netflix, Reddit, etc [2] %% o
reddit NETFLIX

® S53’s outage in 2017 caused loss of
millions of dollars [3]

[1] Mark Cavage. 2013. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30 (April 2013)
[2] Fletcher Babb. Amazon’s AWS DynamoDB Experiences Outage, Affecting Netflix, Reddit, Medium, and More. en-US. Sept. 2015
[3] Shannon Vavra. Amazon outage cost S&P 500 companies $150M. axios.com, Mar 3, 2017

http://axios.com

Issue 2: Distribution challenges

“You know you have a distributed system when the crash
of a computer you’ve never heard of stops you from
getting any work done.” — Leslie Lamport

® Distributed systems are
hard to design and build

* Non-deterministic
sequence of events

® Processes make decisions
based on local state

® A variety of failures

9]
X Q.

Partial failures

Pl
0 y 3007
(Dl D
1 3 25
\1\‘00 2 / L,\ 0

Latencies t
06 Nov 2017

No central clock

o Bell Canada (AS577) via Level 3

- Level 3routingleak . .
‘ 17:47 -19:24 UTC 1)

Perf variation

Overall: High essential complexity

amazon

webservices

3.2% 2:5
Q Concurrency No central clock
/ \ Latencies to Bell Canada (AS577) via Level 3
06 Nov 2017
800 . . via Level 3 (AS3356)
w0l = . Level3r'outing leak -
2 ©r ATAT-19:24UTC 1
U RO S ey
5

reddit NETFLIX \@Y % @ s
/ N v \ {500 17:00 18:00

2

Partial failures Perf variation

Failures can be very costly =

We need to continue to innovate in how we build
reliable distributed systems

10

Program

analysis for distributed systems

1. Dinv

2. Dara

w
15
«

Node A Node B

S

UELT =

Node C A.seq < B.seq < C.seq

<
/ 0
&< ||

>

[ICSE 2018]

o 3
/]
-

<

O—0O

Svstem.go Violated: X
y’/.g‘ counter-example : E
j Dara
Pr’oﬂ Verified correct

Vv nodes, InCritical <1

var v int
var u int
var v_init int

var N int

——algorithm Euclid { ** @PGo{ arg int N }@PGo
(** @PGo{ var int u }@PGo
OPGo{ var int v }@PGo
@PGo{ var int v_init }@PGo

func main() {

flag.Parse()

N,_ = strconv.Atoi(flag.Args()[0])
*x) for _,v = range pgoutil.Sequence(1l, N) {
variables u = 24; =24

vi\inl. N

. == PlusCal oy

while (0 # 0) { _> nal, Go la;ng

ta<n{ model vnew —u

ui=v || vi=w u = u_new

}; vV = v_new
u:i=u— v; }
I8 u=u-—v
print <<24, v_init, "have gcd”, v>> }
} fmt.Printf(”24 %v have gcd %v\n”, v_init, v
} g ,
}

11)

https://www.google.com/about/datacenters/gallery

How these tools empower developers

o
=}
Q

Node A Node B

1. Dinv

2. Dara

Vv nodes, InCritical <1

3. PGo

Bridging gap between design and implementation

https://www.google.com/about/datacenters/gallery

First up: distributed spec mining

(e}

| =

&

¢ [ICSE 2018]

A

/ ’
® Tow) < |||

vz
-

.
v

<

A.seq < B.seq < C.seq

How does my system behave?

13

https://www.google.com/about/datacenters/gallery

Why distributed spec mining?

NNNNN

Dinv = = _»

vy)
S ST

14

https://www.google.com/about/datacenters/gallery

Why distributed spec mining?

o
=}
Q

TN
8

Dinv %”%
‘Lgﬁ - ‘

Node C A.seq < B seq < C.seq

i

) <

r

Sampler of state of the art in building robust distributed systemes:

¢ Verification [Verification: Bagpipe OOPSLA’16, IronFleet SOSP’|5,Verdi PLDI’ |5,
Chapar POPL | 6; Modeling: Lamport et.al SIGOPS’02, Holtzman |IEEE TSE’97]

e Bug detection [SAMC OSDI’'14, MODIST NSDI'09, CrystalBall NSDI'09,
MaceMC NSDI'07]

¢ Runtime checkers [D35S NSDI'|8]
¢ Tracing [PivotTracing SOSP’|5, XTrace NSDI'07, Dapper TR’10]

o Log analysis [Pensieve SOSP’17, Demi NSDI’ 1 6, ShiViz CACM ’16]

15

https://www.google.com/about/datacenters/gallery

Why distributed spec mining?

o
=}
Q

TN
8

Dinv % ®§
L%ﬁ - ‘

Node C A.seq < B seq < C.seq

i

) <

r

Sampler of state of the art in building robust distributed systemes:

¢ Verification [Verification: Bagpipe OOPSLA'’l 6, IronFleet SOSP’ | 5,Verdi PLDI’ |5,
Chapar POPL' 1 6; Modeling: Lamport et.al SIGOPS’02, Holtzman |IEEE TSE'97]

 Bug detection [SAMC OSDI’'14, MODIST NSDI'09, CrystalBall NSDI'09,
MaceMC NSDI'07]

e Runtime checkers [D3S NSDI'I8] :Require

e Tracing [PivotTracing SOSP’|5, XTrace NSDI'07, Dapper TR’10] =% .suuassssssnnsnnnnst

o Log analysis [Pensieve SOSP’17, Demi NSDI’ 1 6, ShiViz CACM ’16]

16

https://www.google.com/about/datacenters/gallery

Why distributed spec mining?

o
=}
Q

TN
8

Dinv % ®§
L%ﬁ ~ ”

Node C A.seq < B seq < C.seq

&

= =T -

Sampler of state of the art in building robust distributed systems:

¢ Verification [Verification: Bagpipe OOPSLA’16, IronFleet SOSP’15,Verdi PLDI’15,
Chapar POPL’ |1 6; Modeling: Lamport et.al SIGOPS’02, Holtzman |[EEE TSE’97]

e Bug detection [SAMC OSDI’ |4, MODIST NSDI'09, CrystalBall NSDI'09, MaceMC
NSDI'07]

* Runtime checkers [D35S NSDI'[8] Require
e Avenger SRDS'11

- High manual effort
e CSight ICSE’14

- Temporal model
e Udon ICSE’15

- Multithreaded sh-state

https://www.google.com/about/datacenters/gallery

Goal: infer correctness properties

Mutual exclusion:
V nodes, 1,] InCritical; — — InCritical ;

(5] norica Key Partitioning:
V nodes, i, j keys; # keys,
3

@ Get - 101
N -—

Keys[0:49] Keys[50:99] Keys[100:149]

18

https://www.google.com/about/datacenters/gallery

Goal: infer correctness properties

Mutual exclusion:
V nodes, 1,] InCritical; — — InCritical ;

(5] rorica Key Partitioning:
V nodes, i, j keys; # keys,
3

@ Get - 101
N -—

Keys[0:49] Keys[50:99] Keys[100:149]

19

https://www.google.com/about/datacenters/gallery

Goal: infer correctness properties

Mutual exclusion:
V nodes, 1,] InCritical; — — InCritical ;

@ InCritical Ke)' Partitioning:
V nodes, i, j keys; # keys,
3

Get Lock

@
1 - 2
Ping

Running example

e Get - 101
no —

Keys[0:49] Keys[50:99] Keys[100:149]

20

https://www.google.com/about/datacenters/gallery

Dist. correctness + Dist. state

Mutual exclusm -

Key Partltlln: -
__m 0 es, 7,, keysz 7& keys J ',

“Distributed state”

21

https://www.google.com/about/datacenters/gallery

What is distributed state anyway?

Distributed state is information retained in one
place that describes something, or is determined
by something, somewhere else in the system.

- John Ousterhout

[1] John Ousterhout. The Role of Distributed State. CMU-TR. 1991
22

https://www.google.com/about/datacenters/gallery

What is distributed state anyway?

Distributed state is information retained in one
place that describes something, or is determined
by something, somewhere else in the system.

- John Ousterhout
Examples:

*A table mapping files to hosts that store them
*Request id to identify the last received request

*Public key for a remote server

[1] John Ousterhout. The Role of Distributed State. CMU-TR. 1991
23

https://www.google.com/about/datacenters/gallery

What is distributed state anyway?

Distributed state is information retained in one
place that describes something, or is determined
by something, somewhere else in the system.

- John Ousterhout

Observation: Distributed state is one key reason
why distributed systems are complex

Dinv: captures distributed state and reveals
distributed state runtime properties

[1] John Ousterhout. The Role of Distributed State. CMU-TR. 1991
24

https://www.google.com/about/datacenters/gallery

Dinv approach: static+dynamic analysis

Input D
Go code

Network usage Vector clock
detector injection

Instrumentation

Static analysis

System
execution

System execution

25

Detected
Invariants

Consistent
cut analysis

Distributed state

. Daikon
composition

Mining distributed state Detecting invariants

Dynamic analysis

https://www.google.com/about/datacenters/gallery

Dinv static analysis

I
I
I
I
I
I
— -
I
I
I

Input Detected D
Go code Invariants

Network usage Vector clock System Consistent Distributed state Daikon
detector injection execution cut analysis composition
Instrumentation . System execution Mining distributed state Detecting invariants

|. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

20

https://www.google.com/about/datacenters/gallery

Dinv static analysis

Input Detected EI
Go code Invariants

v

Network usage Vector clock System Consistent Distributed state Daikon
detector injection execution cut analysis composition
Instrumentation . System execution Mining distributed state Detecting invariants

|. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

recv(n)
=1 @

]
2

3 sum:=0

4 product := 1
5 fori<=n{
6

7

8

sum :=sum + 1
product := product * i
i=i+1

9 }

10 send(sum)

11 // @ dump

12 send (product)

Developer adds dump
annotations at key
program points

27

https://www.google.com/about/datacenters/gallery

Dinv static analysis

Input Detected EI
Go code Invariants

Network usage Vector clock System Consistent Distributed state Daikon
detector injection execution cut analysis composition
Instrumentation . System execution Mining distributed state Detecting invariants

|. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

1 recv(n) @ 1

2 i=1 2 i=1
3 sum:=0 3

4 product := 1 4 product := 1

5 fori<=n{ 5 fori<=n{

6 sum :=sum + 1 6

7 product := product * i 7 product := product * i
8 i=i+1 8 i=i+1

9 } 9 }

10 send(sum) 10

11 // @ dump 11 // @ dump

12 send (product) 12 send (product)

Developer adds dump Backward slice: code
annotations at key affecting the sent
program points product variable

28

https://www.google.com/about/datacenters/gallery

Dinv static analysis

Input Detected EI
Go code Invariants

Network usage Vector clock System Consistent Distributed state Daikon
detector injection execution cut analysis composition
Instrumentation . System execution Mining distributed state Detecting invariants

|. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

1 recv(n) @ 1 recv(n) 1

2 i=1 2 i=1 2 =1
3 sum:=0 3 3

4 product =1 4 product =1 4 product ;=1

5 fori<=n{ 5 fori<=n{ 5 fori<=n{

6 sum :=sum + 1 6 6

7 product := product * i 7 product := product * i 7 product := product * i
8 i=i+1 8 i=i+1 8 l=1+1

9 } 9 } 9 }

10 send(sum) 10 10

11 // @ dump 11 // @ dump 11 // @ dump

12 send (product) 12 send (product) 12 send (product)

Developer adds dump Backward slice: code Variables appearing in
annotations at key affecting the sent the slice: i, n, product
program points product variable

29

https://www.google.com/about/datacenters/gallery

Dinv static analysis

Input Detected EI
Go code Invariants

Network usage Vector clock System Consistent Distributed state Daikon
detector injection execution cut analysis composition
Instrumentation . System execution Mining distributed state Detecting invariants

|. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

1 recv(n) @ 1 recv(n) 1 recv(n) 1 recv(n) @
2 i=1 2 i=1 2 =1 2 =1
3 sum:=0 3 3 3 sum:=0
4 product := 1 4 product =1 4 product =1 4 product =1
5 fori<=n{ 5 fori<=n{ 5 fori<=n{ 5 fori<=n{
6 sum :=sum + 1 6 6 6 sum :=sum + 1
7 product := product * i 7 product := product * i 7 product := product * i 7 product := product * i
8 =1+ 1 8 i=1+1 8 l=1+1 8 i=i+1
9 } 9 } 9 } 9 }
10 send(sum) 10 10 10 send(sum)
11 // @ dump 11 // @ dump 11 // @ dump 11 point = {[i,n,product],vclock}
12 send (product) 12 send (product) 12 send (product) 12 Log(point)
13 send (product)
Developer adds dump Backward slice: code Variables appearing in Injected code to log
annotations at key affecting the sent the slice: i, n, product product-affecting vars
program points product variable

30

https://www.google.com/about/datacenters/gallery

Dinv static analysis

Input Detected EI
Go code Invariants

v

Network usage Vector clock System Consistent Distributed state :
L . . " Daikon

detector Injection execution cut analysis composition

Instrumentation . System execution Mining distributed state Detecting invariants
|. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection .

j Time
Node 1 Node 2

point = {[i,n,product],vclock}

Log(point) f

point ={[x,y,z],vclock}
' * Log(point)

31

https://www.google.com/about/datacenters/gallery

Dinv static analysis

Input Detected D
Go code Invariants

v

Network usage Vector clock System Consistent Distributed state Daikon
detector injection execution cut analysis composition
Instrumentation . System execution Mining distributed state Detecting invariants
|. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection .
j Time
Node 1 Node 2
@ Log Relevant ‘
Variables
Send Message
O o o

(Add vector clock)

32

https://www.google.com/about/datacenters/gallery

Dinv static analysis

Input Detected D
Go code Invariants

v

Network usage Vector clock System Consistent Distributed state Daikon
detector injection execution cut analysis composition
Instrumentation . System execution Mining distributed state Detecting invariants
|. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection .
j Time
Node 1 Node 2
O Log Relevant
Variables
® Send Message P,',,g

(Add vector clock)

33

https://www.google.com/about/datacenters/gallery

Dinv static analysis

Input Detected D
Go code Invariants

v

Network usage Vector clock System Consistent Distributed state Daikon

detector injection execution cut analysis composition

Instrumentation . System execution Mining distributed state Detecting invariants
|. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection :

j Time
Node 1 Node 2
Log Relevant ‘
Variables

Send Message Pin
O (Add vector clock) Q\%g\
O Receive Message

(Remove vector clock)

34

https://www.google.com/about/datacenters/gallery

system + collect traces

Input Detected
Go code Invariants

Network usage Vector clock System _ Consistent Distributed state Daikon
detector injection ! execution | cut analysis composition
Instrumentation . System execution ' Mining distributed state Detecting invariants
—
Sy Sten em— / Partial order
Traces \

Concrete state values

35

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input Detected
Go code Invariants

|
|
|
|
|
I "
—+ > —+» Daikon
|
|
|
|

Network usage Vector clock System Consistent Distributed state
detector injection execution | cut analysis composition
Instrumentation System execution . Mining distributed state | Detecting invariants

|. Consistent Cuts
2. Ground States
3. State Bucketing

Execution 1 lgl Execution 2 @

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
‘ Ping ‘ Ping
— 9 | — 9
’ Get Lock Q Get Lo

C
— k

Ack ‘ '

v v i/" v

36

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input Detected
Go code Invariants

|
|
|
|
|
I "
—+ > —+» Daikon
|
|
|
|

Network usage Vector clock System Consistent Distributed state
detector injection execution | cut analysis composition
Instrumentation System execution . Mining distributed state | Detecting invariants

|. Consistent Cuts
2. Ground States
3. State Bucketing

Execution 1 lgl Execution 2 @

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
‘ Ping ‘ Ping
— 9 | — 9
’ Get Lock &) Get Lo
C
— k
) / AcK ‘ '

v v i/" v

Node.go.Line 55 - InCritical = True

37

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input D
Go code

Network usage
detector

Vector clock System
injection execution

Instrumentation

System execution |

Execution 1 @l

Node 1 Node 2 Node 3

‘%

“" ’ Get LOCk
:: \

v 5]
.
.

Node.go.Line 25 :: InCritical = False

38

Detected
Invariants

Consistent
cut analysis

L Distributed state
composition

Mining distributed state

|. Consistent Cuts
2. Ground States
3. State Bucketing

Execution 2 @

Node 1 Node 2 Node 3
‘ Ping
T
Q@ Get Lock
AcKk ‘ O

% Daikon

. Detecting invariants

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input Detected
Go code Invariants

|
|
|
|
|
I "
—+ > —+» Daikon
|
|
|
|

Network usage Vector clock System Consistent Distributed state
detector injection execution | cut analysis composition
Instrumentation System execution . Mining distributed state | Detecting invariants

|. Consistent Cuts
2. Ground States
3. State Bucketing

Execution 1 lgl Execution 2 @

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
"""" Y ‘ Ping O Ping
] ’ Get Lock Q Get Lo
C
— k
Ack ‘ '
v v i/" v

Node.go.Line 15 - InCritical = False

39

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input D
Go code

Network usage
detector

Instrumentation

Detected
Invariants

% Daikon

Vector clock System . Consistent L Distributed state
injection execution | cut analysis composition
1
|
System execution . Mining distributed state | Detecting invariants
|. Consistent Cuts
2. Ground States
3. State Bucketing
Execution 1 |€| Execution 2 @
Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
‘ Ping ‘ Ping
— 9 | — "9
‘ Get Lock Q Get LOCk
\ \
\ Ack O ‘ <
v \ ‘_ KL \/

Node.go.Line 55 :: InCritical = True

Node.go.Line 55 :: InCritical = True

. Matching logging locations

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input D
Go code

Network usage
detector

Vector clock System
injection execution

Instrumentation

System execution |

Execution 1 @

Node 1 Node 2 Node 3

‘ Ping

T

‘M

41

Detected
Invariants

Consistent
cut analysis

L Distributed state
composition

Mining distributed state

|. Consistent Cuts
2. Ground States
3. State Bucketing

Execution 2 el

Node 1

‘ Ping

T

Node 2 Node 3

® Getton

% Daikon

. Detecting invariants

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input Detected
Go code Invariants

Network usage Vector clock System Consistent Distributed state :
R . —+» . > o —+» Daikon
detector Injection execution | cut analysis composition |
1 1
| |
Instrumentation System execution . Mining distributed state | Detecting invariants
|. Consistent Cuts
2. Ground States
3. State Bucketing
Execution 1 @ Execution 2 &l
Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
‘ Ping Pin
) _Ping @ rig
? Get Lock Get Lo
— ck

Matching consistent state cuts

42

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input Detected
Go code Invariants

Network usage Vector clock System Consistent Distributed state :
R . — . > o —+» Daikon
detector Injection execution | cut analysis composition |
Instrumentation System execution . Mining distributed state | Detecting invariants

|. Consistent Cuts
2. Ground States
3. State Bucketing

Execution 1 @I Execution 2 @I

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
‘ Ping ‘ Ping
\3 \
Get Lock ’ Get Lock
\
6 Ack . ’

/

V‘ \ ? ‘L J

43

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input Detected
Go code Invariants

|
|
|
|
|
I "
—+ > —+» Daikon
|
|
|
|

Network usage Vector clock System Consistent Distributed state
detector injection execution | cut analysis composition
Instrumentation System execution . Mining distributed state | Detecting invariants

|. Consistent Cuts
2. Ground States
3. State Bucketing

Execution 1 @ Execution 2 @l

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
‘ Ping ‘ Pin
\ g
+ Get Lock Get Lock

44

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input Detected
Go code Invariants

|
|
|
|
|
I "
—+ . o —+» Daikon
|
|
|
|

Network usage Vector clock System Consistent Distributed state
detector injection execution | cut analysis composition
Instrumentation System execution . Mining distributed state | Detecting invariants

|. Consistent Cuts
2. Ground States
3. State Bucketing

Execution 1 lgl Execution 2 @

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
? Ping ‘ Ping
\ \
’ Get LOCk Get LO
C
— | k

O) o

45

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input Detected
Go code Invariants

Network usage _Vgctqr clock System . Consisten’g L Distribut.e_d state | ! Daikon
detector Injection execution | cut analysis composition |
Instrumentation System execution . Mining distributed state | Detecting invariants
|. Consistent Cuts
2. Ground States
3. State Bucketing
Execution 1 @ Execution 2 @
— Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
Scalability: ®_rny ® -~
only process o o
T ” Get Lock Get Lock
ground states — \3
(no msgs in flight) ® Ao
y \ v ? \L

46

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input D
Go code

Network usage Vector clock System
detector injection execution |
1
|
Instrumentation System execution |
Execution 1 |2|
Node 1 Node 2 Node 3

Q@ ri

~—)

\ ‘L

\

47

Detected
Invariants

Consistent
cut analysis

Distributed state
> o
composition

Mining distributed state

|. Consistent Cuts
2. Ground States
3. State Bucketing

Node 1

Execution 2 @

Node 2 Node 3

% Daikon

. Detecting invariants

https://www.google.com/about/datacenters/gallery

Reasoning about global state

Input Detected
Go code Invariants

I
|
I
|
|
I "
—+ o | Daikon
|
I
|
I

Network usage Vector clock System Consistent Distributed state
detector injection execution | cut analysis composition
1
|
Instrumentation System execution . Mining distributed state | Detecting invariants
|. Consistent Cuts
2. Ground States
3. State Bucketing
Execution 1 @ Execution 2 @
Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
Ping
Get Loy
AcK

48

https://www.google.com/about/datacenters/gallery

From concrete values to abstract relations

Input D
Go code

Network usage
detector

Vector clock
injection

Instrumentation

System

Detected
Invariants +

Consistent

execution cut analysis

System execution

Distributed state

= —»| Daikon
composition

“likely”
invaégiants

Mining distributed state | Detecting invariants

A4

Node 3 InCritical == True
Node 2 InCritical = Node_3_InCiritical
Node 2 InCritical == Node_1_InCritical

Enforcement: distributed assertions

l Runtime invariant assertions [——— Detected
: ' : Invaniants :
f 21003 l"M» 210Dal stal D
Instrumentation System execution Mining distributed state Detecting Iinvariants
Node 0 Node 1 Node 2
* Distributed probabilistic asserts: cheap
. . . A '
runtime enforcement of invariants /‘@“‘e ssertion
Assert 5Sms
@‘/ Assert 2ms
* Snapshots are constructed using N
approximate synchrony ®
Snapshot
B ’ ______________________
* Asserter constructs global state for
. . State_2
checking by aggregating snapshots State_0 . 77
(discards states if inconsistent)
@ Evaluate
' l '

50

https://www.google.com/about/datacenters/gallery

Dinv evaluation

g Etcd: Key-Value store running Raft - 120K LOC

{‘Q'
0:,’

Serf ser large scale gossiping failure detector - 6.3K LOC

1
@ Taipei- Torrent: Torrent engine written in Go - 5.8K LOC

" Groupcache: Memcached written in Go - |.7K LOC

51

https://www.google.com/about/datacenters/gallery

Dinv evaluation

g Etcd: Key-Value store running Raft - 120K LOC

52

https://www.google.com/about/datacenters/gallery

e.g., Etcd ~ 120K Lines of Code

System and Targeted property Dinv-inferred invariant Description

Raft v follower j, len(leader log) = All appended log entries must be
Strong Leader principle len(/’s log) propagated by the leader

Raft v nodes J, j if i-log[c] = j-log[c] If two logs contain an entry with the
Log matching — V(x < ¢), i-log[x] = j-log[x] same index and term, then the logs are

identical on all previous entries.

Raft If 3 node i, s.tileader, than v j | If a leader exists, then all other nodes
Leader agreement # I, j follower are followers.

* Dinv detected all key RAFT correctness properties

« Just 2 annotations sufficient to detect all invs

» Traces from YCSB-A workload generate enough diversity

53

Probabilistic assertions

Raft invariant

Strong leadership
Leadership agreement
Log matching

54

Constructed and
injected silent bugs for
each invariant into a
running etcd system

https://www.google.com/about/datacenters/gallery

Probabilistic assertions

Raft invariant LOC

Strong leadership 11
Leadership agreement 13
Log matching 72

!

LOC in assertion
(developer must write)

55

https://www.google.com/about/datacenters/gallery

Probabilistic assertions

Raft invariant LOC P=1.0 P=0.1 P=0.01
Strong leadership 11 0.07 0.05 2.96
Leadership agreement 13 0.36 0.34 6.75
Log matching 72 2.22 4.35 6.07

56

T

Time (seconds) to catch an
injected silent bug for
different assert probabilities

https://www.google.com/about/datacenters/gallery

Probabilistic assertions

Raft invariant LOC P=1.0 P=0.1 P=0.01
Strong leadership 11 0.07 0.05 2.96
Leadership agreement 13 0.36 0.34 6.75
Log matching 72 2.22 4.35 6.07

T

Time (seconds) to catch an
injected silent bug for
different assert probabilities

See our ICSE 2018 paper for more evaluation details

Inferring and Asserting Distributed System Invariants
Stewart Grant, Hendrik Cech, Ivan Beschastnikh.

o7

https://www.google.com/about/datacenters/gallery

Limitations

Dinv limitations and future work

Dinv’s dynamic analysis is incomplete
Ground state sampling is poor on loosely coupled systems
Large number of output invariants (requires skill to narrow down)

Targets safety properties (cannot infer liveness properties)

Future work

Root cause analysis\impact analysis\etc

Distributed test case generation

Extend analysis to temporal invariants

58

https://www.google.com/about/datacenters/gallery

Ongoing: distributed model checking

Violated:

System.go counter-example

\/‘
j Dara

Property
R S

Vv nodes, InCritical <1

Verified correct

59 .

https://www.google.com/about/datacenters/gallery

Model checking (MC)

“Exhaustive testing”

Explore the state space of a system w.r.t some model
Check predicate at each state (safety property) for violation
Violation is a path = bug in the model: output to developer

Main challenge: state space explosion

60

https://www.google.com/about/datacenters/gallery

Trade-offs in model checking (MC)

Concrete (implementation-level) MC MODIST NSDI'0

Demi NSDI'16]

¢ The implementation is the model

® No false positives: all found bugs are real
e Huge (concrete) state space

e Engineering complexity

61

https://www.google.com/about/datacenters/gallery

Trade-offs in model checking (MC)

Abstract (model-based) MC

[SAMC OSDI' 14,
MODIST NSDI'09,
Demi NSDI'16]

Limited state space
Several available checkers (e.g., SPIN, TLC)

Must develop a separate model of your system
[Chapar POPL | 6, IronFleet

11 SOSP’[5,VerdiPLDI’ 15,
Opens the door for false positives Pk s

62 Holtzman TSE’97]

https://www.google.com/about/datacenters/gallery

Trade-offs in model checking (MC)

Can we get the best of
both worlds?

Dara

63

https://www.google.com/about/datacenters/gallery

Concrete traces — Abstract model

Idea I: use implementation to bootstrap the abstract model/MC
o Use concrete MC to generate traces of the system
o Use traces to infer an abstract model of the system

¢ Model check abstract model for violations

64

https://www.google.com/about/datacenters/gallery

Implementation is the model oracle

Idea I: use implementation to bootstrap the abstract model/MC
Idea 2: use implementation to check for abstract false positives

® Map each abstract violation into a concrete violation (replay)

e Attempt to reproduce the abstract execution by
replaying it on the actual system

= Bug reproduced: bug found, show trace to user

= Bug not reproduced: abstract false positive

65

https://www.google.com/about/datacenters/gallery

Implementation is the model oracle

Idea I: use implementation to bootstrap the abstract model/MC
Idea 2: use implementation to check for abstract false positives

® Map each abstract violation into a concrete violation (replay)

e Attempt to reproduce the abstract execution by
replaying it on the actual system

= Bug reproduced: bug found, show trace to user

= Bug not reproduced: abstract false positive

Idea 3: refine the abstract model with counter-examples
e False positive are counter-examples: use them to improve model

® Update the abstract model to exclude the non-buggy path

66

https://www.google.com/about/datacenters/gallery

Implementation is the model oracle

Idea I: use implementation to bootstrap the abstract model/MC
Idea 2: use implementation to check for abstract false positives

® Map each abstract violation into a concrete violation (replay)

* Attempt to reproduce the abstract execution by
replaying it on the actual system

Key: use the (faster) abstract model
for the bulk of the checking

Idea 3: refine the abstract model with counter-examples
e False positive are counter-examples: use them to improve model

® Update the abstract model to exclude the non-buggy path

67

https://www.google.com/about/datacenters/gallery

Concrete traces — Abstract model

Model Refinement Model

\ :
Edges Operations
) \ g p To
SPIN
- >
Assertions

States Invariants

L System Model Promella
Traces

68

https://www.google.com/about/datacenters/gallery

High-level view of the approach

Feasible system
behaviors

69

https://www.google.com/about/datacenters/gallery

High-level view of the approach

Feasible system
behaviors

Generate traces using the concrete MC: exhaustive.. but bounded/incomplete

70

https://www.google.com/about/datacenters/gallery

High-level view of the approach

Feasible system
behaviors

Inferred model

Infer abstract model that generalizes

/1

https://www.google.com/about/datacenters/gallery

High-level view of the approach

insufficient
generalization

Feasible system
behaviors

Infer abstract model that generalizes

(2

Incorrect

genera

ization

Inferred model @
O

good
generalization

https://www.google.com/about/datacenters/gallery

High-level view of the approach

Feasible system
behaviors

Inferred model

Update mode to remove infeasible behavior

Incorrect
generalization

Lots of RW in formal methods, e.g., CEGAR, Abstract Interpretation

https://www.google.com/about/datacenters/gallery

Key challenge: concrete model checker

e Demonstrated by MODIST [NSDI'09]
® Trap all non-determinism across all nodes in the distributed system
e Evaluate distributed correctness predicates

¢ Handle unmodified, complex, code

Global Scheduler
Failure Simulation

Unmodified Program Unmodified Program Virtual Clock
Global Assertions
e . » , GoRoutine State
Modified Go Runtime Modified Go Runtime Abstract Schedule

Communication Layer

OS (Linux)

4

Dara current status

® Built up the theory linking concrete and abstract
model checkers (abstract checker is SPIN)

® Developing the blackbox MC for Go-based
systems based on MODIST [nspros;

e Concrete-abstract loop works on simple apps
(dining philosophers)

e Current prototype is ~6K LOC

75

Ongoing: compiling distributed systems

var v_init int

var N int

——algorithm Euclid { ** @PGo{ arg int N }@PGo func main() {
(** @PGo{ var int u }@PGo
OPGo{ var int v }@PGo

@PGo{ var int v_init }@PGo

flag.Parse()
N,_ = strconv.Atoi(flag.Args()[0])

*x) for _,v = range pgoutil.Sequence(1l, N) {
variables u = 24;

v\inl. N

. ===+ PlusCal

while (u # 0) {

) model

ui=vl||vi=uy

};

https://www.google.com/about/datacenters/gallery

Existing verification approaches

W
® Verdi reduces proof burden by automatically | /
handling failures [PLDI'15] &

- S=a
~~~~~

specifications and implementations [sosp'15] ™ .
® MODIST checks the implementation rather ) ot
than a specification [NSDI'09] l gg”gs;e;‘ B
i Zs {,". e

Takes a long time to prove/check, or

require a lot of work from developers

i’



PGo: Compiling Distributed Systems

Making writing of verified distributed systems easier

)

Developer writes
specification

Q-

PGo compiles it to a Source is Verified
matching implementation compiled Distributed System!

Q-

Transition from design (specification)

to implementation is automated

[1] Killian et al. Mace: Language Support for Building Distributed Systems. PLDI 2007

/8



PGo Workflow: (1) Example System

Developer writes
specification

Round-Robin Resource Sharing

—

79

AN
e

-
v

Shared



PGo Workflow: (1) PlusCal Spec

C
)

Developer writes
specification

CONSTANTS procs, iters

(*
~— algorithm RoundRobin {
variables counter = 0,
token = 0;
fair process (P \in 0..procs-1)
variable 1 = 0;
{
w: while ( 1 < 1iters) {
inc: await token = self;
counter := counter + 1;
token := (self + 1) % procs;

1 := 1+ 1;

H}

80



PGo Workflow: (1)

Properties of our System

- Invariants

Developer writes TOI(en IS token \ in 0 rocs-1

specification within bounds roP
Properties

(@

Processes \A p \in \ProcSet :
Get the Token <>(token = p)

\ Counter Termination =>
\ Converges (counter = procs * iters)

81



PGo Workflow: (1) Verifying

Model Checked with TLC!

Q
)

Developer writes
specification = Model Checking Results

O &£ n 3

-] General

Start time: Fri May 04 01:45:30 PDT 2018

End time: Fri May 04 01:45:37 PDT 2018

TLC mode: Breadth-first search

k Last checkpoint time:
Current status:

Not running

(@

Errors detected: No errors




PGo Workflow: (2) Compilation

® counter is X
semantics need to be -—) ©O

maintained %)
PGo generates Source code can be
. matching implementation compiled with Go as usual
©  Runtime manages state tehing mplementation T
aCross processes
® Labels are fair process (P \in 0..procs-1)
variable i = 0;
-~ Processes coordinate {
w: while ( i < iters) {

access to atomic blocks

inc: await token = self;

* High-level concepts Coken o= (sert + 1) 4 procs
such as ooty
©  Lock and check predicate b

83



PGo Workflow: (3) Using Compiled Code

® Generated Go code can run as
any of the processes defined in

PlusCal

s
4 s

Verified
Distributed System!

$ ./counter
Usage: ./counter process(argument) ip:port

v

$ ./counter ‘P(l)’ 192.168.1.80:2222

84



Current Status

e PGo is 25K LOC (compiler) and 3K (runtime)
e Able to compile concurrent and distributed systems
e Support for different strategies to deal with global state in a distributed system

e Designing ModularPlusCal: extending PlusCal with more modularity features for
large systems, and more separation of design + implementation

e Collecting and developing system specs for demo/evaluation:

® Load balancer, dist. queue, dist. counter, two phase commit, dist. mutex, Euclid’s
algorithm, n-queens,...

® ~30 lines of PCal generates ~80 lines of Go; compiled n-queens perf within 5% of a
native Go implementation

® https://github.com/UBC-NSS/pgo/tree/master/examples

85


https://github.com/UBC-NSS/pgo/tree/master/examples

Example specs/properties

e N-Queens (not written by us): computes all solutions to N-Queens

® Property: at every step, the set of solutions found is a subset of all existing
solutions

¢ DijkstraMutex (not written by us): Dijkstra’s mutual exclusion algorithm
® Property: deadlock freedom

e Counter: N processes increment a shared, global counter a fixed number of times
® Property: when all processes are done, counter is equal to (N * # of iterations)

¢ dqueue: Distributed queue, with one producer and multiple consumers

® Property: mutual exclusion (consumer and producer are not mutating shared
queue at the same time)

86



PGo work in progress

® Support a larger subset of
PlusCal/TLA+

® Generating distributed systems
that are fault tolerant

e Use modularity to make it easy
for developers to change

generated code
(without compromising safety)

87

Internal(¢) = INSTANCE SyncQueuelnternal

I
Fifo =
|

A g : Internal(q)! Fifol




® Specifications are very : not everything
can be compiled efficiently

® Requires developers to also specify
during compilation (e.g., number of processes,
transport protocol, etc).

® Both the PGo compiler and the associated runtime
to claim correctness

388



Program analysis for distributed systems

1. Dinv [ICSE 2018]

= &= V‘Q Thanks to our
v

ng - Funders:

Node C A.seq < B.seq < C.seq

https://bitbucket.org/bestchai/dinv

@VQ HUAWEI

Violated:

w__ counter-example
2. Dara (ow ) NSERC
w v Verified correct CBSNG
V nodes, InCritical <1

https://github.com/DARA-Project

5.4

flag.Parse
n N,_ = strconv.Atoi(flag.Ar
@PGo{ var int v_init }@PGo
3 . P G o j;::)ri aaaaaa o foi_:,VQZ range pgoutil.Sequence(1, N) {
v\in 1 .. N; v_init = v
A PlusCal
—_— ol (GO lang
vl . Inodel
https://github.com/UBC-NSS/pgo Eo v

Bridging gap between design and implementation




Backup slides

90



Dinv runtime overhead

Number of Executed Logsize Runtime Runtime
annotations annotations (MB) (s) overhead %
0 0 0 2.66 0

1 2.8K 3.2 2.70 1.5

2 5.6K 4.3 2.77 4.0

5 14K 9.7 3.01 12.9

10 28K 18.0 3.31 24.3

30 85K 51.7 4.48 68.0

100 261K 167.9 7.66 187.5

* YCSB-A workload, 3 nodes
* | logging statement runtime ~ 20 4tS

* Static instrumentation negligible

91



Dinv runtime overhead

Number of Executed Logsize Runtime Runtime
annotations annotations (MB) (s) overhead %
0 0 0 2.66 0
1 2.8K 3.2 2.70 1.5
2 5.6K 4.3 2.77 4.0
5 14K 9.7 3.01 12.9
10 28K 18.0 3.31 24.3
30 85K 51.7 4.48 68.0
100 261K 167.9 7.66 187.5
All Raft invariants can
* YCSB-A workload, 3 nodes be detected with just

* | logging statement runtime ~ 20 (1S two annotations

* Static instrumentation negligible

92



Dinv analysis time

System Raft Raft
runtime (s) log (MB) analysis (s)
30 5.1 12.7

60 10.5 28.1

90 13.7 35.9

120 17.4 48.7

150 22.5 63.8

130 27.7 99.1

* Log size + analysis time linear in sys runtime

* Can be done offline + parallelized

93


https://www.google.com/about/datacenters/gallery

