Private and secure
distributed M

Ivan Beschastnikh, Clement Fung,
Stewart Grant, Michael Hou, Jamie Koerner,
Shayan Muhammad, Gleb Naumenko, Chris Yoon

-
W
®

Networks Systems Security lab
University of British Columbia nss.cs.ubc.ca

Private and secure

|

distributed M

h 4

Defense for Sybil-based
poisoning in Fed
Learning

P2P ML via a
Blockchain

-
W
®

University of British Columbia

Ivan Beschastnikh, Clement Fung,
Stewart Grant, Michael Hou, Jamie Koerner,
Shayan Muhammad, Gleb Naumenko, Chris Yoon

Networks Systems Security lab

nss.cs.ubec.ca

The Explosion of Data and Machine Learning

The Cambrian Explosion...of Data "By 2020, the amount of data is predicted to sit at
53 zettabytes - increasing 50 times since 2003."

-- Hal Varian, Chief Economist Google

Machine Learning helps to extract insights from

immense amounts of heterogeneous data without

Exabytes (billions of GB)

human intervention:

Input data X

Structured Data Unstructured Data q

y =4(90%)

(Very) Gentle ML Overview

X: labelled data features

o E.g.,Square footage
e y:predicted output

o E.g.,House value

o Categorical or numerical
w: model parameters

o Feature weighting

o Depends on model type

m Assume arbitrary
vector of floats

Model Fit ML Model
(Train) f(X,w) ->y

Classification (predict type)
Regression (predict value)

ML: Stochastic Gradient Descent

e SGD: General iterative algorithm for model training [1]
o Can apply to regressions, deep learning, etc.

[1] Léon Bottou “Large-Scale Machine Learning with Stochastic Gradient Descent”, COMPSTAT ‘10

ML: Stochastic Gradient Descent

e SGD: General iterative algorithm for model training [1]
o Can apply to regressions, deep learning, etc.

Copy model Model
parameters w f(X,y, w)

[1] Léon Bottou “Large-Scale Machine Learning with Stochastic Gradient Descent”, COMPSTAT ‘10

ML: Stochastic Gradient Descent

e SGD: General iterative algorithm for model training [1]
o Can apply to regressions, deep learning, etc.

[1] Léon Bottou “Large-Scale Machine Learning with Stochastic Gradient Descent”, COMPSTAT ‘10

ML: Stochastic Gradient Descent

e SGD: General iterative algorithm for model training [1]
o Can apply to regressions, deep learning, etc.

SGD Update Aw
New Model
fX,y,w+ Aw)

[1] Léon Bottou “Large-Scale Machine Learning with Stochastic Gradient Descent”, COMPSTAT ‘10

ML: Stochastic Gradient Descent

e Repeat until done!
o Using some convergence gradient metric
o For afixed number of iterations

SGD Update Aw’
Copy model £\

parameters w’ \A

[1] Léon Bottou “Large-Scale Machine Learning with Stochastic Gradient Descent”, COMPSTAT ‘10

10

ML Use Cases

_‘person The quick bro

bro brown brother

Computer
.. - 1l y helmet
VISIOD ; - motorcycle

amazoncom Recommended for You

Amazon.com has new recommendations for you based on items you purchased or
told us you own.

Recommender
Systems

N\

Key observation: Many Data and Analyses are
Decentralized

e Internet of things (large scale sensor networks)
e Live mobile analytics (maps/routing/traffic)

Google Maps

12

So... how do we process all this
\ decentralized data with ML?

The Cambrian Explosion...of Data

W Structured Data Unstructured Data

13

Modern Large Scale ML Solutions

e Modern solutions: centralize data and centralize compute
o Copy + store all data in a data centre and trainon it
o Facebook has to periodically train on 100s of TBs of data
that can take days to complete [1]
o 3 example scale-out ML solutions:

N
Soark’

PYTHRCH

MLlib

The Machine Learning Library

Deep Learning with PyTorch

Flow

14
[1] Hazelwood et al. “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective” HPCA 18

\ Modern Large Scale ML Solutions

e Modern solutions: centralize data and centralize compute
o Copy + store all data in a data centre and trainon it

Problem: this is costly and lacks privacy

Ty

TensorFlow

PYTHRCH

Deep Learning with PyTorch

The Machine Learning Library

[1] Hazelwood et al. “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective” HPCA 18

15

Costs of Centralization

e ~2.3billion smartphones and rising
e Collecting data, keeping it updated is expensive
e Recentimprovements: perform ML without data transfer
o Aggregating locally trained models
o Training over the network:
o Gaia[1]: build ML models using data across data centers
o Federated Learning[2]: build ML models from data on
handheld devices around the world

[1] Hsieh et al. “Gaia: Geo-distributed Machine Learning Approaching LAN Speeds” NSDI 17
[2] McMahan et al. “Communication Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17

16

\ Distributed ML: Federated Learning

Federated Learning [1] (Google’s new 2017 algorithm):

Data never leaves the client, as good as centralized

17
[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17

Distributed ML: Federated Learning

e Keyidea: send SGD updates over network

Central Server

Model

[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17

18

Distributed ML: Federated Learning

e Keyidea: send SGD updates over network

Central Server

Model

[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17

19

Distributed ML: Federated Learning

e Keyidea: send SGD updates over network

Central Server

Model

[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17

20

Distributed ML: Federated Learning

e Keyidea: send SGD updates over network

Central Server

Model

[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17

21

Federated Learning Tradeoffs

e Benefits: client centric compute enables privacy
o Dataremains with client
o Perform SGD locally at client
m Can modify the protocol for further privacy
m Client churn, asynchrony, non-lI1D data OK!

e Drawbacks: less control for server

o Clients used to just provide data
o Clients capable of many new attacks

[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17

22

\ In this talk

e Introduction: cloud machine learning (ML)

Two projects with two points of view:
1. Federated learningis here to stay

e FoolsGold: Countering sybil poisoning in fed. learning
2. The futureis decentralized

e Biscotti: P2P ML on the blockchain

23

\ In this talk

e Introduction: cloud machine learning (ML)

Two projects with two points of view:
1. Federated learningis here to stay

e FoolsGold: Countering sybil poisoning in fed. learning
2. The futureis decentralized

e Biscotti: P2P ML on the blockchain

24

Poisoning Attacks

e |nfluence model prediction outputs
e Supply malicious training data
e Twotypes:[1]
o Random attack: Aim to decrease model accuracy
o Targeted attack: Aim to increase/decrease classification of
a specific point
m | want my email to pass a spam filter
m | want my advertisement to be displayed more

[1] Huang et al. “Adversarial Machine Learning”. AlSec ‘11

25

Targeted Poisoning Attacks

Poisoning Attack on SVM

classification error = 0,022 classification error = 0.039

26

Targeted Poisoning Attacks

Poisoning Attack on SVM

classification error = 0,022 classification error = 0.039

Victim samplé Attack sample
s A

0 ' 5

27

Sybil Attacks

e In ML setting:

e Fake accounts created for additional leverage [1]

o Attacks can become more powerful (poisoning, leakage)

[1] Doucuer et al. “The Sybil Attack” IPTPS ‘01

[2] Wang et al. “Defending against Sybil Devices in
Crowdsourced Mapping Services”, MobiSys ‘16

8 s

.::: 0.4 miles 175 feet
::' W 6th St, Baird Pine St

Figure 1: Before the attack (left), Waze shows the fastest route
for the user. After the attack (right), the user gets automatically
re-routed by the fake traffic jam. 28

Sybil-based poisoning in federated learning

e Problem:
o Federated Learning actively involves clients
o Easy for aclient to poison model using sybils

Federated Iearnlng aggregator Federated Iearnlng aggregator

g/oba/ model wq] | ‘ global model u'g—f—‘] |

@@Eﬁ l@@@l

Label: 0 Label: 1 Label: 2 Label: 9 Label: 0 Label: 1 Label: 7 Label: 9

(a) Federated learning setting (b) Federated learning with sybil-based label-flipping poisoning

29

TABLE 1. THE ACCURACY AND ATTACK SUCCESS RATES FOR
BASELINE (NO ATTACK), AND ATTACKS WITH 1 AND 2 SYBILS IN A

Sybi | - ba Sed pO i SO n i n g FEDERATED LEARNING CONTEXT WITH MNIST DATASET.

Baseline Attack 1 Attack 2

honest clients

malicious sybils
Accuracy (digits: 0, 2-9)
Accuracy (digit: 1)

Py Problem Attack success rate 35.9%
o Federated Learning actively involves clients
o Easy for aclient to poison model using sybils

Federated learning aggregator Federated learning aggregator
[global model W] [global model W+]
| AR
N E
J @
>) >

Label: 0 Label: 1 Label: 2 Label: 9 Label: 0 Label: 1 Label: 7 Label: 9

(a) Federated learning setting (b) Federated learning with sybil-based label-flipping poisoning

30

Sybil-based poisoning in federated learning

e Problem:
o Federated Learning actively involves clients
o Easy for aclient to poison model using sybils

e Existing solutions:
o Involve detecting malicious data/robust ML [1,2]
o Assumptions about data: poor match for fed. learn. setting!
o Onlywork up to a limit: “at most 33% attackers” [3]

[1] Rubinstein et al. “ANTIDOTE: Understanding and Defending against Poisoning of Anomaly Detectors” IMC ‘09
[2] Shen et al. “Auror: Defending Against Posoning ATtacks in Collaborative Deep Learning Systems” ACSAC’16
[3] Blanchard et al. “Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent”. NIPS ’17 31

Towards More Robust Poisoning Defenses

e Our approach (FoolsGold):
o Combine ideas from graph defense and anomalous
behaviour defense to ML context [1,2]
m Use update similarity and correctness
o Instead of robustness, detect and reject Sybils

[1] Viswanath et al. “Strength in Numbers: Robust Tamper Detection in Crowd Computations ” COSN ‘15
[2] Tran et al. “Sybil-Resilient Online Content Voting” NSDI ‘09

32

\ FoolsGold goals

Preserve Fed. Learning performance when no attacks
Devalue contributions that are similar

Be robust to an increasing number of sybils

Preserve honest gradients

Make few assumptions (e.g., # of attackers)

bk wbe

33

\ FoolsGold: how it works

Central Server

Model

34

IR)(]

FoolsGold: how it works

Central Server

Model

Poisoner objective

True objective

35

FoolsGold: how it works

Central Server

Model

Poisoner objective

N
Ss

Key ideas:
1. Limit attacker ability to influence model with similar-looking data
R? True objective 2. Use shape of updates to identify and reject Sybil contributions 3¢

IR)(]

FoolsGold: how it works

Central Server

Model

Poisoner objective

Check update similarity/correctness

True objective

37

IR)(]

FoolsGold: how it works

Central Server

Model

Poisoner objective

Check update similarity

True objective

rectness

38

FoolsGold: more details

| Sybil 2
‘updates

g Honest client
updates

39

FoolsGold: more details

Sybil 2
‘updates

g Honest client
updates

Data: A; from all clients at iteration ¢
Result: A client weight vector v
1 for iteration t do
for All clients i do
/I Updates history
Let H; be the aggregate historical vector
Z?:l Aiy
/I Feature importance
Let S; be the weight of indicative features at
iteration ¢
for All other clients j do
Find weighted cosine similarity cs;;
between H; and H; using S;
end
// Pardoning
for All other clients j do
if max;(cs) > max;(cs) then
)/ max;(cs)

end
Let v; = 1 — max;(cs;)
end
/I Logit function
v = v/ max(v)
v = ln((l%v) +0.5)
return v
18 end

Algorithm 1: FoolsGold algorithm.

40

FoolsGold: more details

Sybil 2
‘updates

g Honest client
updates

Data: A; from all clients at iteration ¢
Result: A client weight vector v
1 for iteration t do
for All clients i do
/I Updates history
Let H; be the aggregate historical vector
T
Zt:l Ai,t
/I Feature importance
Let S; be the weight of indicative features at
iteration ¢
for All other clients j do
Find weighted cosine similarity cs;;
between H; and H; using S;

// Pardoning
for All other clients j do
if max;(cs) > max;(cs) then
)/ max;(cs)

end
Let v; = 1 — max;(cs;)
end
/I Logit function
v = v/ max(v)
v = ln((l%v) +0.5)
return v
18 end

Algorithm 1: FoolsGold algorithm.

41

FoolsGold: more details

Sybil 2
‘updates

g Honest client
updates

Data: A; from all clients at iteration ¢
Result: A client weight vector v
1 for iteration t do
for All clients 1 do
/I Updates history
Let H; be the aggregate historical vector

- BoT
Let S; be the weight of indicative features at
iteration ¢

for All other clients j do

Find weighted cosine similarity cs;;

between H; and H; using S;

end
// Pardoning
for All other clients j do

if max;(cs) > max;(cs) then

)/ max;(cs)

end
Let v; = 1 — max;(cs;)
end
/I Logit function
v = v/ max(v)
v = ln((l%v) +0.5)
return v
18 end

Algorithm 1: FoolsGold algorithm.

42

Evaluation (highlights)

TABLE II.

Attack

A-AllOnOne

DATASETS USED IN THIS EVALUATION.

Features

494,020

Description

Single client attack.

5 clients attack.

2 sets of 5 clients, concurrent attacks.

5 sets of 5 clients, concurrent attacks.

5 clients executing 5 attacks on the same target class.
99% adversarial clients, performing the same attack.

43

FoolsGold versus Krum [1]

—k— Baseline

—-+»— Krum
—- Krum (lID)
FoolsGold

o

o
IN

(O]
]
(©
o
A4
(®)
(©
]
]
<

o
N

o
o

6
Number of Poisoners

e Multi-krum with byzantine # clients, f = 2

e Krum does poorly in non-IID setting (I1D exp also shown)

[1] Blanchard et al. “Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent”. NIPS ’17

44

Performance impact

FoolsGold
—k— Federated Learning

20 30 40
Number of Clients

e Train MNIST for 3K iterations
e Pairwise cosine similarity most expensive computation
e Python sub-optimal + better algorithms for cosine sim exist [1]

[1] Andoni et al. “Practical and optimal Ish for angular distance,” NIPS 2015

46

\ FoolsGold summary

Federated learning: actively involves clients
Sybil-based poisoning a concern

Key idea: Use contribution similarity to detect sybils
Simple algorithm that runs on server

Effective for large number of sybils across 3 datasets

More info:
Fung et al. “Mitigating Sybils in Federated Learning Poisoning” Arxiv 2018

47

\ In this talk

e Introduction: cloud machine learning (ML)

Two projects with two points of view:
1. Federated learningis here to stay

e FoolsGold: Countering sybil poisoning in fed. learning
2. The futureis decentralized

e Biscotti: P2P ML on the blockchain

48

\ Modern Large Scale ML Solutions

e Modern solutions: centralize data and centralize compute
o Copy + store all data in a data centre and trainon it

Problem: this is costly and lacks privacy

Ty

TensorFlow

PYTHRCH

Deep Learning with PyTorch

The Machine Learning Library

[1] Hazelwood et al. “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective” HPCA 18

49

The Need for Privacy

e Datacan be sensitive
o Photos, location info, voice recordings.. our entire lives!
e Typically, a centralized service performs model training

o Do we have to trust with our data?
large company

50

\ Private P2P Federated Learning

e Major issue for federated learning style systems:
o Coordination and consistency of many clients
o Security against Sybil attacks
e Thereis amodern solution that provides this in a peer to peer
(P2P) network...

e ..we just have to figure out privacy ©

51

Blockchain Based Learning

BLOCKCHAIN

Longest Proof-of-Work Chain

Block Header Block Header Block Header

Merkle Root Merkle Root Merkle Root

/

\ Use cases for such a system

e Health-care
o Privacy regulations prohibit sharing of patient data
Poisoning leads to inaccurate models/wrong diagnosis
o loT
o Personaldatain IOT devices/sensors
o Models for smart homes, self driving cars
o Poisoned models could have disastrous consequences
e.g., loss of lives
e Other fed. learning use cases without a trusted entity
o Gboard -> Predicting next word in text messages

53

Blockchain Based Learning: how?

e We propose an alternative solution to distributed ML based on
blockchain

©)

©)

Blockchain as a consensus protocol
Blockchain acts as shared state and coordinator

e Requires mapping of traditional blockchain ideas to ML

©)

O O O O

Proof of work/stake/something else?
SGD deltas dissemination

What does a block represent?

Block validation

Concurrency control (longest chain wins?)

54

\ Biscotti overview

Key ideas Blockchain

1. Store global model structure
in blockchain (secure
aggregation)

2. Peers verify updates to
defend against malicious
updates

3. Use diff. priv. noise to protect
updates

e

Verified updates agg. into blocks 55

Biscotti design overview

Goal

1. Support universal model types

2. Peer to peer ML: no central coordinator
3. Prevent model poisoning

4. Preserve privacy of the peers’ data

5. Maintain defenses against sybils

Mechanism

1. Stochastic Gradient Descent (SGD) [1]
2. Blockchain

3. Verification through RONI [4]

4. Differentially private noise [3], secret
sharing [2]

5. Stake weighted VRFs [5] for 3 and 4.

[1] Leon Bottou. “Large scale Machine Learning with Stochastic Gradient Descent” COMPSTAT 10

[2] Adil Shamir “How to share a secret.” ACM 1979
[3] Cynthia Dwork “Differential Privacy” ICALP 06

[4] Barreno et al “The security of machine learning” Machine Learning Journal 2010

[5] Micali et al “Verifiable Random Functions” FOCS 99

56

Biscotti threat model

B. protects against:

A malicious trusted entity. Biscotti does not
assume a trusted component.

Peers sending malicious updates to perform
a poisoning attack[1] against a specific class.

Peers colluding [2] with other peers to launch
a poisoning attack.

Peers colluding to perform a targeted attack
to recover avictim’s data.[3]

B. does not protect against:

Class-level information leakage from the global
model (revealing all information about a specific
class)

Poisoning attacks that are unrelated to class-level
information (targeted poisoning, backdoors,
adversarial examples)

Settings in which an adversary controls over half
the resources in the system

We make fewer assumption about the malicious nature of peers unlike federated learning!

[1] Barreno et al “The security of machine learning” Machine Learning Journal 2010

[2] Doucer et al “The sybil attack” IPTPS 01

57

[3] Hitaj et al “Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning ” CCS17

\ The easy part: SGD + Blockchain

e Each block stores a set of SGD updates from multiple peers
o Each peer computes SGD using their blockchain state

o With each block, the set of updates is added, updating the
global model

: SGD
Blockchain / B -

58

Biscotti: design overview

Goal Mechanism

3. Prevent model poisoning 3. Verification through RONI [4]

4. Preserve privacy of the peers’ data 4. Differentially private noise [3], secret
sharing[2]

5. Maintain defenses against sybils 5. Stake weighted VRFs [5] for 3 and 4.

[1] Leon Bottou. “Large scale Machine Learning with Stochastic Gradient Descent” COMPSTAT 10
[2] Adil Shamir “How to share a secret.” ACM 1979

[3] Cynthia Dwork “Differential Privacy” ICALP 06

[4] Barreno et al “The security of machine learning” Machine Learning Journal 2010

[5] Micali et al “Verifiable Random Functions” FOCS 99

Biscotti: Defending against poisoning attacks

) Initialize ML
e Aclient computes an SGD update. +

Local SGD ~\Aw;

Genesis for iteration t
block

Biscotti: Defending against poisoning attacks

A client computes an SGD update.

How do we check if it is poisoned?

[nitialize ML

Genesis
block

Local SGD ~\Aw;
for iteration t 2 [E=

Biscotti: Defending against poisoning attacks

e Aclient computes an SGD update. | &
e Howdowe check if it is poisoned?

o The P2P system has a wealth of verification data at
each node’s disposal

Biscotti: Defending against poisoning attacks

e Aclient computes an SGD update.
e Howdowe check if it is poisoned?

o The P2P system has a wealth of verification data at
each node’s disposal

o Select asubset of clients to act as a verification
committee.

Biscotti: Defending against poisoning attacks

e Aclient computes an SGD update.

e Howdowe check if it is poisoned?

O

The P2P system has a wealth of verification data at
each node’s disposal

Select a subset of clients to act as a verification
committee.

Problem: How do we select this committee in a way
that it is completely random and prevents collusion
among clients?

Key idea: Proof of stake[1] and VRF[3]

e Eachclient has some stake proportional to their B8 -
contribution (L :
e Clients accumulate stake by contributing updates S
e POSisapopularalternative to POW to achieve i 8
Byzantine fault tolerance (e.g. Algorand [2]) - s
e Ineachiteration,averifiable random function |
(VRF) uses stake + randomness to select a i B
committee responsible for validating updates - —
Assumption: At any time in the system the majority of B B
stake in the system is honest. : —

[1] https://qithub.com/ethereum/wiki/wiki/Proof-of-Stake-FAQS
[2] Gilad et al “Algorand: Scaling Byzantine Agreements for Cryptocurrencies” SOSP 17
[3] Micali et al “Verifiable random functions” SOSP 17 I

https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs

Biscotti: selecting verifiers

e Eachclient has aregionover a hashring weighted
by client stake allocated via consistent hashing.

peer2
stake region

peer1
stake region

Biscotti: selecting verifiers
e Eachclient has aregionover a hashring weighted
by client stake allocated via consistent hashing.

e AVRF hashusing SHA-256 hash of the last
generated block as the seed is computed.

Generated
Block

Biscotti: selecting verifiers
e Eachclient has aregionover a hashring weighted
by client stake allocated via consistent hashing.

e AVRF hashusing SHA-256 hash of the last
generated block as the seed is computed.

e The peerinwhose region the hash lies is selected
as the verifier.

Generated
Block

VRF

10

Biscotti: selecting verifiers

e FEachclient has aregion over a hash ring weighted
by client stake allocated via consistent hashing.

e AVRF hash using SHA-256 hash of the last
generated block as the seed is computed.

e The peerinwhose region the hash lies is selected
as the verifier.

e The VRF hash is re-computed using the previous
VRF hash to select multiple verifiers.

Generated
Block

VRF

11

Biscotti: selecting verifiers

e Eachclient has aregionover a hashring weighted
by client stake allocated via consistent hashing.

e AVRF hashusing SHA-256 hash of the last
generated block as the seed is computed.

e The peerinwhose region the hash lies is selected
as the verifier.

e The VRF hash is re-computed using the previous
VRF hash to select multiple verifiers.

The verifier selection is completely random and cannot
be manipulated by any client

Generated
Block

VRF

12

Biscotti: selecting verifiers

e Eachclient has aregionover a hashring weighted
by client stake allocated via consistent hashing.

e AVRF hashusing SHA-256 hash of the last
generated block as the seed is computed.

e The peerinwhose region the hash lies is selected
as the verifier.

e The VRF hash is re-computed using the previous
VRF hash to select multiple verifiers.

The verifier selection is completely random and cannot
be manipulated by any client

Once selected, how do the verifiers check updates for
poisoning?

Generated
Block

VRF

13

Biscotti: Verification using RONI [1]

e Verifier determines whether the update improves
performance of the model w.r.t his own data.

Peer
e Measures validation error of the current state of l

the model on his data (Erry).

e Measures validation error of the model + update (Errw - Erfwan)
on his data (Erryy;aw)- >Thresh

(Errw - Errw.aw)

<Thresh

e If(Erry - Erry.a,) > Threshold

Verifier

o Accept Update

A\ 4 A\ 4

e Otherwise: J x

o Reject Update

[1] Barreno et al “The security of machine learning” Machine Learning Journal 2010 14

Biscotti: a robust poisoning defense

e The client computes a SGD update. initiaze: R +

| Local SGD ~ \Aw;
Genesis for iteration t A

block F-‘ !

15

Biscotti: a robust poisoning defense

The client computes a SGD update.

The client sends the update to each verifier
selected for RONI [1] verification.

[nitialize ML

Genesis
block

[1] Barreno et al “The security of machine learning” Machine Learning Journal 2010

@Y

Local SGD ~\Aw;

' Run RONI to Verifier
verify updates VRF set t

16

Biscotti: a robust poisoning defense

e The client computes a SGD update.

e Theclient sends the update to each verifier
selected for RONI [1] verification.

e Verifiersreturnsignatures if the update
passes, and an update is accepted if it
receives a majority of updates.

[nitialize ML

Genesis
block

[1] Barreno et al “The security of machine learning” Machine Learning Journal 2010

@Y

Local SGD ~\Aw;

Awy T Signatures

' Run RONI to Verifier
verify updates VRF set t

17

Biscotti: a robust poisoning defense

e The client computes a SGD update.

e Theclient sends the update to each verifier
selected for RONI [1] verification.

e Verifiersreturnsignatures if the update
passes, and an update is accepted if it
receives a majority of updates.

Problem remains: No Privacy!

Inversion Attack [2]

[nitialize ML +
Local SGD ~\Aw;
Genesis : : »
block

E ‘1 T Signatures

' Run RONI to Verifier

verify updates VRF set 1

[1] Barreno et al “The security of machine learning” Machine Learning Journal 2010
[2] Hitaj et al “Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning ” CCS17 18

Biscotti: Adding privacy using noise

e Since the SGD update cannot be revealed to the
verifier, the update has differentially private noise [1]
added toiit.

o With noise added, the data gets obfuscated.

@ Update + Noise:
()
B & vl

> 'Run RONIto~ Verifier
verify updates VRF set t

[1] Cynthia Dwork “Differential Privacy” ICALP 06

19

Biscotti: Adding privacy using noise

e Since the SGD update cannot be revealed to the
verifier, the update has differentially private noise [1]
added toiit.

o With noise added, the data gets obfuscated.
o Verifiers verify the noisy update, and return
signatures if they pass RONI.

Update + Noise
& =
0 &

w__~

R RONI 0 Verifie

Signatures
J verify updates VRF set t

[1] Cynthia Dwork “Differential Privacy” ICALP 06

20

Biscotti: Adding privacy using noise

e Since the SGD update cannot be revealed to the
verifier, the update has differentially private noise [1]
noise added to it.

o With noise added, the data gets obfuscated.
o Verifiers verify the noisy update, and return
signatures if they pass RONI.

Problem remains: noise harms utility

Update + Noise
(‘@1 =
B &

) g

o

'RUn RONIto~ Verifier

Signatures
J verify updates VRF set t

[1] Cynthia Dwork “Differential Privacy” ICALP 06 21

Biscotti: Adding privacy using noise

e Since the SGD update cannot be revealed to the
verifier, the update has noise added to it.
o With noise added, the data gets obfuscated.
o Verifiers verify the noisy update, and return
signatures if they pass RONI.

Problem remains: noise harms utility

Verifier signs the updates without the noise.

Update + Noise
(@) >
2 &

) g

2l

' Run RONIto~ Verifier

Signatures
J verify updates VRF set

[1] Cynthia Dwork “Differential Privacy” ICALP 06 22

Biscotti: Adding privacy with commitments

e Peer uses commitments to hide individual updates and noise.
o Reveals commitments and the sum to verifier

COMM(Update)
COMM(Noise)

@) Update + Noise

>~ 'RUn RONIto~ Verifier
verify updates VRF set t

23

Biscotti: Adding privacy with commitments

e Peer uses commitments to hide individual updates and noise.
o Reveals commitments and the sum to verifier
e Trivial for verifiers to verify that commitments add up to the
revealed value because of homomorphic property

COMM(Update) * COMM(Noise) =
COMM(Update + Noise)

COMM(Update)
COMM(Noise)

@) Update + Noise

~— 'RUn RONIto~ Verifier
verify updates VRF set t

24

Biscotti: Adding privacy with commitments

e Peer uses commitments to hide individual updates and noise.
o Reveals commitments and the sum to verifier
e Trivial for verifiers to verify that commitments add up to the

revealed value because of homomorphic property
e Returns asignature of the commitment to the update if

verification passes

ol

8 &

w_ -

COMM(Update)
COMM(Noise)
Update + Noise

»

<
<

' Verifier
COMM(Updat Run RONI to
Sig(nepd ate) verify updates VRF set

25

Biscotti: Adding privacy with commitments This bypasses
verification and goes

1 |
e Peer uses commitments to hide individual updates and noise. into the block!

o Reveals commitments and the sum to verifier
e Trivial for verifiers to verify that commitments add up to the

revealed value because of homomorphic property
e Returns asignature of the commitment to the update if

verification passes Label: 1
COMM(Update) .
COMM(Noise) Problem:
Update + Noi .
@ baate 0|se‘ Noise can be used to
(1 ' make poisoned update
B &) look good after addition

| Verifi
— COMM(Update) Run RONIto VReI;IsIZtrt of noise

Signed verify updates

26

Biscotti: Pre-committing noise

e We cannot give a peer control of the noise used for their update

o Could be used to manipulate verification result
e Solution: Noise is pre-committed in the genesis block in a matrix.

o SGD training usually done for a predefined number of iterations. [1]

o Pre-commit for N peers over T iterations.. Can’t go back on commitment
e Only the commitments to the noise are published

Noise committed
for iteration 1

comm(noisei) |~ comm(noiser)
Noise committed . 9 . 9
by & —Pcomm(noisey) |.. comm(noiser) N
peer 2 peers
comm(noisel)| - comm(noisey)
T iterations

[1] Leon Bottou. “Large scale Machine Learning with Stochastic Gradient Descent” COMPSTAT 10 27

Biscotti: Adding the pre-committed noise and revealing to verifiers

e FEach peer computes a VRF that outputs the indices of noise to use

o Theindex selects from the precommitted values, and is unique to each peer.

Noising
VRF set t

28

Biscotti: Adding the pre-committed noise and revealing to verifiers

e The peerretrieves the noise vectors from each noising peer
o The noising peer committee is unique to each client.
o Noise can be verified by matching with corresponding commitment in the genesis block

Initialize ML

. Local SGD /\Awl
Genesis for iteration t

=] R
*

£ |e-Retrieve @Get noise to

—> n0|se mask update
Noising

VRF set t

Biscotti: Adding the pre-committed noise and revealing to verifiers

e The peer combines the precommitted noise vectors from the respective noising peers
o Sends commitment to the update, commitments to the noise vectors, and noisy update

o Peer collects signatures from verifiers

Local SGD ~\Aw;

Genesis for iteration t & =1 _
| Tblock §. | ata1

|
. Noisy [
E |e-Retrieve @ Get noise to @ update
— noise mask update A’LUQ + Eké' Loy

]88

Noising @ RUnRONIto” Verifier
VRF set t Verify upda’[es VRF set t

Signatures

Biscotti: Adding the pre-committed noise and revealing to verifiers

e The peer combines the precommitted noise vectors from the respective noising peers
o Sends commitment to the update, commitments to the noise vectors, and noisy update

o Peer collects signatures from verifiers

How do we determine the
aggregate of verified updates
and create next block with
updated model?

Local SGD ~\Aw;

Genesis for iteration t & =1 _
| Tblock §. | ata1

|
_ Noisy [E
5 <_Retr.|eve @Get noise to @ update B
—> noise mask update Awsy 4+ Xje

]88

Noising @ RUnRONIto” Verifier
VRF set t verify updates VRF set t

Signatures

31

Biscotti: Aggregation and Block Generation

- Similar to verification, an aggregation committee is selected for creating the new
block using another stake-weighted VRF function

& A A &

5 & Secure Agg. 5 &
~— VRF set t —
COMM|(Update)sig (@3) COMM(Update)sig
S

COMM(Update)sig 33

Biscotti: Aggregation using Shamir secret sharing[1]

- Each peer’s update can be considered to be a d-degree polynomial.

I

AR

COMM(Update)sg

Update as a polynomial

34

Biscotti: Aggregation using Shamir secret sharing[1]

- Each peer’s update can be considered to be a d-degree polynomial.
- Update can be broken into n-secret shares such d+1 are needed to reconstruct.

a1 !

o& Q\?

COMM(Update)sg

Update as a polynomial

d=2 35

Biscotti: Aggregation using Shamir secret sharing[1]

Each peer’s update can be considered to be a d-degree polynomial.

Update can be broken into n-secret shares such d+1 are needed to reconstruct.

These shares are distributed among aggregators equally such that n=2*(d+1)

Share

COMM(Update)sg

!

Share 1

v

Share 2

i,

Update as a polynomial
d=2

Share 3

v

Share 6

'y
'
'y
&

36

Biscotti: Aggregation using Shamir secret sharing[1]

Each peer’s update can be considered to be a d-degree polynomial.

Update can be broken into n-secret shares such d+1 are needed to reconstruct.

These shares are distributed among aggregators equally such that n=2*(d+1)

Share

COMM(Update)sg

!

Share 1

v

Share 2

i,

Update as a polynomial
d=2

Share 3

v

Share 6

'y
'
'y
&

37

Biscotti: Aggregation using Shamir secret sharing[1]

- Each peer’s update can be considered to be a d-degree polynomial.

- Update can be broken into n-secret shares such d+1 are needed to reconstruct.
- These shares are distributed among aggregators equally such that n=2*(d+1)

Share

COMM(Update)sg

!

Share 1

v

Share 2

i,

Update as a polynomial
d=2

Share 3

v

Share 6

'y

I
=>

'
&

Majority needed
to reconstruct
and compromise

privacy

38

Biscotti: Aggregation using Shamir secret sharing[1]

- Each peer’s update can be considered to be a d-degree polynomial.

- Update can be broken into n-secret shares such d+1 are needed to reconstruct.
- These shares are distributed among aggregators equally such that n=2*(d+1)

Share

COMM(Update)sg

!

Share 1

v

Share 2

i,

Update as a polynomial
d=2

Share 3

v

Share 6

'y

I
=>

'
&

Majority needed
to reconstruct
and compromise

privacy

39

Biscotti: Aggregation using Shamir secret sharing[1]

- Each peer’s update can be considered to be a d-degree polynomial.

- Update can be broken into n-secret shares such d+1 are needed to reconstruct.
- These shares are distributed among miners equally such that n=2*(d+1)

Share

COMM(Update)sg

o
b

Update as a polynomial
d=2

q Share 1

QShare 2

v

QShare 3

q Share 6

v

'y

I
>

'
&

The peer could
provide shares for
amalicious
update.

40

Biscotti: Aggregation using Shamir secret sharing[1]

- Eachshareis accompanied by a witness that proves in zk the validity of the share.

COMM(Update)sg

Share 1, Witness 1

Update as polynomial
d=3

Share 2, Witness 2

Share 3, Witness 3‘

Share 4, Witness 41

Share 8, Witne.ss 8

I
=>

il o] S

41

Biscotti: Aggregation using Shamir secret sharing[1]

Each share is accompanied by a witness that proves in zk the validity of the share.

What is a withess?

_ Aw (z) — Aw(i)

Tr—1

ofr)

Given an update polynomial Aw(z) and a secret share (i, Aw(i))
e Awitness is acommitment to a polynomial ¢d(x) => COMM(¢(x))

e The witness polynomial divides the update polynomial by the secret share.

w_ -
Share 4, Witness 41

COMM(Update)sg

o

&

Updat I ial ' .
paale as pOlynom@ share 8, Witnss 8. ﬂ

42

Biscotti: Aggregation using Shamir secret sharing[1]

Each share is accompanied by a witness that proves in zk the validity of the share.
Using the divisibility property of the witness and the update polynomial

Aggregator can verify share came from the signed update

Share

COMM(Update)sg

Share 1, Witness 1

Update as polynomial
d=3

Share 2, Witness 2

Share 3, Witness 3‘

Share 4, Witness 41

Share 8, Witne.ss 8

I
=>

il o] S

43

Biscotti: Aggregation using Shamir secret sharing[1]

How do we recover the aggregate of the updates?

J Secret Sharing

00 00 57

44

Biscotti: Aggregation using Shamir secret sharing[1]

The aggregators compute the sum of their secret shares.

J Secret Sharing

> shares Y shares 2 shares 3 shares
g4 44 57

Secure Agg.
VRF set t

45

Biscotti: Aggregation using Shamir secret sharing[1]

The aggregators compute the sum of their secret shares.
The aggregated shares are shared with the rest.

J Secret Sharing

> shares Y shares 2 shares 3 shares

g4 44
ANANNS

Secure Agg.
VRF set t

—37?

46

Biscotti: Aggregation using secret sharing

- The aggregators compute the sum of their secret shares.

- The aggregated shares are shared with the rest.
If the aggregated shares are interpolated, the aggregate of the updates can be
computed.

> shares Y shares 2 shares 3 shares

v) 88050 S Aw

v ANNANNS

Secure Agg.
VRF set t

47

Biscotti: Aggregation and Block generation

- The aggregators figure out out the aggregate of updates without the noise using
secret sharing

oy l |
| Local SGD /A \Aw; y <\AN
G‘glnei's for |terat|on t E o
oc P
Dataf () |Datan
. Q [ows
g |<Retrieve @ Get noise to “\®
> ”O'Se mask update Shamﬁiﬁ%‘res
A0 un secure
aggregation
r—
Noising Run RONI to Verifier Secure Agg. g
VRF set t Ver|fy updates VRF set t VRF set t

48

Biscotti: Aggregation and Block generation

- The block with the updated global model is created and added to blockchain. The
model has optimal utility since it does not have noise added in the final output.

. Local SGD /\Awl
Genesis for |terat|on t
_| block
£ |e—Retrieve @ Get noise to
—> n0|se mask update

- ﬂﬂ

[] |

=
_ataz ‘ . -DataN
[e ([\aml [
Noisy [
@update) \ \.@ \
Aws + Xpc BEY Signatures Shamir secret shares

| OO

A Run secure
aggregation
=

— Block t = Noising @ Run RONI to\/ Verifier Secure Agg.

_r S Aup. | VRF set t verify updates VRF set t e VRF set t
_ _ _J 1< Create new block with
Blockchain aggregated gradient

49

Evaluation: goals

e Performance

@)

@)

Biscotti’s performance compare to federated learning.
Performance bottlenecks in Biscotti.

o Variation in performance as the size of verifier, noiser and aggregator sets increase
e Security and privacy

@)

@)

e Faulttolerance

Poisoning attacks
Privacy with Sybils

Parameter

Default Value

Privacy budget (€)

2

. Number of noisers | 2
o Performance with node churn :
Number of verifiers | 3
Number of aggregators | 3
Dataset | Model Type | Examples (n) | Params (d) Proportion of secret shares needed u | 0.125
Credit Card LogReg 21000 25 Initial stake | Uniform, 10 each
MNIST Softmax 60000 7850 Stake update function | Linear, +/- 5

50

Evaluation - Baseline (Biscotti vs Federated Learning)

1.0+ 1.0
A
. 0.8 . 0-8'|‘|
e R (] (f
b I = I
Woel A Woel !4
g \ -=- Biscotti 100 nodes S ! ——- Biscotti 100 nodes
] 1 —— Federated Learning 100 nodes = 1 —— Federated Learning 100 nodes
© 0.4 \ © 0.4 \
° \ o \
© © \n
> > 1\
0.2 0.21 M \"""\'s\—IV»_~,"'\//n.:r_’_,“,q‘-~~’_‘_—r\"\—s
0.0 - - » - , 0.0 : , , , - -
0 20 40 60 80 100 0 500 1000 1500 2000 2500 3000
Training Iterations Time (s)
e Deployed on 20 Azure VMs with 5 peers each.

Biscotti achieves similar training error in a similar number of iterations
Biscotti has a 6x performance overhead compared to federated learning

Evaluation - Baseline (Biscotti vs Federated Learning)

1.0

A
L 08h

I
S ghw

Biscotti performs as well as federated learning in the
same number of iterations, but in 8X more time.

I'ralning ITterations I'rme (S)

Deployed on 20 Azure VMs with 5 peers each.
Biscotti achieves similar training error in a similar number of iterations
Biscotti has a 6x performance overhead compared to federated learning

52

Evaluation - Component-wise Performance Breakdown

100
I Noising I Secure Aggregation

80 pm Verification Il Total

60 53.8

40

20

Time Per Iteration (s)

80
Number of Peers

Time per iteration increases exponentially with the number of nodes
Verification of updates is the most costly operation.
Noising and aggregation have negligible overhead on the total performance cost.

53

Evaluation - Component-wise Performance Breakdown

100

IE Noising I Secure Aggregation

80 Verification IE Total

ion (s)

Biscotti scales up to 100 nodes. As the number of peers
increases, Biscotti’s verification overhead increases.

Vg

40 60 80 100
Number of Peers

e Time per iteration increases exponentially with the number of nodes
e Verification of updates is the most costly operation.
e Noising and aggregation have negligible overhead on the total performance cost.

54

Evaluation - Performance as the size of the VRF set varies (50 peers total)

+ 1001 91.6

60 49.2
401 298 31.1321 315 30.7

27.5 237
0! .

Noisers Verifiers Aggregators

Time Per lteratio

e Time per iteration increases exponentially with more verifiers due to expensive RONI operation
Time per block remains constant with increase in the noiser set as it only adds few RTT's per iteration
Aggregation time decreases owing to sufficient shares able to be quickly collected and non-
participation of aggregators in generating updates.

55

Evaluation - Performance as the size of the VRF set varies

w140 . N =3 N=5 N =10
c 120

O

2100 91.6

Biscotti’s performance can scale to accommodate more
noisers or aggregators.

e Time per iteration increases exponentially with more verifiers due to expensive RONI operation
Time per block remains constant with increase in the noiser set as it only adds few RTT’s per iteration
Aggregation time decreases owing to sufficient shares able to be quickly collected and non-
participation of aggregators in generating updates.

56

Evaluation - Poisoning attack

- Federated learning

_ 0.8} 3 ver?f?ers
o = ==== 5 verifiers
L -
L -
. O'G'WWWWW
C []
o .
= .
S 0.41-
S

0.2

09 20 40 60 80 1

Iterations

e Poisoning attack on the credit card dataset evaluated with 49% poisoners in the system.

e Federated learning unable to defend against such attacks.
e Biscotti able to converge faster if it has sufficient number of verifiers in the VRF set.

57

Evaluation - Poisoning attack

- Federated learning
3 verifiers

A MY YW N

N Error

Whereas federated learning struggles with large scale
poisoning, Biscotti can prevent poisoning of up to 49%
adversaries.

Iterations

e Poisoning attack on the credit card dataset evaluated with 49% poisoners in the system.
e Federated learning unable to defend against such attacks.
e Biscotti able to converge faster if it has sufficient number of verifiers in the VRF set.

58

Evaluation - Sybil attack on privacy (noisers that don’t add any noise)

o

=

o
J

— # Noisers = 3
{ = 4 Noisers =5
= NoOisers = 10

b
o
I

S
o
o

b
o
IS

o

o

N
)

Probability of unmasked updates

o
o
o

0 0.1 0.2 0.3 0.4 0.5
Percentage of colluders in the system

e Extremely low probability of being able to unmask a client’s updates

e Probability gets close to zero with sufficient number of noisers in the system.

e Stakedistribution uniform.

59

Evaluation - Sybil attack on privacy

— # Noisers = 3
: # Noisers = 5
= NoOisers = 10

=
=
o

ked updates

With a large enough VRF noising set (N=10),

0.5

deanonymizing a client’s data requires over 50% of stake.

T TUTOT

o 0.0 0.1 0.2 0.3 0.4
Percentage of colluders in the system

Extremely low probability of being able to unmask unmasking a client’s updates

[J
Probability goes close to zero with sufficient number of noisers in the system.

[)
e Stakedistribution uniform.

60

Evaluation - Fault Tolerance

1.0
— 4 nodes/minute

. 0.8 2 nodes/minute
g ----- 1 node/minute
w 0.6
(@)}
£
£04
i
|_

0.2

005 20 40 60 80 100

Iterations

e Biscotti was able to resist node churn of up to 4 nodes/minute with negligible effect on convergence.
e Trainingerror reaches expected value after 100 iterations.

Evaluation - Fault Tolerance

1.0
— 4 nodes/minute

0.8+ 2 nodes/minute
\ N et 1 node/minute

rror

Biscotti can resist failures of up to 4 nodes/minute, and
performs as well as baseline with node churn.

\v) U U \ojv) oAV LUV

Iterations

e Biscotti was able to resist node churn of up to 4 nodes/minute with negligible effect on convergence.

e Trainingerror reaches expected value after 100 iterations.

62

Limitations / Future Work

e Relies on an assumption of stake
o Proof of X: should be something hard to fake and inherent to the system
o Training data comes to mind, but has privacy concerns

e Can't handle full range of poisoning attacks (only class level):
o Adversarial examples, backdoors, targeted poisoning

e Better use of the blockchain
o The blockchain provides a provenance record for the training process.
o Audit trail could be leveraged to re-train the model by omitting certain poisoned
updates after it is detected.

63

Contributions

e Thefirst peer to peer system to empower collaborative ML training:
o Preserving privacy with noisy verification and secure aggregation
o Defending against poisoning attacks with RONI
o A novel design that combines blockchain primitives with cryptography
m Mitigates sybils with verifiable random functions and client stake

e Biscottiis able to produce models similar to federated learning:
o Atawall clock overhead of 6X, but similar iteration overhead
o While scaling up to 100 nodes, and with tunable parameters for each stage
o While being robust to node churns up to 4 nodes/minute.

64

Private ML In the cloud : review

The Cambrian Explosion...of Data

e Cloud ML today: centralize all the things

Federated learning: an alternative, but actively involves clients (sybils)
® F[oolsGold: detect sybils in targeted sybil poisoning

P2P ML: can we forego centralization altogether?
® Biscotti: a solution based on blockchain, diff priv, and crypto

research @ nss.cs.ubc.ca,

61

\ The easy part: SGD + Blockchain

e Each block stores a set of SGD updates from multiple peers
o Each peer computes SGD using their blockchain state

o With each block, the set of updates is added, updating the
global model

: SGD
Blockchain / B -

59

