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Bridging gap between design and implementation



• Distributed systems are 
widely deployed [1]

Distributed systems are widely-used

[1] Mark Cavage. 2013. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30 (April 2013)
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● Graph processing 
● Stream processing 
● Distributed databases 
● Failure detectors 
● Cluster schedulers 
● Version control 
● ML frameworks 
● Blockchains 
● KV stores 
● ... 



• Distributed systems are 
widely deployed [1]

Cloud systems/apps ecosystem
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Cloud abstraction

[1] Mark Cavage. 2013. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30 (April 2013)

Google’s data center, Council Bluffs,  IA
https://www.google.com/about/datacenters/gallery



• Distributed systems are 
widely deployed [1]

Cloud systems/apps ecosystem
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Cloud abstraction

Large-scale apps

[1] Mark Cavage. 2013. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30 (April 2013)

Google’s data center, Council Bluffs,  IA
https://www.google.com/about/datacenters/gallery



• Distributed systems are 
widely deployed [1]

• Failures are very costly

• DynamoDB’s outage in 2015 caused 
downtime on Netflix, Reddit, etc [2]

• S3’s outage in 2017 caused loss of 
millions of dollars [3]

Issue 1: Cloud creates costly fate sharing

[1] Mark Cavage. 2013. There's Just No Getting around It: You're Building a Distributed System. Queue 11, 4, Pages 30 (April 2013)
[2] Fletcher Babb. Amazon’s AWS DynamoDB Experiences Outage, Affecting Netflix, Reddit, Medium, and More. en-US. Sept. 2015 
[3] Shannon Vavra. Amazon outage cost S&P 500 companies $150M. axios.com, Mar 3, 2017
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…

http://axios.com


• Distributed systems are 
hard to design and build

• Non-deterministic 
sequence of events

• Processes make decisions 
based on local state

• A variety of failures

Issue 2: Distribution challenges
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“You know you have a distributed system when the crash   
of a computer you’ve never heard of stops you from 
getting any work done.”	 — Leslie Lamport

Concurrency No central clock

Partial failures Perf variation



Overall: High essential complexity
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Concurrency No central clock

Partial failures Perf variation
Failures can be very costly

We need to continue to innovate in how we build 
reliable distributed systems



Program analysis for distributed systems
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1. Dinv

PlusCal 
model

3. PGo

Thesis 2016, 30 April, 2016, Vancouver, BC

7 select {
8 case <� cond1: <then1>

9 case <� cond2: <then2>

10 ...

11 }

Listing 7: Corresponding Go to an PlusCal

either clause

6.5 Additional Pluscal syntax semantics

The with statement in PlusCal assigns random values to
variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.

7 IMPLEMENTATION

PGo is built using existing code for TLA+ toolbox, specifi-
cally the PlusCal AST and parsing algorithms in the PlusCal
to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.

8 EVALUATION

PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.

1 ��algorithm Euclid { \ @PGo{ arg int N }@PGo
2 ( @PGo{ var int u }@PGo
3 @PGo{ var int v }@PGo
4 @PGo{ var int v_init }@PGo
5 )

6 variables u = 24;

7 v \in 1 .. N;

8 v_init = v;

9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
14 u := u � v;

15 };
16 print <<24, v_init, ”have gcd”, v>>

17 }
18 }

Listing 8: The Euclid algorithm in PlusCal that

PGo compiled

1 package main

2

3 import (

4 ”flag”

5 ”fmt”

6 ”pgoutil”

7 ”strconv”

8 )

9

10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.

Go lang

Thesis 2016, 30 April, 2016, Vancouver, BC

7 select {
8 case <� cond1: <then1>

9 case <� cond2: <then2>

10 ...

11 }

Listing 7: Corresponding Go to an PlusCal

either clause

6.5 Additional Pluscal syntax semantics

The with statement in PlusCal assigns random values to
variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.

7 IMPLEMENTATION

PGo is built using existing code for TLA+ toolbox, specifi-
cally the PlusCal AST and parsing algorithms in the PlusCal
to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.

8 EVALUATION

PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.

1 ��algorithm Euclid { \ @PGo{ arg int N }@PGo
2 ( @PGo{ var int u }@PGo
3 @PGo{ var int v }@PGo
4 @PGo{ var int v_init }@PGo
5 )

6 variables u = 24;

7 v \in 1 .. N;

8 v_init = v;

9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
14 u := u � v;

15 };
16 print <<24, v_init, ”have gcd”, v>>

17 }
18 }

Listing 8: The Euclid algorithm in PlusCal that

PGo compiled

1 package main

2

3 import (

4 ”flag”

5 ”fmt”

6 ”pgoutil”

7 ”strconv”

8 )

9

10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.

Node A Node B

Node C A.seq  B.seq  C.seq

A.lo
g

B.log

C.log

2. Dara
Dara

System.go

Property

Violated:
counter-example

Verified correct
8 nodes, InCritical  1

Spec miner

Model checker

Compiler

[ICSE 2018]
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How these tools empower developers
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PlusCal 
model

3. PGo

Thesis 2016, 30 April, 2016, Vancouver, BC
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8 case <� cond1: <then1>

9 case <� cond2: <then2>

10 ...

11 }

Listing 7: Corresponding Go to an PlusCal

either clause

6.5 Additional Pluscal syntax semantics

The with statement in PlusCal assigns random values to
variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.

7 IMPLEMENTATION

PGo is built using existing code for TLA+ toolbox, specifi-
cally the PlusCal AST and parsing algorithms in the PlusCal
to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.

8 EVALUATION

PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.
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9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
14 u := u � v;

15 };
16 print <<24, v_init, ”have gcd”, v>>

17 }
18 }

Listing 8: The Euclid algorithm in PlusCal that

PGo compiled

1 package main

2

3 import (

4 ”flag”

5 ”fmt”

6 ”pgoutil”

7 ”strconv”

8 )

9

10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.

Go lang

Thesis 2016, 30 April, 2016, Vancouver, BC

7 select {
8 case <� cond1: <then1>

9 case <� cond2: <then2>

10 ...

11 }

Listing 7: Corresponding Go to an PlusCal

either clause

6.5 Additional Pluscal syntax semantics

The with statement in PlusCal assigns random values to
variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.

7 IMPLEMENTATION

PGo is built using existing code for TLA+ toolbox, specifi-
cally the PlusCal AST and parsing algorithms in the PlusCal
to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.

8 EVALUATION

PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.

1 ��algorithm Euclid { \ @PGo{ arg int N }@PGo
2 ( @PGo{ var int u }@PGo
3 @PGo{ var int v }@PGo
4 @PGo{ var int v_init }@PGo
5 )

6 variables u = 24;

7 v \in 1 .. N;

8 v_init = v;

9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
14 u := u � v;

15 };
16 print <<24, v_init, ”have gcd”, v>>

17 }
18 }

Listing 8: The Euclid algorithm in PlusCal that

PGo compiled

1 package main

2

3 import (

4 ”flag”

5 ”fmt”

6 ”pgoutil”

7 ”strconv”

8 )

9

10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.

Node A Node B

Node C A.seq  B.seq  C.seq

A.lo
g

B.log

C.log

2. Dara
Dara

System.go

Property

Violated:
counter-example

Verified correct
8 nodes, InCritical  1

Spec miner

Model checker

Compiler

How does my system behave?

Is my system correct?

Can I implement my (correct) system faster?

Bridging gap between design and implementation
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variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.
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written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.
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PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.
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10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
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Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
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like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.
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command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.
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10 ...
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variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
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7 IMPLEMENTATION
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to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.
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PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.

1 ��algorithm Euclid { \ @PGo{ arg int N }@PGo
2 ( @PGo{ var int u }@PGo
3 @PGo{ var int v }@PGo
4 @PGo{ var int v_init }@PGo
5 )

6 variables u = 24;

7 v \in 1 .. N;

8 v_init = v;

9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
14 u := u � v;

15 };
16 print <<24, v_init, ”have gcd”, v>>

17 }
18 }

Listing 8: The Euclid algorithm in PlusCal that

PGo compiled
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2
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4 ”flag”

5 ”fmt”

6 ”pgoutil”

7 ”strconv”

8 )

9

10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.
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Why distributed spec mining?
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Node A Node B

Node C A.seq  B.seq  C.seq

A.lo
g

B.log

C.log

Spec miner
Dinv

Sampler of state of the art in building robust distributed systems:

• Verification [ Verification: Bagpipe OOPSLA’16, IronFleet SOSP’15, Verdi PLDI’15, 
Chapar POPL’16; Modeling: Lamport et.al SIGOPS’02, Holtzman IEEE TSE’97]

• Bug detection [ SAMC OSDI’14, MODIST NSDI’09, CrystalBall NSDI’09, 
MaceMC NSDI’07]

• Runtime checkers [ D3S NSDI’18 ]

• Tracing [ PivotTracing SOSP’15, XTrace NSDI’07, Dapper TR’10 ]

• Log analysis [ Pensieve SOSP’17, Demi NSDI’16, ShiViz CACM ’16 ]
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A.lo
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Dinv
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Chapar POPL’16; Modeling: Lamport et.al SIGOPS’02, Holtzman IEEE TSE’97]

• Bug detection [ SAMC OSDI’14, MODIST NSDI’09, CrystalBall NSDI’09, 
MaceMC NSDI’07]

• Runtime checkers [ D3S NSDI’18 ]

• Tracing [ PivotTracing SOSP’15, XTrace NSDI’07, Dapper TR’10 ]

• Log analysis [ Pensieve SOSP’17, Demi NSDI’16, ShiViz CACM ’16 ]
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Node A Node B

Node C A.seq  B.seq  C.seq

A.lo
g

B.log

C.log

Spec miner

Require 
specifications 

Dinv

● Avenger SRDS’11 
- High manual effort 

● CSight ICSE’14 
- Temporal model 

● Udon ICSE’15 
- Multithreaded sh-state

Sampler of state of the art in building robust distributed systems:

• Verification [ Verification: Bagpipe OOPSLA’16, IronFleet SOSP’15, Verdi PLDI’15, 
Chapar POPL’16; Modeling: Lamport et.al SIGOPS’02, Holtzman IEEE TSE’97]

• Bug detection [ SAMC OSDI’14, MODIST NSDI’09, CrystalBall NSDI’09, MaceMC 
NSDI’07]

• Runtime checkers [ D3S NSDI’18 ]
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Goal: infer correctness properties  
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Mutual exclusion:

Key Partitioning:
8 nodes, i, j keysi 6= keysj

8 nodes, i, j InCriticali ! ¬ InCriticalj
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Mutual exclusion:

Key Partitioning:
8 nodes, i, j keysi 6= keysj

8 nodes, i, j InCriticali ! ¬ InCriticalj
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Mutual exclusion:

Key Partitioning:
8 nodes, i, j keysi 6= keysj

8 nodes, i, j InCriticali ! ¬ InCriticalj

Running example
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Mutual exclusion:

Key Partitioning:
8 nodes, i, j keysi 6= keysj

8 nodes, i, j InCriticali ! ¬ InCriticalj

“Distributed state”
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Distributed state is information retained in one 
place that describes something, or is determined 
by something, somewhere else in the system.

- John Ousterhout

[1] John Ousterhout. The Role of Distributed State. CMU-TR. 1991
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Distributed state is information retained in one 
place that describes something, or is determined 
by something, somewhere else in the system.

- John Ousterhout
Examples:

•A table mapping files to hosts that store them

•Request id to identify the last received request

•Public key for a remote server

[1] John Ousterhout. The Role of Distributed State. CMU-TR. 1991
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Distributed state is information retained in one 
place that describes something, or is determined 
by something, somewhere else in the system.

- John Ousterhout

 Dinv: captures distributed state and reveals
         distributed state runtime properties

Observation: Distributed state is one key reason
                   why distributed systems are complex

[1] John Ousterhout. The Role of Distributed State. CMU-TR. 1991
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Detected
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Static analysis Dynamic analysis
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injection

System execution Mining distributed state

Daikon

Input
Go code

Detecting invariants

System 
execution

Consistent 
cut analysis

Distributed state 
composition

Detected
Invariants

1. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

Developer adds dump 
annotations at key  

program points

Backward slice: code 
affecting the sent 
product variable

Variables appearing in 
the slice: i, n, product

Injected code to log 
product-affecting vars

1    recv(n)
2    i:= 1
3    sum := 0
4    product := 1
5    for i <= n {
6        sum := sum + 1
7        product := product * i
8        i := i + 1
9    }
10  send(sum)

12  send (product)
11  // @ dump

1    recv(n)
2    i:= 1
3    
4    product := 1
5    for i <= n {
6       
7        product := product * i
8        i := i + 1
9    }
10 

12  send (product)
11  // @ dump

1    recv(n)
2    i:= 1
3    
4    product := 1
5    for i <= n {
6       
7        product := product * i
8        i := i + 1
9    }
10 
11  // @ dump
12  send (product)

1    recv(n)
2    i:= 1
3    sum := 0
4    product := 1
5    for i <= n {
6        sum := sum + 1
7        product := product * i
8        i := i + 1
9    }
10  send(sum)

13  send (product)

11  point = {[i,n,product],vclock}
12  Log(point)

1 22.a 2.b
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Developer adds dump 
annotations at key  

program points

Backward slice: code 
affecting the sent 
product variable

Variables appearing in 
the slice: i, n, product

Injected code to log 
product-affecting vars

1    recv(n)
2    i:= 1
3    sum := 0
4    product := 1
5    for i <= n {
6        sum := sum + 1
7        product := product * i
8        i := i + 1
9    }
10  send(sum)

12  send (product)
11  // @ dump

1    recv(n)
2    i:= 1
3    
4    product := 1
5    for i <= n {
6       
7        product := product * i
8        i := i + 1
9    }
10 

12  send (product)
11  // @ dump

1    recv(n)
2    i:= 1
3    
4    product := 1
5    for i <= n {
6       
7        product := product * i
8        i := i + 1
9    }
10 
11  // @ dump
12  send (product)

1    recv(n)
2    i:= 1
3    sum := 0
4    product := 1
5    for i <= n {
6        sum := sum + 1
7        product := product * i
8        i := i + 1
9    }
10  send(sum)

13  send (product)

11  point = {[i,n,product],vclock}
12  Log(point)

1 22.a 2.b
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program points

Backward slice: code 
affecting the sent 
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Variables appearing in 
the slice: i, n, product

Injected code to log 
product-affecting vars

1    recv(n)
2    i:= 1
3    sum := 0
4    product := 1
5    for i <= n {
6        sum := sum + 1
7        product := product * i
8        i := i + 1
9    }
10  send(sum)

12  send (product)
11  // @ dump

1    recv(n)
2    i:= 1
3    
4    product := 1
5    for i <= n {
6       
7        product := product * i
8        i := i + 1
9    }
10 

12  send (product)
11  // @ dump

1    recv(n)
2    i:= 1
3    
4    product := 1
5    for i <= n {
6       
7        product := product * i
8        i := i + 1
9    }
10 
11  // @ dump
12  send (product)

1    recv(n)
2    i:= 1
3    sum := 0
4    product := 1
5    for i <= n {
6        sum := sum + 1
7        product := product * i
8        i := i + 1
9    }
10  send(sum)

13  send (product)

11  point = {[i,n,product],vclock}
12  Log(point)

1 22.a 2.b
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Variables appearing in 
the slice: i, n, product
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1    recv(n)
2    i:= 1
3    sum := 0
4    product := 1
5    for i <= n {
6        sum := sum + 1
7        product := product * i
8        i := i + 1
9    }
10  send(sum)

12  send (product)
11  // @ dump

1    recv(n)
2    i:= 1
3    
4    product := 1
5    for i <= n {
6       
7        product := product * i
8        i := i + 1
9    }
10 

12  send (product)
11  // @ dump

1    recv(n)
2    i:= 1
3    
4    product := 1
5    for i <= n {
6       
7        product := product * i
8        i := i + 1
9    }
10 
11  // @ dump
12  send (product)

1    recv(n)
2    i:= 1
3    sum := 0
4    product := 1
5    for i <= n {
6        sum := sum + 1
7        product := product * i
8        i := i + 1
9    }
10  send(sum)

13  send (product)

11  point = {[i,n,product],vclock}
12  Log(point)

1 22.a 2.b
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point = {[i,n,product],vclock}
Log(point)

point = {[x,y,z],vclock}
Log(point)

Time
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Node.go.Line 15 :: InCritical = False
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Node_3_InCritical == True 
Node_2_InCritical != Node_3_InCritical 
Node_2_InCritical == Node_1_InCritical

…

“likely” 
invariants

[Ernst et al.  TSE 01] Daikon tool
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• Distributed probabilistic asserts: cheap 
runtime enforcement of invariants

• Snapshots are constructed using 
approximate synchrony

• Asserter constructs global state for 
checking by aggregating snapshots 
(discards states if inconsistent)
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Etcd: Key-Value store running Raft - 120K LOC

Serf: large scale gossiping failure detector - 6.3K LOC

Taipei-Torrent: Torrent engine written in Go - 5.8K LOC

Groupcache: Memcached written in Go - 1.7K LOC
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Etcd: Key-Value store running Raft - 120K LOC

Serf: large scale gossiping failure detector - 6.3K LOC

Taipei-Torrent: Torrent engine written in Go - 5.8K LOC

Groupcache: Memcached written in Go - 1.7K LOC
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e.g., Etcd ~ 120K Lines of Code
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System and Targeted property Dinv-inferred invariant Description

Raft 
Strong Leader principle

∀ follower i, len(leader log) ≥ 
len(i’s log)

All appended log entries must be 
propagated by the leader

Raft 
Log matching

∀ nodes i, j if i-log[c] = j-log[c] 
→ ∀(x ≤ c), i-log[x] = j-log[x]

If two logs contain an entry with the 
same index and term, then the logs are 
identical on all previous entries.

Raft 
Leader agreement

If ∃ node i, s.t i leader, than ∀ j 
≠ i, j follower

If a leader exists, then all other nodes 
are followers.

• Dinv detected all key RAFT correctness properties
• Just 2 annotations sufficient to detect all invs


• Traces from YCSB-A workload generate enough diversity



Probabilistic assertions
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ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Stewart Grant, Hendrik Cech, and Ivan Beschastnikh

requests must resolve to the minimum distance peer. To test the cor-
rectness of Find_Value requests we added a 5 line function which
output the minimum distance of the peers and resources in the
routing table and logged it. To test routing we ran clusters with
3–6 peers using a variety of topologies by controlling peer IDs. We
logged state after the results of a Find_Value request were added to
a peer’s routing table. On each execution we found that 8 peers i, j ,
peeri .min_distance = peer j .min_distance in all total-order groups.
This invariant, in conjunction with O (Lo�(n)) message bound, pro-
vides strong evidence for the correctness of Nictuku’s implementa-
tion of Kademlia.

6.4 Analyzing etcd Raft
Etcd is a distributed key-value store which relies on the Raft consen-
sus algorithm [42]. Raft speci�es that only leaders serve requests,
and followers replicate a leader’s state. Followers use a heartbeat
to detect leader failure, starting elections on heartbeat timeouts.
Etcd is used by applications such as Kubernetes [32], �eet [13],
and locksmith [15], making the correctness of its consensus algo-
rithm paramount to large tech companies such as eBay. Etcd Raft
is implemented in 144K LOC.

Etcd uses encoders to wrap network connections, so manual vec-
tor clock instrumentation was required. Log analysis took between
10-15s. Etcd was controlled using scripts. One to launch a clusters
of 3-5 nodes, another to partition nodes, and one to issue a 30s
YCSB-A workload (50% put, 50% get requests) [11].
Strong leadership. An integral property of Raft is strong lead-
ership: only the leader may issue an append entries command to
the rest of the cluster. This property manifests itself in a num-
ber of data invariants. A leader’s log should be longer than the
log of each follower. Further, the leader’s commit index, and log
term should be larger than that of the followers. We logged com-
mit indices, and the length of the log. In each case the invari-
ant leader .lo�size � f ollower .lo�size , and leader .commitIndex �
f ollower .commitIndex was detected by the send-receive strategy.
Log matching. Raft asserts “if two logs contain an entry with the
same index and term, then the logs are identical in all entries up
to the given index” [42]. This property is hard to detect explicitly
because it requires conditional logic on arrays. We were able to
detect that in all cases nodei .commitIndex = nodej .commitIndex ^
nodei .lo�[commitIndex] = nodej .lo�[commitIndex]!nodei .lo� =
nodej .lo� up to the all-states grouping. This shows that if any two
nodes have the same log index, and the value at that index match,
their entire logs match; this is evidence of the logmatching property.
Leadership agreement. At most one leader can exist at a time
in an unpartitioned network, and all unpartitioned members of
a cluster must agree on a leader after partitioning. By logging
leadership state variables when leadership was established, we were
able to derive that:nodeistate = Leader!8 jnodej .leader = nodei
^8j , i , nodej .state = Follower . These invariants were detected in
both send-receive and total-order groups. This indicates that after
the partition occurred, all nodes agree on a leader, and that all nodes
but the leader are followers.

Strong leadership, log matching, and leadership agreement are
invariants of a correct Raft implementation. By checking their exis-
tence, we produced strong evidence for the correctness of etcd Raft.

Raft invariant LOC P=1.0 P=0.1 P=0.01
Strong leadership 11 0.07 0.05 2.96

Leadership agreement 13 0.36 0.34 6.75
Log matching 72 2.22 4.35 6.07

Table 3: LOC to implement and time (sec) to detect an invari-
ant violation with probabilistic asserts.

Further, we have shown Dinv’s ability to detect useful properties
over distributed state of large and non-trivial system.

7 EVALUATION: ASSERTING INVARIANTS
Dinv-inferred invariants can be used for comprehension. However,
they can also be converted into assertion predicates to �nd regres-
sion errors at runtime. Here we detail how we used the Dinv assert
mechanism to check the inferred etcd Raft invariants at runtime.

We developed distributed assertions for each of etcd’s invariants.
We then evaluated the ability of these assertions to �nd bugs by
using them with buggy versions of Raft. For this we manually
created three bugs, each of which violates one of the three Raft
invariants. All bugs cause a violation without causing Raft to crash,
or impact its ability to serve client requests. That is, each bug
produces silent errors and is di�cult to detect.

Strong leadership bug. In Raft only the leader may issue the
command to append entries to a replicated log. In our two line bug
an unauthorized follower broadcasted append entries, and commit-
ted to its own log. Raft’s algorithm tolerates this bug because the
leader has authority to overwrite followers logs. However, once
a leader has written to disk in a term, the system expects that all
followers’ logs are synchronized. Etcd does not verify synchroniza-
tion so the bug causes the leader to perpetually issue log correction
messages to the buggy follower. The invariant for strong leadership
is that the leaders log size is greater than all the followers’ logs if
the leader has committed in the current term.

Leadership agreement bug. If a leader exists in a given term,
all nodes must agree on this leader for leadership agreement to hold.
We introduced a 4-line bug which caused followers to randomly
select a leader from their list of peers post election. Etcd continues
to execute with this bug. However, followers periodically time out
waiting for messages from a false leader and initiate a new election.
In a non-buggy execution if any two nodes agree on a leader for a
given term then they agree on the same leader.

Log matching bug. Log matching is critical to etcd’s fault tol-
erance. If log matching does not hold etcd’s key value store returns
inconsistent results depending on which node is the leader. Etcd
assumes that all log entries written to disk are correct. To violate
the log matching invariant we injected a 7-line bug to corrupt a
committed log at a random place and time. With this bug etcd
executes as normal and assumes that the nodes’ logs are correct.
The log matching invariant states that if any two nodes have an
entry with the same term, index, and data, then all prior log entries
match.

Table 3 shows our experimental results. Assertions for above
invariants ranged in size. Log matching was the most complex
(72 LOC): checking it requires a comparison of logs from every
pair of nodes. The assertion iterates through all pairs of node logs,
checking them for inconsistencies. The other two assertions were
expressed in under 15 LOC.

Constructed and 
injected silent bugs for 
each invariant into a 
running etcd system
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requests must resolve to the minimum distance peer. To test the cor-
rectness of Find_Value requests we added a 5 line function which
output the minimum distance of the peers and resources in the
routing table and logged it. To test routing we ran clusters with
3–6 peers using a variety of topologies by controlling peer IDs. We
logged state after the results of a Find_Value request were added to
a peer’s routing table. On each execution we found that 8 peers i, j ,
peeri .min_distance = peer j .min_distance in all total-order groups.
This invariant, in conjunction with O (Lo�(n)) message bound, pro-
vides strong evidence for the correctness of Nictuku’s implementa-
tion of Kademlia.

6.4 Analyzing etcd Raft
Etcd is a distributed key-value store which relies on the Raft consen-
sus algorithm [42]. Raft speci�es that only leaders serve requests,
and followers replicate a leader’s state. Followers use a heartbeat
to detect leader failure, starting elections on heartbeat timeouts.
Etcd is used by applications such as Kubernetes [32], �eet [13],
and locksmith [15], making the correctness of its consensus algo-
rithm paramount to large tech companies such as eBay. Etcd Raft
is implemented in 144K LOC.

Etcd uses encoders to wrap network connections, so manual vec-
tor clock instrumentation was required. Log analysis took between
10-15s. Etcd was controlled using scripts. One to launch a clusters
of 3-5 nodes, another to partition nodes, and one to issue a 30s
YCSB-A workload (50% put, 50% get requests) [11].
Strong leadership. An integral property of Raft is strong lead-
ership: only the leader may issue an append entries command to
the rest of the cluster. This property manifests itself in a num-
ber of data invariants. A leader’s log should be longer than the
log of each follower. Further, the leader’s commit index, and log
term should be larger than that of the followers. We logged com-
mit indices, and the length of the log. In each case the invari-
ant leader .lo�size � f ollower .lo�size , and leader .commitIndex �
f ollower .commitIndex was detected by the send-receive strategy.
Log matching. Raft asserts “if two logs contain an entry with the
same index and term, then the logs are identical in all entries up
to the given index” [42]. This property is hard to detect explicitly
because it requires conditional logic on arrays. We were able to
detect that in all cases nodei .commitIndex = nodej .commitIndex ^
nodei .lo�[commitIndex] = nodej .lo�[commitIndex]!nodei .lo� =
nodej .lo� up to the all-states grouping. This shows that if any two
nodes have the same log index, and the value at that index match,
their entire logs match; this is evidence of the logmatching property.
Leadership agreement. At most one leader can exist at a time
in an unpartitioned network, and all unpartitioned members of
a cluster must agree on a leader after partitioning. By logging
leadership state variables when leadership was established, we were
able to derive that:nodeistate = Leader!8 jnodej .leader = nodei
^8j , i , nodej .state = Follower . These invariants were detected in
both send-receive and total-order groups. This indicates that after
the partition occurred, all nodes agree on a leader, and that all nodes
but the leader are followers.

Strong leadership, log matching, and leadership agreement are
invariants of a correct Raft implementation. By checking their exis-
tence, we produced strong evidence for the correctness of etcd Raft.

Raft invariant LOC P=1.0 P=0.1 P=0.01
Strong leadership 11 0.07 0.05 2.96

Leadership agreement 13 0.36 0.34 6.75
Log matching 72 2.22 4.35 6.07

Table 3: LOC to implement and time (sec) to detect an invari-
ant violation with probabilistic asserts.

Further, we have shown Dinv’s ability to detect useful properties
over distributed state of large and non-trivial system.

7 EVALUATION: ASSERTING INVARIANTS
Dinv-inferred invariants can be used for comprehension. However,
they can also be converted into assertion predicates to �nd regres-
sion errors at runtime. Here we detail how we used the Dinv assert
mechanism to check the inferred etcd Raft invariants at runtime.

We developed distributed assertions for each of etcd’s invariants.
We then evaluated the ability of these assertions to �nd bugs by
using them with buggy versions of Raft. For this we manually
created three bugs, each of which violates one of the three Raft
invariants. All bugs cause a violation without causing Raft to crash,
or impact its ability to serve client requests. That is, each bug
produces silent errors and is di�cult to detect.

Strong leadership bug. In Raft only the leader may issue the
command to append entries to a replicated log. In our two line bug
an unauthorized follower broadcasted append entries, and commit-
ted to its own log. Raft’s algorithm tolerates this bug because the
leader has authority to overwrite followers logs. However, once
a leader has written to disk in a term, the system expects that all
followers’ logs are synchronized. Etcd does not verify synchroniza-
tion so the bug causes the leader to perpetually issue log correction
messages to the buggy follower. The invariant for strong leadership
is that the leaders log size is greater than all the followers’ logs if
the leader has committed in the current term.

Leadership agreement bug. If a leader exists in a given term,
all nodes must agree on this leader for leadership agreement to hold.
We introduced a 4-line bug which caused followers to randomly
select a leader from their list of peers post election. Etcd continues
to execute with this bug. However, followers periodically time out
waiting for messages from a false leader and initiate a new election.
In a non-buggy execution if any two nodes agree on a leader for a
given term then they agree on the same leader.

Log matching bug. Log matching is critical to etcd’s fault tol-
erance. If log matching does not hold etcd’s key value store returns
inconsistent results depending on which node is the leader. Etcd
assumes that all log entries written to disk are correct. To violate
the log matching invariant we injected a 7-line bug to corrupt a
committed log at a random place and time. With this bug etcd
executes as normal and assumes that the nodes’ logs are correct.
The log matching invariant states that if any two nodes have an
entry with the same term, index, and data, then all prior log entries
match.

Table 3 shows our experimental results. Assertions for above
invariants ranged in size. Log matching was the most complex
(72 LOC): checking it requires a comparison of logs from every
pair of nodes. The assertion iterates through all pairs of node logs,
checking them for inconsistencies. The other two assertions were
expressed in under 15 LOC.

LOC in assertion 
(developer must write)
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requests must resolve to the minimum distance peer. To test the cor-
rectness of Find_Value requests we added a 5 line function which
output the minimum distance of the peers and resources in the
routing table and logged it. To test routing we ran clusters with
3–6 peers using a variety of topologies by controlling peer IDs. We
logged state after the results of a Find_Value request were added to
a peer’s routing table. On each execution we found that 8 peers i, j ,
peeri .min_distance = peer j .min_distance in all total-order groups.
This invariant, in conjunction with O (Lo�(n)) message bound, pro-
vides strong evidence for the correctness of Nictuku’s implementa-
tion of Kademlia.

6.4 Analyzing etcd Raft
Etcd is a distributed key-value store which relies on the Raft consen-
sus algorithm [42]. Raft speci�es that only leaders serve requests,
and followers replicate a leader’s state. Followers use a heartbeat
to detect leader failure, starting elections on heartbeat timeouts.
Etcd is used by applications such as Kubernetes [32], �eet [13],
and locksmith [15], making the correctness of its consensus algo-
rithm paramount to large tech companies such as eBay. Etcd Raft
is implemented in 144K LOC.

Etcd uses encoders to wrap network connections, so manual vec-
tor clock instrumentation was required. Log analysis took between
10-15s. Etcd was controlled using scripts. One to launch a clusters
of 3-5 nodes, another to partition nodes, and one to issue a 30s
YCSB-A workload (50% put, 50% get requests) [11].
Strong leadership. An integral property of Raft is strong lead-
ership: only the leader may issue an append entries command to
the rest of the cluster. This property manifests itself in a num-
ber of data invariants. A leader’s log should be longer than the
log of each follower. Further, the leader’s commit index, and log
term should be larger than that of the followers. We logged com-
mit indices, and the length of the log. In each case the invari-
ant leader .lo�size � f ollower .lo�size , and leader .commitIndex �
f ollower .commitIndex was detected by the send-receive strategy.
Log matching. Raft asserts “if two logs contain an entry with the
same index and term, then the logs are identical in all entries up
to the given index” [42]. This property is hard to detect explicitly
because it requires conditional logic on arrays. We were able to
detect that in all cases nodei .commitIndex = nodej .commitIndex ^
nodei .lo�[commitIndex] = nodej .lo�[commitIndex]!nodei .lo� =
nodej .lo� up to the all-states grouping. This shows that if any two
nodes have the same log index, and the value at that index match,
their entire logs match; this is evidence of the logmatching property.
Leadership agreement. At most one leader can exist at a time
in an unpartitioned network, and all unpartitioned members of
a cluster must agree on a leader after partitioning. By logging
leadership state variables when leadership was established, we were
able to derive that:nodeistate = Leader!8 jnodej .leader = nodei
^8j , i , nodej .state = Follower . These invariants were detected in
both send-receive and total-order groups. This indicates that after
the partition occurred, all nodes agree on a leader, and that all nodes
but the leader are followers.

Strong leadership, log matching, and leadership agreement are
invariants of a correct Raft implementation. By checking their exis-
tence, we produced strong evidence for the correctness of etcd Raft.

Raft invariant LOC P=1.0 P=0.1 P=0.01
Strong leadership 11 0.07 0.05 2.96

Leadership agreement 13 0.36 0.34 6.75
Log matching 72 2.22 4.35 6.07

Table 3: LOC to implement and time (sec) to detect an invari-
ant violation with probabilistic asserts.

Further, we have shown Dinv’s ability to detect useful properties
over distributed state of large and non-trivial system.

7 EVALUATION: ASSERTING INVARIANTS
Dinv-inferred invariants can be used for comprehension. However,
they can also be converted into assertion predicates to �nd regres-
sion errors at runtime. Here we detail how we used the Dinv assert
mechanism to check the inferred etcd Raft invariants at runtime.

We developed distributed assertions for each of etcd’s invariants.
We then evaluated the ability of these assertions to �nd bugs by
using them with buggy versions of Raft. For this we manually
created three bugs, each of which violates one of the three Raft
invariants. All bugs cause a violation without causing Raft to crash,
or impact its ability to serve client requests. That is, each bug
produces silent errors and is di�cult to detect.

Strong leadership bug. In Raft only the leader may issue the
command to append entries to a replicated log. In our two line bug
an unauthorized follower broadcasted append entries, and commit-
ted to its own log. Raft’s algorithm tolerates this bug because the
leader has authority to overwrite followers logs. However, once
a leader has written to disk in a term, the system expects that all
followers’ logs are synchronized. Etcd does not verify synchroniza-
tion so the bug causes the leader to perpetually issue log correction
messages to the buggy follower. The invariant for strong leadership
is that the leaders log size is greater than all the followers’ logs if
the leader has committed in the current term.

Leadership agreement bug. If a leader exists in a given term,
all nodes must agree on this leader for leadership agreement to hold.
We introduced a 4-line bug which caused followers to randomly
select a leader from their list of peers post election. Etcd continues
to execute with this bug. However, followers periodically time out
waiting for messages from a false leader and initiate a new election.
In a non-buggy execution if any two nodes agree on a leader for a
given term then they agree on the same leader.

Log matching bug. Log matching is critical to etcd’s fault tol-
erance. If log matching does not hold etcd’s key value store returns
inconsistent results depending on which node is the leader. Etcd
assumes that all log entries written to disk are correct. To violate
the log matching invariant we injected a 7-line bug to corrupt a
committed log at a random place and time. With this bug etcd
executes as normal and assumes that the nodes’ logs are correct.
The log matching invariant states that if any two nodes have an
entry with the same term, index, and data, then all prior log entries
match.

Table 3 shows our experimental results. Assertions for above
invariants ranged in size. Log matching was the most complex
(72 LOC): checking it requires a comparison of logs from every
pair of nodes. The assertion iterates through all pairs of node logs,
checking them for inconsistencies. The other two assertions were
expressed in under 15 LOC.
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requests must resolve to the minimum distance peer. To test the cor-
rectness of Find_Value requests we added a 5 line function which
output the minimum distance of the peers and resources in the
routing table and logged it. To test routing we ran clusters with
3–6 peers using a variety of topologies by controlling peer IDs. We
logged state after the results of a Find_Value request were added to
a peer’s routing table. On each execution we found that 8 peers i, j ,
peeri .min_distance = peer j .min_distance in all total-order groups.
This invariant, in conjunction with O (Lo�(n)) message bound, pro-
vides strong evidence for the correctness of Nictuku’s implementa-
tion of Kademlia.

6.4 Analyzing etcd Raft
Etcd is a distributed key-value store which relies on the Raft consen-
sus algorithm [42]. Raft speci�es that only leaders serve requests,
and followers replicate a leader’s state. Followers use a heartbeat
to detect leader failure, starting elections on heartbeat timeouts.
Etcd is used by applications such as Kubernetes [32], �eet [13],
and locksmith [15], making the correctness of its consensus algo-
rithm paramount to large tech companies such as eBay. Etcd Raft
is implemented in 144K LOC.

Etcd uses encoders to wrap network connections, so manual vec-
tor clock instrumentation was required. Log analysis took between
10-15s. Etcd was controlled using scripts. One to launch a clusters
of 3-5 nodes, another to partition nodes, and one to issue a 30s
YCSB-A workload (50% put, 50% get requests) [11].
Strong leadership. An integral property of Raft is strong lead-
ership: only the leader may issue an append entries command to
the rest of the cluster. This property manifests itself in a num-
ber of data invariants. A leader’s log should be longer than the
log of each follower. Further, the leader’s commit index, and log
term should be larger than that of the followers. We logged com-
mit indices, and the length of the log. In each case the invari-
ant leader .lo�size � f ollower .lo�size , and leader .commitIndex �
f ollower .commitIndex was detected by the send-receive strategy.
Log matching. Raft asserts “if two logs contain an entry with the
same index and term, then the logs are identical in all entries up
to the given index” [42]. This property is hard to detect explicitly
because it requires conditional logic on arrays. We were able to
detect that in all cases nodei .commitIndex = nodej .commitIndex ^
nodei .lo�[commitIndex] = nodej .lo�[commitIndex]!nodei .lo� =
nodej .lo� up to the all-states grouping. This shows that if any two
nodes have the same log index, and the value at that index match,
their entire logs match; this is evidence of the logmatching property.
Leadership agreement. At most one leader can exist at a time
in an unpartitioned network, and all unpartitioned members of
a cluster must agree on a leader after partitioning. By logging
leadership state variables when leadership was established, we were
able to derive that:nodeistate = Leader!8 jnodej .leader = nodei
^8j , i , nodej .state = Follower . These invariants were detected in
both send-receive and total-order groups. This indicates that after
the partition occurred, all nodes agree on a leader, and that all nodes
but the leader are followers.

Strong leadership, log matching, and leadership agreement are
invariants of a correct Raft implementation. By checking their exis-
tence, we produced strong evidence for the correctness of etcd Raft.

Raft invariant LOC P=1.0 P=0.1 P=0.01
Strong leadership 11 0.07 0.05 2.96

Leadership agreement 13 0.36 0.34 6.75
Log matching 72 2.22 4.35 6.07

Table 3: LOC to implement and time (sec) to detect an invari-
ant violation with probabilistic asserts.

Further, we have shown Dinv’s ability to detect useful properties
over distributed state of large and non-trivial system.

7 EVALUATION: ASSERTING INVARIANTS
Dinv-inferred invariants can be used for comprehension. However,
they can also be converted into assertion predicates to �nd regres-
sion errors at runtime. Here we detail how we used the Dinv assert
mechanism to check the inferred etcd Raft invariants at runtime.

We developed distributed assertions for each of etcd’s invariants.
We then evaluated the ability of these assertions to �nd bugs by
using them with buggy versions of Raft. For this we manually
created three bugs, each of which violates one of the three Raft
invariants. All bugs cause a violation without causing Raft to crash,
or impact its ability to serve client requests. That is, each bug
produces silent errors and is di�cult to detect.

Strong leadership bug. In Raft only the leader may issue the
command to append entries to a replicated log. In our two line bug
an unauthorized follower broadcasted append entries, and commit-
ted to its own log. Raft’s algorithm tolerates this bug because the
leader has authority to overwrite followers logs. However, once
a leader has written to disk in a term, the system expects that all
followers’ logs are synchronized. Etcd does not verify synchroniza-
tion so the bug causes the leader to perpetually issue log correction
messages to the buggy follower. The invariant for strong leadership
is that the leaders log size is greater than all the followers’ logs if
the leader has committed in the current term.

Leadership agreement bug. If a leader exists in a given term,
all nodes must agree on this leader for leadership agreement to hold.
We introduced a 4-line bug which caused followers to randomly
select a leader from their list of peers post election. Etcd continues
to execute with this bug. However, followers periodically time out
waiting for messages from a false leader and initiate a new election.
In a non-buggy execution if any two nodes agree on a leader for a
given term then they agree on the same leader.

Log matching bug. Log matching is critical to etcd’s fault tol-
erance. If log matching does not hold etcd’s key value store returns
inconsistent results depending on which node is the leader. Etcd
assumes that all log entries written to disk are correct. To violate
the log matching invariant we injected a 7-line bug to corrupt a
committed log at a random place and time. With this bug etcd
executes as normal and assumes that the nodes’ logs are correct.
The log matching invariant states that if any two nodes have an
entry with the same term, index, and data, then all prior log entries
match.

Table 3 shows our experimental results. Assertions for above
invariants ranged in size. Log matching was the most complex
(72 LOC): checking it requires a comparison of logs from every
pair of nodes. The assertion iterates through all pairs of node logs,
checking them for inconsistencies. The other two assertions were
expressed in under 15 LOC.
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Limitations

• Dinv’s dynamic analysis is incomplete

• Ground state sampling is poor on loosely coupled systems

• Large number of output invariants (requires skill to narrow down)

• Targets safety properties (cannot infer liveness properties)

Future work

• Root cause analysis\impact analysis\etc

• Distributed test case generation

• Extend analysis to temporal invariants
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7 select {
8 case <� cond1: <then1>

9 case <� cond2: <then2>

10 ...

11 }

Listing 7: Corresponding Go to an PlusCal

either clause

6.5 Additional Pluscal syntax semantics

The with statement in PlusCal assigns random values to
variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.

7 IMPLEMENTATION

PGo is built using existing code for TLA+ toolbox, specifi-
cally the PlusCal AST and parsing algorithms in the PlusCal
to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.

8 EVALUATION

PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.

1 ��algorithm Euclid { \ @PGo{ arg int N }@PGo
2 ( @PGo{ var int u }@PGo
3 @PGo{ var int v }@PGo
4 @PGo{ var int v_init }@PGo
5 )

6 variables u = 24;

7 v \in 1 .. N;

8 v_init = v;

9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
14 u := u � v;

15 };
16 print <<24, v_init, ”have gcd”, v>>

17 }
18 }

Listing 8: The Euclid algorithm in PlusCal that

PGo compiled

1 package main

2

3 import (

4 ”flag”

5 ”fmt”

6 ”pgoutil”

7 ”strconv”

8 )

9

10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.

Go lang
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6.5 Additional Pluscal syntax semantics

The with statement in PlusCal assigns random values to
variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.

7 IMPLEMENTATION

PGo is built using existing code for TLA+ toolbox, specifi-
cally the PlusCal AST and parsing algorithms in the PlusCal
to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.
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PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.

1 ��algorithm Euclid { \ @PGo{ arg int N }@PGo
2 ( @PGo{ var int u }@PGo
3 @PGo{ var int v }@PGo
4 @PGo{ var int v_init }@PGo
5 )

6 variables u = 24;
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8 v_init = v;

9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
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15 };
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PGo compiled

1 package main
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18 N,_ = strconv.Atoi(flag.Args()[0])
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21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.
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• “Exhaustive testing”

• Explore the state space of a system w.r.t some model

• Check predicate at each state (safety property) for violation

• Violation is a path = bug in the model: output to developer

• Main challenge: state space explosion
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Concrete (implementation-level) MC

• The implementation is the model

• No false positives: all found bugs are real

• Huge (concrete) state space

• Engineering complexity A
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[ SAMC OSDI’14, 
MODIST NSDI’09, 
Demi NSDI’16 ]
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Trade-offs in model checking (MC)
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Concrete (implementation-level) MC

• The implementation is the model

• No false positives: all found bugs are real

• Huge (concrete) state space

• Engineering complexity

Abstract (model-based) MC

• Limited state space

• Several available checkers (e.g., SPIN, TLC)

• Must develop a separate model of your system

• Opens the door for false positives
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[ SAMC OSDI’14, 
MODIST NSDI’09, 
Demi NSDI’16 ]

[Chapar POPL’16, IronFleet 
SOSP’15, VerdiPLDI’15, 
Lamport et.al SIGOPS’02, 
Holtzman TSE’97]
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Trade-offs in model checking (MC)
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Concrete (implementation-level) MC

• The implementation is the model

• No false positives: all found bugs are real

• Huge (concrete) state space

• Engineering complexity

Abstract (model-based) MC

• Limited state space

• Several available checkers (e.g., SPIN, TLC)

• Must develop a separate model of your system

• Opens the door for false positives

Can we get the best of 
both worlds?

Dara
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Concrete traces     Abstract model
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Idea 1: use implementation to bootstrap the abstract model/MC

• Use concrete MC to generate traces of the system

• Use traces to infer an abstract model of the system

• Model check abstract model for violations

https://www.google.com/about/datacenters/gallery


Implementation is the model oracle
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Idea 2: use implementation to check for abstract false positives

• Map each abstract violation into a concrete violation (replay)

• Attempt to reproduce the abstract execution by 
replaying it on the actual system

➡ Bug reproduced: bug found, show trace to user

➡ Bug not reproduced: abstract false positive

Idea 1: use implementation to bootstrap the abstract model/MC
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Implementation is the model oracle
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Idea 2: use implementation to check for abstract false positives

• Map each abstract violation into a concrete violation (replay)

• Attempt to reproduce the abstract execution by 
replaying it on the actual system

➡ Bug reproduced: bug found, show trace to user

➡ Bug not reproduced: abstract false positive

Idea 3: refine the abstract model with counter-examples

• False positive are counter-examples: use them to improve model

• Update the abstract model to exclude the non-buggy path

Idea 1: use implementation to bootstrap the abstract model/MC
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Implementation is the model oracle
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Idea 3: refine the abstract model with counter-examples

• False positive are counter-examples: use them to improve model

• Update the abstract model to exclude the non-buggy path

Idea 2: use implementation to check for abstract false positives

• Map each abstract violation into a concrete violation (replay)

• Attempt to reproduce the abstract execution by 
replaying it on the actual system

➡ Bug reproduced: bug found, show trace to user

➡ Bug not reproduced: abstract false positive

Idea 1: use implementation to bootstrap the abstract model/MC

Key: use the (faster) abstract model 
for the bulk of the checking
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Concrete traces     Abstract model
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Traces

Global 
Assertions

System 
Model

Z3

Daikon

States

Edges

Model 
Refinement

Operations

Invariants

Promella 
Model

To
SPIN
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High-level view of the approach
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Feasible system 
behaviors
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High-level view of the approach
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Feasible system 
behaviors Traces

Generate traces using the concrete MC: exhaustive.. but bounded/incomplete
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High-level view of the approach
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Feasible system 
behaviors TracesInferred model

Infer abstract model that generalizes
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High-level view of the approach
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Feasible system 
behaviors TracesInferred model

Infer abstract model that generalizes

good
generalization

insufficient
generalization

incorrect
generalization
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High-level view of the approach

!73

 

Update mode to remove infeasible behavior

Feasible system 
behaviors TracesInferred model

incorrect
generalization

Lots of RW in formal methods, e.g., CEGAR, Abstract Interpretation
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Key challenge: concrete model checker
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• Demonstrated by MODIST [NSDI’09]

• Trap all non-determinism across all nodes in the distributed system

• Evaluate distributed correctness predicates

• Handle unmodified, complex, code

Unmodified Program

Modified Go Runtime

Unmodified Program

Modified Go Runtime

Communication Layer

OS (Linux)

Global Scheduler
Failure Simulation

Virtual Clock
Global Assertions
GoRoutine State

Abstract Schedule



• Built up the theory linking concrete and abstract 
model checkers (abstract checker is SPIN)

• Developing the blackbox MC for Go-based 
systems based on MODIST [NSDI’09]

• Concrete-abstract loop works on simple apps 
(dining philosophers)

• Current prototype is ~6K LOC

Dara current status
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Ongoing: compiling distributed systems
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1. Dinv

PlusCal 
model

3. PGo

Thesis 2016, 30 April, 2016, Vancouver, BC

7 select {
8 case <� cond1: <then1>

9 case <� cond2: <then2>

10 ...

11 }

Listing 7: Corresponding Go to an PlusCal

either clause

6.5 Additional Pluscal syntax semantics

The with statement in PlusCal assigns random values to
variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.

7 IMPLEMENTATION

PGo is built using existing code for TLA+ toolbox, specifi-
cally the PlusCal AST and parsing algorithms in the PlusCal
to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.

8 EVALUATION

PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.

1 ��algorithm Euclid { \ @PGo{ arg int N }@PGo
2 ( @PGo{ var int u }@PGo
3 @PGo{ var int v }@PGo
4 @PGo{ var int v_init }@PGo
5 )

6 variables u = 24;

7 v \in 1 .. N;

8 v_init = v;

9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
14 u := u � v;

15 };
16 print <<24, v_init, ”have gcd”, v>>

17 }
18 }

Listing 8: The Euclid algorithm in PlusCal that

PGo compiled

1 package main

2

3 import (

4 ”flag”

5 ”fmt”

6 ”pgoutil”

7 ”strconv”

8 )

9

10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.

Go lang

Thesis 2016, 30 April, 2016, Vancouver, BC

7 select {
8 case <� cond1: <then1>

9 case <� cond2: <then2>

10 ...

11 }

Listing 7: Corresponding Go to an PlusCal

either clause

6.5 Additional Pluscal syntax semantics

The with statement in PlusCal assigns random values to
variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.

7 IMPLEMENTATION

PGo is built using existing code for TLA+ toolbox, specifi-
cally the PlusCal AST and parsing algorithms in the PlusCal
to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.

8 EVALUATION

PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.

1 ��algorithm Euclid { \ @PGo{ arg int N }@PGo
2 ( @PGo{ var int u }@PGo
3 @PGo{ var int v }@PGo
4 @PGo{ var int v_init }@PGo
5 )

6 variables u = 24;

7 v \in 1 .. N;

8 v_init = v;

9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
14 u := u � v;

15 };
16 print <<24, v_init, ”have gcd”, v>>

17 }
18 }

Listing 8: The Euclid algorithm in PlusCal that

PGo compiled

1 package main

2

3 import (

4 ”flag”

5 ”fmt”

6 ”pgoutil”

7 ”strconv”

8 )

9

10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.

Node A Node B

Node C A.seq  B.seq  C.seq

A.lo
g

B.log

C.log

2. Dara
Dara

System.go

Property

Violated:
counter-example

Verified correct
8 nodes, InCritical  1

Spec miner

Model checker

Compiler

Can I implement my (correct) system faster?

https://www.google.com/about/datacenters/gallery


•Verdi reduces proof burden by automatically 
handling failures [PLDI’15]

•IronFleet provides a framework to write 
specifications and implementations [SOSP’15]

•MODIST checks the implementation rather 
than a specification [NSDI’09]

Existing verification approaches

!77

Takes a long time to prove/check, or 
require a lot of work from developers 



PGo: Compiling Distributed Systems

Developer writes
specification

PGo compiles it to a
matching implementation

Source is
compiled

Verified
Distributed System!

!78

Transition from design (specification)
to implementation is automated

TLC PGo

Making writing of verified distributed systems easier

[1] Killian et al. Mace: Language Support for Building Distributed Systems. PLDI 2007



PGo Workflow: (1) Example System
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1

2

N

Shared

Round-Robin Resource Sharing



PGo Workflow: (1) PlusCal Spec
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1

2

N

CONSTANTS procs, iters
(*

-- algorithm RoundRobin {

    variables counter = 0,

              token = 0;

fair process (P \in 0..procs-1)

variable i = 0;
{

    w: while ( i < iters) {

        inc: await token = self;

             counter := counter + 1;

             token := (self + 1) % procs;

             i := i + 1;

       }

}}

countertoken



PGo Workflow: (1)
Properties of our System
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1

2

N

Invariants

Token is 
within bounds token \in 0..procs-1

Properties

Counter
Converges

Termination =>
(counter = procs * iters)

Processes
Get the Token

\A p \in \ProcSet :
<>(token = p)



PGo Workflow: (1) Verifying
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Model Checked with TLC!

1

2

N



PGo Workflow: (2) Compilation
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•counter is global: 
semantics need to be 
maintained

Runtime manages state 
across processes

• Labels are atomic
Processes coordinate 
access to atomic blocks

• High-level concepts 
such as await

Lock and check predicate

fair process (P \in 0..procs-1)

variable i = 0;
{

    w: while ( i < iters) {

        inc: await token = self;

             counter := counter + 1;

             token := (self + 1) % procs;

             i := i + 1;

       }

}}



PGo Workflow: (3) Using Compiled Code

!84

• Generated Go code can run as 
any of the processes defined in 
PlusCal

  $ ./counter
  Usage: ./counter process(argument) ip:port

  $ ./counter ‘P(1)’ 192.168.1.80:2222



• PGo is 25K LOC (compiler) and 3K (runtime)

• Able to compile concurrent and distributed systems

• Support for different strategies to deal with global state in a distributed system

• Designing ModularPlusCal: extending PlusCal with more modularity features for 
large systems, and more separation of design + implementation

• Collecting and developing system specs for demo/evaluation:

• Load balancer, dist. queue, dist. counter, two phase commit, dist. mutex, Euclid’s 
algorithm, n-queens,…

• ~30 lines of PCal generates ~80 lines of Go; compiled n-queens perf within 5% of a 
native Go implementation

• https://github.com/UBC-NSS/pgo/tree/master/examples

Current Status

!85

https://github.com/UBC-NSS/pgo/tree/master/examples


• N-Queens (not written by us): computes all solutions to N-Queens

• Property: at every step, the set of solutions found is a subset of all existing 
solutions

• DijkstraMutex (not written by us): Dijkstra’s mutual exclusion algorithm

• Property: deadlock freedom

• Counter: N processes increment a shared, global counter a fixed number of times

• Property: when all processes are done, counter is equal to (N * # of iterations)

• dqueue: Distributed queue, with one producer and multiple consumers

• Property: mutual exclusion (consumer and producer are not mutating shared 
queue at the same time)

Example specs/properties

!86



• Support a larger subset of 
PlusCal/TLA+

• Generating distributed systems 
that are fault tolerant

• Use modularity to make it easy 
for developers to change 
generated code

PGo work in progress

!87

(without compromising safety)



• Specifications are very high level: not everything 
can be compiled efficiently

• Requires developers to also specify environment 
during compilation (e.g., number of processes, 
transport protocol, etc).

• Both the PGo compiler and the associated runtime 
need to be trusted to claim correctness

PGo Limitations

!88



Program analysis for distributed systems

1. Dinv

PlusCal 
model

3. PGo

Thesis 2016, 30 April, 2016, Vancouver, BC

7 select {
8 case <� cond1: <then1>

9 case <� cond2: <then2>

10 ...

11 }

Listing 7: Corresponding Go to an PlusCal

either clause

6.5 Additional Pluscal syntax semantics

The with statement in PlusCal assigns random values to
variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.

7 IMPLEMENTATION

PGo is built using existing code for TLA+ toolbox, specifi-
cally the PlusCal AST and parsing algorithms in the PlusCal
to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.

8 EVALUATION

PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.

1 ��algorithm Euclid { \ @PGo{ arg int N }@PGo
2 ( @PGo{ var int u }@PGo
3 @PGo{ var int v }@PGo
4 @PGo{ var int v_init }@PGo
5 )

6 variables u = 24;

7 v \in 1 .. N;

8 v_init = v;

9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
14 u := u � v;

15 };
16 print <<24, v_init, ”have gcd”, v>>

17 }
18 }

Listing 8: The Euclid algorithm in PlusCal that

PGo compiled

1 package main

2

3 import (

4 ”flag”

5 ”fmt”

6 ”pgoutil”

7 ”strconv”

8 )

9

10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.

Go lang

Thesis 2016, 30 April, 2016, Vancouver, BC

7 select {
8 case <� cond1: <then1>

9 case <� cond2: <then2>

10 ...

11 }

Listing 7: Corresponding Go to an PlusCal

either clause

6.5 Additional Pluscal syntax semantics

The with statement in PlusCal assigns random values to
variables from a fixed set, and then executes the body. PGo
will replace with statements with a call to Rand() to randomly
select from a set.

7 IMPLEMENTATION

PGo is built using existing code for TLA+ toolbox, specifi-
cally the PlusCal AST and parsing algorithms in the PlusCal
to TLA+ translation tool. Since the TLA+ toolbox was
written in Java8, PGo is implemented in Java8. The Go AST
is a simplified Java version of the built in Go AST in Go.

PGo also uses an external library for sets for Go from
https://github.com/deckarep/golang-set. Libaries for Go are
implemented for Go 1.7.4 and up.

PGo is tested on Ubuntu 14.

8 EVALUATION

PGo has successfully compiled a single threaded PlusCal algo-
rithm for Euclid greatest common denominator finding into
Go. The behaviour of the compiled program is as expected.
The code outputed is also formatted for readability.

1 ��algorithm Euclid { \ @PGo{ arg int N }@PGo
2 ( @PGo{ var int u }@PGo
3 @PGo{ var int v }@PGo
4 @PGo{ var int v_init }@PGo
5 )

6 variables u = 24;

7 v \in 1 .. N;

8 v_init = v;

9 {
10 while (u # 0) {
11 if (u < v) {
12 u := v || v := u;

13 };
14 u := u � v;

15 };
16 print <<24, v_init, ”have gcd”, v>>

17 }
18 }

Listing 8: The Euclid algorithm in PlusCal that

PGo compiled

1 package main

2

3 import (

4 ”flag”

5 ”fmt”

6 ”pgoutil”

7 ”strconv”

8 )

9

10 var v int

11 var u int

12 var v_init int

13 var N int

14

15

16 func main() {
17 flag.Parse()

18 N,_ = strconv.Atoi(flag.Args()[0])

19

20 for _,v = range pgoutil.Sequence(1, N) {
21 u = 24

22 v_init = v

23 for u != 0 {
24 if u < v {
25 u_new := v

26 v_new := u

27 u = u_new

28 v = v_new

29 }
30 u = u � v

31 }
32 fmt.Printf(”24 %v have gcd %v\n”, v_init, v)
33 }
34 }

Listing 9: The Go code that PGo compiled

8.1 Can PGo infer types from PlusCal?

Through unit tests, and sample compilations, PGo is able to
determine the types of PlusCal variables from annotations.

8.2 Can PGo maintain PlusCal syntax

semantics for variable assignment?

PGo correctly handled assignments of the type var \in Set
up to the limitations outlined in the proposed design section.
In the above Euclide algorithm, PGo has successfully con-
verted v \in 1..N into a loop, and filled the rest of the body
as the loop body.

PGo also correctly compiled multi-assignment operations,
like u := v || v := u, which simultaneously assigns v to
u and u to v in the Euclid algorithm above. PGo added
u temp and v temp to the assignment correctly.

8.3 Can PGo handle constants and

command line arguments?

PGo correctly compiled the command line argument in the
Euclid algorithm. PGo also correctly compiles the algorithm
when N is annotated as a constant in Euclid.

Node A Node B

Node C A.seq  B.seq  C.seq

A.lo
g

B.log

C.log

2. Dara Dara

System.go

Property

Violated:
counter-example

Verified correct
8 nodes, InCritical  1

Spec miner

Model checker

Compiler

[ICSE 2018]

https://bitbucket.org/bestchai/dinv

https://github.com/UBC-NSS/pgo

Bridging gap between design and implementation

Thanks to our 
Funders:

https://github.com/DARA-Project
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Dinv runtime overhead

!91

Inferring and Asserting Distributed System Invariants ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Number of
annotations

Executed
annotations

Log size
(MB)

Runtime
(s)

Runtime
overhead %

0 0 0 2.66 0
1 2.8K 3.2 2.70 1.5
2 5.6K 4.3 2.77 4.0
5 14K 9.7 3.01 12.9
10 28K 18.0 3.31 24.3
30 85K 51.7 4.48 68.0
100 261K 167.9 7.66 187.5

Table 4: Impact of Dinv annotations on Raft performance.

We ran Raft with each bug and used assertions with probabilities
of 1.0, 0.1, and 0.01. We measured the average time delay between
the instant a bug was injected and when it was detected. We found
that all asserts found the bugs, but they took longer with lower
probabilities. Considering the severity of these bugs, we believe that
the delay of a few more seconds to detect the problem is reasonable
(given no other alternative). We discuss the associated decrease in
overhead with using probabilistic assertions in Section 8.1.

8 EVALUATION: DINV OVERHEAD
Dinv imposes several overheads. These include the time to instru-
ment the system, runtime and network overheads due to logging
and injected vector clocks, and the running time of the dynamic
analysis that Dinv must perform on the collected logs. This section
details these overheads.

Static analysis runtime. To benchmark the performance of
Dinv’s static analysis (detecting networking calls, adding logging
code, etc) we used etcd Raft, which contains 144K LOC and thou-
sands of variables. We measured instrumentation time with increas-
ing counts of randomly located dump annotations. Instrumentation
time remained constant at 3s until 4K annotations at which point it
increased slightly to 3.2s. At 64K annotations (far beyond practical
use) runtime was 4.7s.

Logging overhead. Logging state at runtime slows down the
system. We instrumented etcd Raft with increasing number of log-
ging statements, each one logging 7 variables. We benchmarked
a cluster with 3 nodes, and a YCSB-A workload. Each cluster was
run 3 times and we averaged the total running time. Table 4 shows
a linear relationship between the number of logging statements
and runtime. In practice just two annotations were su�cient to
detect the Raft invariants. The average execution time of a single
logging statement is 20 microseconds. In our local area network
with a round trip time of 0.05ms while running etcd with 1 second
timeouts we can introduce approximately 50K logging statements
per node before perturbing the system.

Bandwidth overhead. Vector clocks introduce bandwidth over-
head. Each entry in Dinv’s vector clocks timestamp has two 32 bit
integers: one to identify the node, and the other is the node’s logi-
cal clock timestamp. The overhead of vector clocks is a product of
the number of interacting nodes in an execution and the number
of messages: 64bits ⇥ nodes ⇥messa�es . To evaluate bandwidth
overhead in a real system we executed etcd Raft using the setup
above while varying the number of nodes. The bandwidths of all
nodes was aggregated together for these measurements. We found
that adding vector clocks to Raft slowed down the broadcast of
heartbeats and caused a reduction in bandwidth of 10KB/s for all
nodes in a 4 node cluster. At 5 nodes and above the bandwidth

System
runtime (s)

Raft
log (MB)

Raft
analysis (s)

GCache
log (MB)

GCache
analysis (s)

30 5.1 12.7 0.3 2.8
60 10.5 28.1 0.3 3.0
90 13.7 35.9 1.7 19.6
120 17.4 48.7 1.4 21.2
150 22.5 68.8 1.8 11.3
180 27.7 99.1 2.1 18.6

Table 5: Generated Dinv log size and Dinv’s dynamic analy-
sis running time for varying system run times, for two sys-
tems: etcd Raft and GroupCache (GCache).

overhead grew linearly with an overhead of 1KB/s for 5 nodes and
10KB/s for 6 nodes.

Dynamic analysis runtime. Dinv’s dynamic analysis runtime
is a�ected by the size of the log and the number of nodes in the
execution. To measure its performance versus the length of execu-
tion, we analyzed etcd Raft and Groupcache. We exercised them by
issuing 10 requests per second to each system. To demonstrate how
Dinv’s analysis performs with regard to the length of execution, we
analyzed the resulting logs of 3 node clusters, which were run for
intervals in increments of 30s. Results in Table 5 show that Dinv’s
log analysis scales linearly with system running time.

To measure how analysis time is a�ected by the number of
nodes in an execution we ran etcd for 30s, exercising it with 10
client requests per second and running clusters with increasing
number of nodes. Our results show that Dinv’s runtime grows
exponentially with the number of nodes. We measured analysis
times of 25s, 75s, and 725s for logs containing 4, 5, and 6 nodes,
respectively. Dinv’s runtime is exponential in the number of nodes
due to the exponential growth of partial orderings our analysis
techniques compute. This indicates that Dinv is currently limited
to analyzing distributed systems with a small number of nodes.

8.1 Distributed assertions overhead
We evaluated the overhead of Dinv’s assertion mechanism on Mi-
crosoft Azure. The setup consisted of 4 VMs (3 servers and 1 client),
all running Ubuntu 16.04. The server VMs had 3.5GB of memory
and a single core capable of performing 3200 IOPS. The client was
used to saturate the servers and had 16 cores and 56GB of memory,
and could perform 51200 IOPS. Below we measure the end-to-end
latency of client requests to the etcd cluster.

We established a baseline using unmodi�ed etcd. The system
was exercised at 3 load levels: 100, 150, and 200 client request per
second, each test was run for 100s. Each assert in Section 7 was run
under the same conditions. Assertions were placed in etcd’s inner
event loop which executed on every received message and timer
event. On average 5 events occurred per client request. We also ran
experiments with probabilistic asserts with two probabilities: P=0.1
and P=0.01 and measured the median slowdown in client request
response times.

The greatest slowdownwas incurred when asserts were placed at
bottleneck program points. For example, asserting strong leadership
with P=1.0 caused a 52x slowdown, as each client request was forced
to wait for multiple asserts to execute. Using P=0.1 reduced this to
2.5x, and P=0.01 reduced it further to 1.02x. Leader agreement and
log matching asserts were performed by followers, which are not

• YCSB-A workload, 3 nodes

• 1 logging statement runtime ~ 20

• Static instrumentation negligible
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Number of
annotations

Executed
annotations

Log size
(MB)

Runtime
(s)

Runtime
overhead %

0 0 0 2.66 0
1 2.8K 3.2 2.70 1.5
2 5.6K 4.3 2.77 4.0
5 14K 9.7 3.01 12.9
10 28K 18.0 3.31 24.3
30 85K 51.7 4.48 68.0
100 261K 167.9 7.66 187.5

Table 4: Impact of Dinv annotations on Raft performance.

We ran Raft with each bug and used assertions with probabilities
of 1.0, 0.1, and 0.01. We measured the average time delay between
the instant a bug was injected and when it was detected. We found
that all asserts found the bugs, but they took longer with lower
probabilities. Considering the severity of these bugs, we believe that
the delay of a few more seconds to detect the problem is reasonable
(given no other alternative). We discuss the associated decrease in
overhead with using probabilistic assertions in Section 8.1.

8 EVALUATION: DINV OVERHEAD
Dinv imposes several overheads. These include the time to instru-
ment the system, runtime and network overheads due to logging
and injected vector clocks, and the running time of the dynamic
analysis that Dinv must perform on the collected logs. This section
details these overheads.

Static analysis runtime. To benchmark the performance of
Dinv’s static analysis (detecting networking calls, adding logging
code, etc) we used etcd Raft, which contains 144K LOC and thou-
sands of variables. We measured instrumentation time with increas-
ing counts of randomly located dump annotations. Instrumentation
time remained constant at 3s until 4K annotations at which point it
increased slightly to 3.2s. At 64K annotations (far beyond practical
use) runtime was 4.7s.

Logging overhead. Logging state at runtime slows down the
system. We instrumented etcd Raft with increasing number of log-
ging statements, each one logging 7 variables. We benchmarked
a cluster with 3 nodes, and a YCSB-A workload. Each cluster was
run 3 times and we averaged the total running time. Table 4 shows
a linear relationship between the number of logging statements
and runtime. In practice just two annotations were su�cient to
detect the Raft invariants. The average execution time of a single
logging statement is 20 microseconds. In our local area network
with a round trip time of 0.05ms while running etcd with 1 second
timeouts we can introduce approximately 50K logging statements
per node before perturbing the system.

Bandwidth overhead. Vector clocks introduce bandwidth over-
head. Each entry in Dinv’s vector clocks timestamp has two 32 bit
integers: one to identify the node, and the other is the node’s logi-
cal clock timestamp. The overhead of vector clocks is a product of
the number of interacting nodes in an execution and the number
of messages: 64bits ⇥ nodes ⇥messa�es . To evaluate bandwidth
overhead in a real system we executed etcd Raft using the setup
above while varying the number of nodes. The bandwidths of all
nodes was aggregated together for these measurements. We found
that adding vector clocks to Raft slowed down the broadcast of
heartbeats and caused a reduction in bandwidth of 10KB/s for all
nodes in a 4 node cluster. At 5 nodes and above the bandwidth

System
runtime (s)

Raft
log (MB)

Raft
analysis (s)

GCache
log (MB)

GCache
analysis (s)

30 5.1 12.7 0.3 2.8
60 10.5 28.1 0.3 3.0
90 13.7 35.9 1.7 19.6
120 17.4 48.7 1.4 21.2
150 22.5 68.8 1.8 11.3
180 27.7 99.1 2.1 18.6

Table 5: Generated Dinv log size and Dinv’s dynamic analy-
sis running time for varying system run times, for two sys-
tems: etcd Raft and GroupCache (GCache).

overhead grew linearly with an overhead of 1KB/s for 5 nodes and
10KB/s for 6 nodes.

Dynamic analysis runtime. Dinv’s dynamic analysis runtime
is a�ected by the size of the log and the number of nodes in the
execution. To measure its performance versus the length of execu-
tion, we analyzed etcd Raft and Groupcache. We exercised them by
issuing 10 requests per second to each system. To demonstrate how
Dinv’s analysis performs with regard to the length of execution, we
analyzed the resulting logs of 3 node clusters, which were run for
intervals in increments of 30s. Results in Table 5 show that Dinv’s
log analysis scales linearly with system running time.

To measure how analysis time is a�ected by the number of
nodes in an execution we ran etcd for 30s, exercising it with 10
client requests per second and running clusters with increasing
number of nodes. Our results show that Dinv’s runtime grows
exponentially with the number of nodes. We measured analysis
times of 25s, 75s, and 725s for logs containing 4, 5, and 6 nodes,
respectively. Dinv’s runtime is exponential in the number of nodes
due to the exponential growth of partial orderings our analysis
techniques compute. This indicates that Dinv is currently limited
to analyzing distributed systems with a small number of nodes.

8.1 Distributed assertions overhead
We evaluated the overhead of Dinv’s assertion mechanism on Mi-
crosoft Azure. The setup consisted of 4 VMs (3 servers and 1 client),
all running Ubuntu 16.04. The server VMs had 3.5GB of memory
and a single core capable of performing 3200 IOPS. The client was
used to saturate the servers and had 16 cores and 56GB of memory,
and could perform 51200 IOPS. Below we measure the end-to-end
latency of client requests to the etcd cluster.

We established a baseline using unmodi�ed etcd. The system
was exercised at 3 load levels: 100, 150, and 200 client request per
second, each test was run for 100s. Each assert in Section 7 was run
under the same conditions. Assertions were placed in etcd’s inner
event loop which executed on every received message and timer
event. On average 5 events occurred per client request. We also ran
experiments with probabilistic asserts with two probabilities: P=0.1
and P=0.01 and measured the median slowdown in client request
response times.

The greatest slowdownwas incurred when asserts were placed at
bottleneck program points. For example, asserting strong leadership
with P=1.0 caused a 52x slowdown, as each client request was forced
to wait for multiple asserts to execute. Using P=0.1 reduced this to
2.5x, and P=0.01 reduced it further to 1.02x. Leader agreement and
log matching asserts were performed by followers, which are not

All Raft invariants can 
be detected with just 
two annotationsµs
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Runtime
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0 0 0 2.66 0
1 2.8K 3.2 2.70 1.5
2 5.6K 4.3 2.77 4.0
5 14K 9.7 3.01 12.9
10 28K 18.0 3.31 24.3
30 85K 51.7 4.48 68.0
100 261K 167.9 7.66 187.5

Table 4: Impact of Dinv annotations on Raft performance.

We ran Raft with each bug and used assertions with probabilities
of 1.0, 0.1, and 0.01. We measured the average time delay between
the instant a bug was injected and when it was detected. We found
that all asserts found the bugs, but they took longer with lower
probabilities. Considering the severity of these bugs, we believe that
the delay of a few more seconds to detect the problem is reasonable
(given no other alternative). We discuss the associated decrease in
overhead with using probabilistic assertions in Section 8.1.

8 EVALUATION: DINV OVERHEAD
Dinv imposes several overheads. These include the time to instru-
ment the system, runtime and network overheads due to logging
and injected vector clocks, and the running time of the dynamic
analysis that Dinv must perform on the collected logs. This section
details these overheads.

Static analysis runtime. To benchmark the performance of
Dinv’s static analysis (detecting networking calls, adding logging
code, etc) we used etcd Raft, which contains 144K LOC and thou-
sands of variables. We measured instrumentation time with increas-
ing counts of randomly located dump annotations. Instrumentation
time remained constant at 3s until 4K annotations at which point it
increased slightly to 3.2s. At 64K annotations (far beyond practical
use) runtime was 4.7s.

Logging overhead. Logging state at runtime slows down the
system. We instrumented etcd Raft with increasing number of log-
ging statements, each one logging 7 variables. We benchmarked
a cluster with 3 nodes, and a YCSB-A workload. Each cluster was
run 3 times and we averaged the total running time. Table 4 shows
a linear relationship between the number of logging statements
and runtime. In practice just two annotations were su�cient to
detect the Raft invariants. The average execution time of a single
logging statement is 20 microseconds. In our local area network
with a round trip time of 0.05ms while running etcd with 1 second
timeouts we can introduce approximately 50K logging statements
per node before perturbing the system.

Bandwidth overhead. Vector clocks introduce bandwidth over-
head. Each entry in Dinv’s vector clocks timestamp has two 32 bit
integers: one to identify the node, and the other is the node’s logi-
cal clock timestamp. The overhead of vector clocks is a product of
the number of interacting nodes in an execution and the number
of messages: 64bits ⇥ nodes ⇥messa�es . To evaluate bandwidth
overhead in a real system we executed etcd Raft using the setup
above while varying the number of nodes. The bandwidths of all
nodes was aggregated together for these measurements. We found
that adding vector clocks to Raft slowed down the broadcast of
heartbeats and caused a reduction in bandwidth of 10KB/s for all
nodes in a 4 node cluster. At 5 nodes and above the bandwidth
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30 5.1 12.7 0.3 2.8
60 10.5 28.1 0.3 3.0
90 13.7 35.9 1.7 19.6
120 17.4 48.7 1.4 21.2
150 22.5 68.8 1.8 11.3
180 27.7 99.1 2.1 18.6

Table 5: Generated Dinv log size and Dinv’s dynamic analy-
sis running time for varying system run times, for two sys-
tems: etcd Raft and GroupCache (GCache).

overhead grew linearly with an overhead of 1KB/s for 5 nodes and
10KB/s for 6 nodes.

Dynamic analysis runtime. Dinv’s dynamic analysis runtime
is a�ected by the size of the log and the number of nodes in the
execution. To measure its performance versus the length of execu-
tion, we analyzed etcd Raft and Groupcache. We exercised them by
issuing 10 requests per second to each system. To demonstrate how
Dinv’s analysis performs with regard to the length of execution, we
analyzed the resulting logs of 3 node clusters, which were run for
intervals in increments of 30s. Results in Table 5 show that Dinv’s
log analysis scales linearly with system running time.

To measure how analysis time is a�ected by the number of
nodes in an execution we ran etcd for 30s, exercising it with 10
client requests per second and running clusters with increasing
number of nodes. Our results show that Dinv’s runtime grows
exponentially with the number of nodes. We measured analysis
times of 25s, 75s, and 725s for logs containing 4, 5, and 6 nodes,
respectively. Dinv’s runtime is exponential in the number of nodes
due to the exponential growth of partial orderings our analysis
techniques compute. This indicates that Dinv is currently limited
to analyzing distributed systems with a small number of nodes.

8.1 Distributed assertions overhead
We evaluated the overhead of Dinv’s assertion mechanism on Mi-
crosoft Azure. The setup consisted of 4 VMs (3 servers and 1 client),
all running Ubuntu 16.04. The server VMs had 3.5GB of memory
and a single core capable of performing 3200 IOPS. The client was
used to saturate the servers and had 16 cores and 56GB of memory,
and could perform 51200 IOPS. Below we measure the end-to-end
latency of client requests to the etcd cluster.

We established a baseline using unmodi�ed etcd. The system
was exercised at 3 load levels: 100, 150, and 200 client request per
second, each test was run for 100s. Each assert in Section 7 was run
under the same conditions. Assertions were placed in etcd’s inner
event loop which executed on every received message and timer
event. On average 5 events occurred per client request. We also ran
experiments with probabilistic asserts with two probabilities: P=0.1
and P=0.01 and measured the median slowdown in client request
response times.

The greatest slowdownwas incurred when asserts were placed at
bottleneck program points. For example, asserting strong leadership
with P=1.0 caused a 52x slowdown, as each client request was forced
to wait for multiple asserts to execute. Using P=0.1 reduced this to
2.5x, and P=0.01 reduced it further to 1.02x. Leader agreement and
log matching asserts were performed by followers, which are not

• Log size + analysis time linear in sys runtime

• Can be done offline + parallelized
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