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The Explosion of Data and Machine Learning
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"By 2020, the amount of data is predicted to sit at 
53 zettabytes - increasing 50 times since 2003." 

-- Hal Varian, Chief Economist Google

Machine Learning helps to extract insights from 

immense amounts of heterogeneous data without 

human intervention:

Is it 4?Model
y = f(X, w) y = 4 (90%)

Input data X



(Very) Gentle ML Overview 
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Data 
X

ML Model
f(X,w) -> y

Model Fit 
(Train)

Classification (predict type)
Regression (predict value)Collect Data

● X: labelled data features

○ E.g., Square footage

● y: predicted output 
○ E.g., House value

○ Categorical or numerical

● w: model parameters
○ Feature weighting

○ Depends on model type

■ Assume arbitrary 
vector of floats



ML: Stochastic Gradient Descent

● SGD: General iterative algorithm for model training [1]
○ Can apply to regressions, deep learning, etc.

[1] Léon Bottou “Large-Scale Machine Learning with Stochastic Gradient Descent”, COMPSTAT ‘10 6



ML: Stochastic Gradient Descent

● SGD: General iterative algorithm for model training [1]
○ Can apply to regressions, deep learning, etc.

Model
f(X, y, w)
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ML: Stochastic Gradient Descent

● SGD: General iterative algorithm for model training [1]
○ Can apply to regressions, deep learning, etc.

New Model
f(X, y, w + Δw )

[1] Léon Bottou “Large-Scale Machine Learning with Stochastic Gradient Descent”, COMPSTAT ‘10 9

SGD Update Δw



ML: Stochastic Gradient Descent

● Repeat until done!
○ Using some convergence  gradient metric

○ For a fixed number of iterations

Model
f(X, y, w’)

[1] Léon Bottou “Large-Scale Machine Learning with Stochastic Gradient Descent”, COMPSTAT ‘10 10

SGD Update Δw’

Copy model 
parameters w’



ML Use Cases
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Computer
Vision

Recommender
Systems NLP



Key observation: Many Data and Analyses are
Decentralized

● Internet of things (large scale sensor networks)
● Live mobile analytics (maps/routing/traffic)

12



So... how do we process all this 
decentralized data with ML?
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Modern Large Scale ML Solutions

● Modern solutions: centralize data and centralize compute
○ Copy + store all data in a data centre and train on it

○ Facebook has to periodically train on 100s of TBs of data 

that can take days to complete [1]

○ 3 example scale-out ML solutions:

14
[1] Hazelwood et al. “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective” HPCA 18
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Problem: this is costly and lacks privacy



Costs of Centralization

● ~2.3 billion smartphones and rising
● Collecting data, keeping it updated is expensive

● Recent improvements: perform ML without data transfer

○ Aggregating locally trained models

○ Training over the network:

○ Gaia [1] : build ML models using data across data centers

○ Federated Learning [2] :  build ML models from data on 

handheld devices around the world

16
[1] Hsieh et al. “Gaia: Geo-distributed Machine Learning Approaching LAN Speeds” NSDI 17
[2] McMahan et al. “Communication Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17

…



Distributed ML: Federated Learning

● Send SGD updates over network

17
[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17

Federated Learning [1] (Google’s new 2017 algorithm): 
Data never leaves the client, as good as centralized



Distributed ML: Federated Learning

● Key idea: send SGD updates over network

Central Server

18

Model

SGD

[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17



Distributed ML: Federated Learning

● Key idea: send SGD updates over network

Central Server

19

Model

SGD Δw Δw

[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17



Distributed ML: Federated Learning

● Key idea: send SGD updates over network

Central Server

20

Model

SGD w w

[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17



Distributed ML: Federated Learning

● Key idea: send SGD updates over network

Central Server

21

Model

SGD Δww Δw

[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17



● Benefits: client centric compute enables privacy
○ Data remains with client

○ Perform SGD locally at client

■ Can modify the protocol for further privacy

■ Client churn, asynchrony, non-IID data OK!

● Drawbacks: less control for server

○ Clients used to just provide data
○ Clients capable of many new attacks

Federated Learning Tradeoffs

22[1] McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data” AISTATS 17



In this talk

● Introduction: cloud machine learning (ML)

Two projects with two points of view:

1. Federated learning is here to stay
● FoolsGold : Countering sybil poisoning in fed. learning

2. The future is decentralized
● Biscotti: P2P ML on the blockchain

23
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Poisoning Attacks

● Influence model prediction outputs
● Supply malicious training data

● Two types: [1]

○ Random attack: Aim to decrease model accuracy

○ Targeted attack: Aim to increase/decrease classification of 

a specific point

■ I want my email to pass a spam filter

■ I want my advertisement to be displayed more 

[1] Huang et al. “Adversarial Machine Learning”. AISec ‘11

25



Targeted Poisoning Attacks

26



Targeted Poisoning Attacks

27

Attack sampleVictim sample



Sybil Attacks

● Fake accounts created for additional leverage [1]
● In ML setting:

○ Attacks can become more powerful (poisoning, leakage)

28

[1] Doucuer et al. “The Sybil Attack” IPTPS ‘01

[2] Wang et al. “Defending against Sybil Devices in 
Crowdsourced Mapping Services”, MobiSys ‘16



Sybil-based poisoning in federated learning

● Problem:
○ Federated Learning actively involves clients

○ Easy for a client to poison model using sybils

29

Federated learning aggregator
[global model        ]wg

(a) Federated learning setting

…

Label: 0 Label: 1 Label: 2 Label: 9 Label: 0 Label: 1 Label: 7 Label: 9

Sybils

(b) Federated learning with sybil-based label-flipping poisoning

…

…

…

Federated learning aggregator
[global model                ]wg+
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Mitigating Sybils in Federated Learning Poisoning

Abstract—Machine learning (ML) over distributed data is
relevant to a variety of domains. Existing approaches, such as
federated learning, compose the outputs computed by a group of
devices at a central aggregator and run multi-round algorithms to
generate a globally shared model. Unfortunately, such approaches
are susceptible to a variety of attacks, including model poisoning,
which is made substantially worse in the presence of sybils.

In this paper we first evaluate the vulnerability of federated
learning to sybil-based poisoning attacks. We then describe
FoolsGold, a novel defense to this problem that identifies poi-
soning sybils based on the diversity of client contributions in the
distributed learning process. Unlike prior work, our system does
not assume that the attackers are in the minority, requires no
auxiliary information outside of the learning process, and makes
fewer assumptions about clients and their data.

In our evaluation we show that FoolsGold exceeds the
capabilities of existing state of the art approaches to countering
ML poisoning attacks. Our results hold for a variety of condi-
tions, including different distributions of data, varying poisoning
targets, and various attack strategies.

I. INTRODUCTION

To train multi-party machine learning (ML) models from
user-generated data, users must provide and share their train-
ing data, which can be expensive [20] or privacy-violating.
Federated learning [23], [24] is a recent solution to both
problems: while training on data stored on mobile devices,
data is kept on the client device and only model parameters
are transferred to a central aggregator when constructing the
model. This provides a basic level of privacy and allows clients
to compute their model updates locally and independently.
Federated learning can be further augmented with differential
privacy [15] and secure aggregation [10] to provide additional
client-side privacy and security.

However, federated learning introduces a risky design
tradeoff: clients, who previously acted only as passive data
providers, can now observe intermediate model state and con-
tribute arbitrary intermediate values as part of the decentralized
training process. This creates an opportunity for malicious
clients to manipulate the training process: adversaries posing
as honest clients can pollute the shared model [6], [27],
influencing the prediction probabilities of the final model. This
type of attack, in which an adversary maliciously influences
the properties of a trained model, has been well explored

TABLE I. THE ACCURACY AND ATTACK SUCCESS RATES FOR
BASELINE (NO ATTACK), AND ATTACKS WITH 1 AND 2 SYBILS IN A

FEDERATED LEARNING CONTEXT WITH MNIST DATASET.

Baseline Attack 1 Attack 2
# honest clients 10 10 10

# malicious sybils 0 1 2
Accuracy (digits: 0, 2-9) 90.2% 89.4% 88.8%

Accuracy (digit: 1) 96.5% 60.7% 0.0%
Attack success rate 0.0% 35.9% 96.2%

in centralized settings: poisoning attacks [21], [8], [27] and
backdoor attacks [3], [12], [17] are two prevalent examples.

Sybils [14] are a common strategy for adversaries to
increase the effectiveness of attacks on crowd-sourced systems.
For example, using a mobile device simulator, an adversary can
simulate fake accounts to push the result of crowd-sourced
computation towards a malicious goal [35]. To perform a
similar attack on federated learning, an adversary can simulate
multiple user accounts that gain admission and contribute to
the federated learning model.

A federated learning poisoning experiment. We illustrate
the vulnerability of federated learning to sybil-based poisoning
with three experiments based on the setup in Figure 1 and show
the results in Table I. First, we recreate the baseline evalu-
ation in the original federated learning paper [23]: training
an MNIST [22] digit classifier across non-IID data sources
(Figure 1(a) and Baseline column in Table I). We train a
softmax classifier across ten honest clients, each holding a
partition of the original MNIST dataset that contains only one
of the ten digits. Each model is trained for 3000 synchronous
iterations, in which each client performs a local SGD update
using a batch of 50 examples, sampled at random.

We then re-run the baseline evaluation with a targeted ”1-
7” poisoning attack [6]: each malicious client in the system
has a set of 1s labeled as 7s (Figure 1(b)). A successful attack
generates a model that is unable to correctly classify 1s and
incorrectly predicts them to be 7s. We define the attack success
rate as the proportion of 1s predicted to be 7s by the final
model in the test set. We perform two experiments, with 1 or
2 malicious sybil clients (Attack 1 and Attack 2 in Table I).

Table I shows that with only two sybils, 96.2% of 1s are
predicted as 7s in the final shared model. Since one honest
client held the data for digit 1, and two malicious sybils held
the poisoned ”1-7” data, the malicious sybils were twice as
influential on the shared model as the honest client. This attack
illustrates a problem with federated learning: all clients have
equal influence on the system1. Thus, to overcome honest
clients, an adversary may gain influence over the global model
by generating sybils. The number of sybils required by the
adversary for successful poisoning is unknown: as the number

1The only weighting factor in federated learning is the number of examples
that each client possesses, but this weight is easy for adversaries to inflate by
generating more data or by cloning their dataset.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-XXXXXXX-XX-X
http://dx.doi.org/10.14722/ndss.2018.xxxxx
www.ndss-symposium.org



Sybil-based poisoning in federated learning

● Problem:
○ Federated Learning actively involves clients

○ Easy for a client to poison model using sybils

● Existing solutions:

○ Involve detecting malicious data/robust ML [1,2]

○ Assumptions about data: poor match for fed. learn. setting!

○ Only work up to a limit: “at most 33% attackers” [3]

31

[1] Rubinstein et al. “ANTIDOTE: Understanding and Defending against Poisoning of Anomaly Detectors” IMC ‘09
[2] Shen et al. “Auror: Defending Against Posoning ATtacks in Collaborative Deep Learning Systems” ACSAC’16
[3] Blanchard et al. “Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent”. NIPS ’17



Towards More Robust Poisoning Defenses

● Our approach (FoolsGold):
○ Combine ideas from graph defense and anomalous 

behaviour defense to ML context [1,2]

■ Use update similarity and correctness

○ Instead of robustness, detect and reject Sybils

32

[1] Viswanath et al. “Strength in Numbers: Robust Tamper Detection in Crowd Computations ” COSN ‘15
[2] Tran et al. “Sybil-Resilient Online Content Voting” NSDI ‘09



FoolsGold goals

1. Preserve Fed. Learning performance when no attacks
2. Devalue contributions that are similar

3. Be robust to an increasing number of sybils

4. Preserve honest gradients

5. Make few assumptions (e.g., # of attackers)

33



FoolsGold: how it works

Central Server

34
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FoolsGold: how it works

Central Server
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Model

SGD Δww Δw

Poisoner objective

True objectiveRd

Attack
target

Feature space

Key ideas:

1. Limit attacker ability to influence model with similar-looking data

2. Use shape of updates to identify and reject Sybil contributions



FoolsGold: how it works

Central Server
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FoolsGold: how it works

Central Server
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FoolsGold: more details
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Data: �t from all clients at iteration t

Result: A client weight vector v

1 for iteration t do
2 for All clients i do

// Updates history
3 Let Hi be the aggregate historical vectorPT

t=1 �i,t

// Feature importance
4 Let St be the weight of indicative features at

iteration t

5 for All other clients j do
6 Find weighted cosine similarity csij

between Hi and Hj using St

7 end
// Pardoning

8 for All other clients j do
9 if maxj(cs) > maxi(cs) then

10 csij *= maxi(cs)/ maxj(cs)
11 end
12 end
13 Let vi = 1 � maxj(csi)
14 end

// Logit function
15 v = v/ max(v)
16 v = ln( v

(1�v) + 0.5)
17 return v

18 end
Algorithm 1: FoolsGold algorithm.

ci,t = max
j

(cosine similarity(
TX

t=1

�i,t,

TX

t=1

�j,t))

Pardoning. Since we have weak guarantees on the cosine
similarities between an honest client and sybils, honest clients
may be incorrectly penalized under this scheme. We introduce
a pardoning mechanism that avoids penalizing such honest
clients by re-weighing the cosine similarity by the ratio of
maxi(cs) and maxj(cs) (line 10), satisfying Goal 4.

However, even for very similar gradients, the cosine sim-
ilarity may be less than one. An attacker may exploit this
by increasing the number of sybils to remain influential. We
therefore want to encourage a higher divergence for values
that are near the two tails of this weight vector, and avoid
penalizing honest clients with a low, non-zero similarity value.
Thus, we use the logit function (the inverse sigmoid function)
centered at 0.5 (line 16), for these properties.

Since we assume at least one client in the system is honest,
we rescale the vector such that the maximum value of the
weight vector is 1 (line 15). This also encourages the system
towards Goal 1: a system containing only honest nodes will
not penalize their contributions.

ct =
ct

max(ct)

vt = ln(
ct

(1 � ct)
+ 0.5)

Sybil 1
updates

Sybil 2
updates

Honest client
updates

�

�

� < �

Fig. 3. Dashed lines are gradient updates from three clients (2 sybils, 1
honest). Solid lines are aggregated update vectors. The angle between the
aggregated update vectors of sybil clients (✓) is smaller than between those of
the honest client and a sybil (�). Cosine similarity would reflect this similarity.

When taking the result of the logit function, any value
exceeding the 0-1 range is clipped and rounded to its respective
boundary value. Finally, the overall gradient update is calcu-
lated by applying the final weight vector:

wg,t+1 = wg,t +
X

k

vk,t�k,t

Note that this design does not require parameterization of
expected number of sybils (Goal 5) and is independent of the
underlying data features, distribution and SGD details such as
batch size.

Augmenting FoolsGold with other methods. Simply re-
weighing clients based on their aggregate gradient similarity
will not handle all poisoning attacks. Clearly, an attack from
a single adversary will not exhibit such similarity properties.
FoolsGold is best used when augmented with existing solutions
that detect poisoning attacks from a bounded number of
attackers (e.g., Robust methods discussed in Section II). We
explore the combination of FoolsGold with Multi-Krum in
Section V-B.

FoolsGold security guarantees. We claim that our design
mitigates an adversary performing a targeted poisoning attack
by limiting the influence they gain through creating sybils in a
federated learning system. We also claim that FoolsGold satis-
fies the specified design goals; in particular that it preserves the
gradients of honest nodes while penalizing the contributions
of sybils. In the next section we empirically validate these
claims across several different dimensions using a prototype
of FoolsGold.

V. EVALUATION

We evaluate FoolsGold by implementing a federated learn-
ing prototype in 600 lines of Python. The prototype includes
150 lines for FoolsGold, implementing Algorithm 1. We use

6
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Data: �t from all clients at iteration t

Result: A client weight vector v

1 for iteration t do
2 for All clients i do

// Updates history
3 Let Hi be the aggregate historical vectorPT

t=1 �i,t

// Feature importance
4 Let St be the weight of indicative features at

iteration t

5 for All other clients j do
6 Find weighted cosine similarity csij

between Hi and Hj using St

7 end
// Pardoning

8 for All other clients j do
9 if maxj(cs) > maxi(cs) then
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11 end
12 end
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14 end
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18 end
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Pardoning. Since we have weak guarantees on the cosine
similarities between an honest client and sybils, honest clients
may be incorrectly penalized under this scheme. We introduce
a pardoning mechanism that avoids penalizing such honest
clients by re-weighing the cosine similarity by the ratio of
maxi(cs) and maxj(cs) (line 10), satisfying Goal 4.

However, even for very similar gradients, the cosine sim-
ilarity may be less than one. An attacker may exploit this
by increasing the number of sybils to remain influential. We
therefore want to encourage a higher divergence for values
that are near the two tails of this weight vector, and avoid
penalizing honest clients with a low, non-zero similarity value.
Thus, we use the logit function (the inverse sigmoid function)
centered at 0.5 (line 16), for these properties.

Since we assume at least one client in the system is honest,
we rescale the vector such that the maximum value of the
weight vector is 1 (line 15). This also encourages the system
towards Goal 1: a system containing only honest nodes will
not penalize their contributions.

ct =
ct

max(ct)

vt = ln(
ct

(1 � ct)
+ 0.5)

Sybil 1
updates

Sybil 2
updates

Honest client
updates

�

�

� < �

Fig. 3. Dashed lines are gradient updates from three clients (2 sybils, 1
honest). Solid lines are aggregated update vectors. The angle between the
aggregated update vectors of sybil clients (✓) is smaller than between those of
the honest client and a sybil (�). Cosine similarity would reflect this similarity.

When taking the result of the logit function, any value
exceeding the 0-1 range is clipped and rounded to its respective
boundary value. Finally, the overall gradient update is calcu-
lated by applying the final weight vector:

wg,t+1 = wg,t +
X

k

vk,t�k,t

Note that this design does not require parameterization of
expected number of sybils (Goal 5) and is independent of the
underlying data features, distribution and SGD details such as
batch size.

Augmenting FoolsGold with other methods. Simply re-
weighing clients based on their aggregate gradient similarity
will not handle all poisoning attacks. Clearly, an attack from
a single adversary will not exhibit such similarity properties.
FoolsGold is best used when augmented with existing solutions
that detect poisoning attacks from a bounded number of
attackers (e.g., Robust methods discussed in Section II). We
explore the combination of FoolsGold with Multi-Krum in
Section V-B.

FoolsGold security guarantees. We claim that our design
mitigates an adversary performing a targeted poisoning attack
by limiting the influence they gain through creating sybils in a
federated learning system. We also claim that FoolsGold satis-
fies the specified design goals; in particular that it preserves the
gradients of honest nodes while penalizing the contributions
of sybils. In the next section we empirically validate these
claims across several different dimensions using a prototype
of FoolsGold.

V. EVALUATION

We evaluate FoolsGold by implementing a federated learn-
ing prototype in 600 lines of Python. The prototype includes
150 lines for FoolsGold, implementing Algorithm 1. We use
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Data: �t from all clients at iteration t

Result: A client weight vector v
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// Feature importance
4 Let St be the weight of indicative features at

iteration t

5 for All other clients j do
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between Hi and Hj using St

7 end
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Pardoning. Since we have weak guarantees on the cosine
similarities between an honest client and sybils, honest clients
may be incorrectly penalized under this scheme. We introduce
a pardoning mechanism that avoids penalizing such honest
clients by re-weighing the cosine similarity by the ratio of
maxi(cs) and maxj(cs) (line 10), satisfying Goal 4.

However, even for very similar gradients, the cosine sim-
ilarity may be less than one. An attacker may exploit this
by increasing the number of sybils to remain influential. We
therefore want to encourage a higher divergence for values
that are near the two tails of this weight vector, and avoid
penalizing honest clients with a low, non-zero similarity value.
Thus, we use the logit function (the inverse sigmoid function)
centered at 0.5 (line 16), for these properties.

Since we assume at least one client in the system is honest,
we rescale the vector such that the maximum value of the
weight vector is 1 (line 15). This also encourages the system
towards Goal 1: a system containing only honest nodes will
not penalize their contributions.

ct =
ct

max(ct)

vt = ln(
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aggregated update vectors of sybil clients (✓) is smaller than between those of
the honest client and a sybil (�). Cosine similarity would reflect this similarity.

When taking the result of the logit function, any value
exceeding the 0-1 range is clipped and rounded to its respective
boundary value. Finally, the overall gradient update is calcu-
lated by applying the final weight vector:

wg,t+1 = wg,t +
X

k

vk,t�k,t

Note that this design does not require parameterization of
expected number of sybils (Goal 5) and is independent of the
underlying data features, distribution and SGD details such as
batch size.

Augmenting FoolsGold with other methods. Simply re-
weighing clients based on their aggregate gradient similarity
will not handle all poisoning attacks. Clearly, an attack from
a single adversary will not exhibit such similarity properties.
FoolsGold is best used when augmented with existing solutions
that detect poisoning attacks from a bounded number of
attackers (e.g., Robust methods discussed in Section II). We
explore the combination of FoolsGold with Multi-Krum in
Section V-B.

FoolsGold security guarantees. We claim that our design
mitigates an adversary performing a targeted poisoning attack
by limiting the influence they gain through creating sybils in a
federated learning system. We also claim that FoolsGold satis-
fies the specified design goals; in particular that it preserves the
gradients of honest nodes while penalizing the contributions
of sybils. In the next section we empirically validate these
claims across several different dimensions using a prototype
of FoolsGold.

V. EVALUATION

We evaluate FoolsGold by implementing a federated learn-
ing prototype in 600 lines of Python. The prototype includes
150 lines for FoolsGold, implementing Algorithm 1. We use
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TABLE II. DATASETS USED IN THIS EVALUATION.

Dataset Examples Classes Features
MNIST 60,000 10 784

KDDCup 494,020 23 41
Amazon 1,500 50 10,000

scikit-learn [29] to compute cosine similarity of vectors. For
each experiment below, we partition the original training
data into disjoint non-IID training sets, locally compute SGD
updates on each dataset, and aggregate the gradients using the
described method.

We evaluate our prototype on three well-known classifi-
cation datasets: MNIST [22], a digit classification problem,
KDDCup [13], which contains classified network intrusion
patterns, and Amazon [13], which contains product review text
data. Table II describes the key features of each dataset.

Each dataset was selected for one of its particularities.
MNIST was chosen as the baseline dataset for evaluation
since it was used extensively in the original federated learning
evaluation [23]. The KDDCup dataset has a relatively low
number of features, and contains a massive class imbalance:
some classes have as few as 5 examples, while some have over
280,000. Lastly, the Amazon dataset is unique in that it has
few examples and contains text data: each review is converted
into its one hot encoding, resulting in a large feature vector of
size 10,000.

For all the experiments in this section, targeted poisoning
attacks are performed that attempt to encourage a source label
to be classified as a target label while training on a non-IID
federated learning prototype. When dividing the data, each
class is always completely represented by a single client, which
is consistent with the non-IID federated learning baseline. In
all experiments the number of honest clients in the system
varies by dataset: 10 for MNIST, 23 for KDDCup, and 50 for
Amazon. We consider more IID settings in Section V-D.

We randomly partition a portion of the test data and use it
to evaluate two metrics that represent the performance of our
algorithm: the attack rate, which is the proportion of source
labels that are incorrectly classified as the target label, and the
accuracy, which is the proportion of examples in the test set
that are correctly classified.

Both the MNIST and KDDCup datasets were executed with
3,000 iterations and a batch size of 50 unless otherwise stated.
For Amazon, due to the high number of features and low
number of samples per class, we train for 100 iterations and a
batch size of 10. In each of the non-attack scenarios, we ran
these experiments to convergence. In all attack scenarios, we
found that our selected number of iterations was sufficiently
high such that the performance of the attack changed mini-
mally with each iteration, indicating the result of the attack
to be consistent. Each reported data point is the average of 5
experiments.

A. Canonical attack scenarios

Our evaluation uses a set of 6 attack scenarios (that we
term canonical for this evaluation) across the three datasets
(Table III). Attack A-1 is a traditional poisoning attack: a single
client joins the federated learning system with label-flipped

Fig. 4. Training attack rate (top) and accuracy (bottom) for canonical attack
against the MNIST dataset.

Fig. 5. Training attack rate (top) and accuracy (bottom) for canonical attack
against the KDDCup dataset.

data. Attack A-5 is the same attack performed with 5 sybil
clients joining the system. Each client sends gradients for a
subset of its data through SGD, meaning that their gradients are
not identical. Attacks A-2x5 and A-5x5 evaluate FoolsGold’s
ability to thwart multiple attacks at once. Multiple sets of 5
client sybils attack the system concurrently, and for attack
evaluation purposes we assume that the classes in these attacks
do not overlap2.

Since KDDCup99 is a unique dataset with severe class
imbalance, instead of using A-2x5 and A-5x5 we choose
to perform a different attack, A-AllOnOne, on this dataset.
In KDDCup99, data from various network traffic patterns
are provided. Class “Normal” identifies patterns without any
network attack, and is proportionally large (approximately 20%
of the data) in the overall dataset. Therefore, when attacking
KDDCup99, we assume that adversaries mis-label malicious
attack patterns, which are proportionally small, (approximately
2% of the data) and poison the malicious class towards the
“Normal” class. A-AllOnOne is a unique attack for KDDCup
in which 5 different malicious patterns are each labeled as
“Normal”, and each attack is performed concurrently.

Finally, we use A-99 to illustrate the robustness of Fools-
Gold to massive attack scenarios. In this attack, an adversary
generates 990 sybils to overpower a network of 10 honest
clients and all of them attempt a single 1-7 attack against
MNIST.

2We do not perform a 1-2 attack in parallel with a 2-3 attack, since
evaluating the 1-2 attack would be biased by the performance of the 2-3
attack.
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TABLE III. CANONICAL ATTACKS USED IN OUR EVALUATION.

Attack Description Dataset
A-1 Single client attack. All
A-5 5 clients attack. All

A-2x5 2 sets of 5 clients, concurrent attacks. MNIST, Amazon
A-5x5 5 sets of 5 clients, concurrent attacks. MNIST, Amazon

A-AllOnOne 5 clients executing 5 attacks on the same target class. KDDCup99
A-99 99% adversarial clients, performing the same attack. MNIST

Fig. 6. Training attack rate (top) and accuracy (bottom) for canonical attack
against the Amazon dataset.

Since we use these canonical attacks throughout this work,
we first evaluate each attack on the respective datasets (Ta-
ble III). Figures 4, 5, and 6 plot the attack rate and test accuracy
for each of the attacks in Table III. Each Figure also plots
results for the system without attacks: the original federated
learning algorithm (Baseline No Attack) and the system with
the FoolsGold algorithm (FoolsGold No Attack).

For most attacks, including the A-AllOnOne attack and the
A-99 attack, FoolsGold effectively prevents the attack while
maintaining high training accuracy. As FoolsGold faces larger
groups of sybils, it has more information to more reliably
detect similarity between sybils. FoolsGold performs worst on
the A-1 attacks in which only one adversarial client attacked
the system. The reason is simple: without multiple colluding
sybils, adversaries and honest clients are indistinguishable to
the FoolsGold aggregator.

Another point of interest is the prevalence of false positives.
In A-1 KDDCup, our system incorrectly penalized an honest
client for colluding with the attacker, lowering the prediction
rate of the honest client’s as the defense was applied. We
observe that the two primary reasons for a decreased training
error are either a high attack rate (false negatives) or a high
target class error rate (false positives). We also discuss false
positives from data similarity in Section V-D

B. Comparison to prior work

We compare FoolsGold to two existing techniques: Multi-
Krum aggregation, and RONI (see Section II).

Comparison to Multi-Krum. In this experiment we compare
FoolsGold to Multi-Krum and an unmodified federated learn-
ing as a baseline as we vary the number of sybils.

We implemented Multi-Krum as specified in the original
paper [9]: at each iteration, the total Euclidean distance from
the n�f�2 nearest neighbors is calculated, and the average of

these updates is calculated. Multi-Krum relies on the f param-
eter: the maximum number of Byzantine clients tolerated by
the system. Prior knowledge of this parameter is an unrealistic
assumption in our setting and we arbitrarily set f = 2 in our
evaluation.

While running Multi-Krum, we found that the performance
was poor in the non-IID setting. One client is always removed
in each iteration, and if this client was an honest one, it
resulted in the complete removal of updates for an entire class.
This resulted in both a low final training accuracy and a high
attack rate, as the adversary contributions were not detected
by Multi-Krum. Therefore, we also include the performance of
Multi-Krum while training an MNIST classifier with 10 honest
clients and a varying number of attackers. Each honest client
holds uniformly sampled MNIST data to evaluate Multi-Krum
in its intended IID setting.

Figure 7 shows the performance of the four approaches
against an increasing number of poisoners: a 1-7 attack is
performed on an unmodified non-IID federated learning sys-
tem (Baseline), a federated learning system with Multi-Krum
aggregation (both non-IID and IID), and our proposed solution.

We see that as soon as the proportion of poisoners for
a single class increases beyond the corresponding number of
honest clients that hold that class (which is 1), the attack rate
increases significantly for naive averaging (Baseline).

In addition to exceeding the parameterized number of
expected adversaries, an adversary can also influence the mean
client contribution at any given iteration, and Multi-Krum will
fail to distinguish between honest clients and sybils.

Multi-Krum works with up to 33% adversaries [9], but
fails above this threshold. By contrast, FoolsGold penalizes
attackers further as the proportion of sybils increases, and in
this scenario FoolsGold remains robust even with 9 attackers.

Consistent with the results in Figures 4 – 6, FoolsGold in
Figure 7 performs the worst when only one poisoner is present.

Comparison to RONI. RONI has not been applied to feder-
ated learning before. To extend RONI to a federated learning
setting, the server can capture the influence of a single gradient
update, rather than an entire dataset. This update can be
validated by checking if a model’s accuracy improves after a
single update, and rejecting malicious updates if they degrade
the model performance beyond a specified threshold. However,
this still implies that the aggregator has access to a true
validation dataset, which typically does not exist.

We show that this approach, with a RONI dataset that
contains a uniform distribution of data, is insufficient in
countering sybil-based poisoning.

We train an MNIST classifier and use a 10,000 example
IID RONI validation set. We perform an A-5 1-7 attack on

8



FoolsGold versus Krum [1]

44[1] Blanchard et al. “Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent”. NIPS ’17

● Multi-krum with byzantine # clients, f = 2
● Krum does poorly in non-IID setting (IID exp also shown)



Performance impact
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● Train MNIST for 3K iterations
● Pairwise cosine similarity most expensive computation

● Python sub-optimal + better algorithms for cosine sim exist [1]

[1] Andoni et al. “Practical and optimal lsh for angular distance,”  NIPS 2015
“



FoolsGold summary
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More info:
Fung et al. “Mitigating Sybils in Federated Learning Poisoning” Arxiv 2018

● Federated learning: actively involves clients
● Sybil-based poisoning a concern

● Key idea: Use contribution similarity to detect sybils

● Simple algorithm that runs on server

● Effective for large number of sybils across 3 datasets



In this talk

● Introduction: cloud machine learning (ML)

Two projects with two points of view:

1. Federated learning is here to stay
● FoolsGold : Countering sybil poisoning in fed. learning

2. The future is decentralized
● Biscotti: P2P ML on the blockchain

48



Modern Large Scale ML Solutions

● Modern solutions: centralize data and centralize compute
○ Copy + store all data in a data centre and train on it

○ Facebook has to periodically train on 100s of TBs of data 

that can take days to complete [1]

○ 3 example scale-out ML solutions:

49
[1] Hazelwood et al. “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective” HPCA 18

Problem: this is costly and lacks privacy



The Need for Privacy

● Data can be sensitive
○ Photos, location info, voice recordings.. our entire lives!

● Typically, a centralized service performs model training

○ Do we have to trust  ______________ with our data?

50

large company



Private P2P Federated Learning

● Major issue for federated learning style systems:
○ Coordination and consistency of many clients

○ Security against Sybil attacks

● There is a modern solution that provides this in a peer to peer 

(P2P) network...

● …we just have to figure out privacy J

51



Blockchain Based Learning

52



Use cases for such a system

● Health-care
○ Privacy regulations prohibit sharing of patient data 

Poisoning leads to inaccurate models/wrong diagnosis

● IoT

○ Personal data in IOT devices/sensors

○ Models for smart homes, self driving cars 

○ Poisoned models could have disastrous consequences 

e.g., loss of lives   
● Other fed. learning use cases without a trusted entity

○ Gboard -> Predicting next word in text messages

53



Blockchain Based Learning: how?

● We propose an alternative solution to distributed ML based on 
blockchain

○ Blockchain as a consensus protocol

○ Blockchain acts as shared state and coordinator

● Requires mapping of traditional blockchain ideas to ML

○ Proof of work/stake/something else?

○ SGD deltas dissemination

○ What does a block represent?
○ Block validation

○ Concurrency control (longest chain wins?)

54



Biscotti overview
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Key ideas

1. Store global model structure 

in blockchain (secure 

aggregation)

2. Peers verify updates to 

defend against malicious 

updates

3. Use diff. priv. noise to protect 
updates

M4
M4
M4

Blockchain

M1 M2 M3

SGD
SGD
SGD

Verified updates agg. into blocks



Biscotti design overview
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Goal Mechanism

1. Support universal model types 1. Stochastic Gradient Descent (SGD) [1]

2. Peer to peer ML: no central coordinator 2. Blockchain

3. Prevent model poisoning 3. Verification through RONI [4]

4. Preserve privacy of the peers’ data 4. Differentially private noise [3] , secret 
sharing [2]

5. Maintain defenses against sybils 5. Stake weighted VRFs [5] for 3 and 4.

[1] Leon Bottou. “Large scale Machine Learning with Stochastic Gradient Descent” COMPSTAT 10
[2] Adil Shamir “How to share a secret.” ACM 1979
[3] Cynthia Dwork “Differential Privacy” ICALP 06
[4] Barreno et al “The security of machine learning” Machine Learning Journal 2010
[5] Micali et al  “Verifiable Random Functions” FOCS 99



Biscotti threat model
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B. protects against: 

● A malicious trusted entity. Biscotti does not 
assume a trusted component.

● Peers sending malicious updates to perform 
a poisoning attack[1] against a specific class.

● Peers colluding [2] with other peers to launch 
a poisoning attack.

● Peers colluding to perform a targeted attack 
to recover a victim’s data.[3]

B. does not protect against:

● Class-level information leakage from the global 
model (revealing all information about a specific 
class)

● Poisoning attacks that are unrelated to class-level 
information (targeted poisoning, backdoors, 
adversarial examples)

● Settings in which an adversary controls over half 
the resources in the system

[1] Barreno et al “The security of machine learning” Machine Learning Journal 2010
[2] Doucer et al “The sybil attack” IPTPS 01
[3] Hitaj et al “Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning ” CCS17

We make fewer assumption about the malicious nature of peers unlike federated learning!



!w3

!w3

!w3

The easy part: SGD + Blockchain

● Each block stores a set of SGD updates from multiple peers
○ Each peer computes SGD using their blockchain state

○ With each block, the set of updates is added, updating the 

global model

58

Blockchain

W1W0 W2 W3 W4

SGD



Biscotti: design overview

1

Goal Mechanism

1. Support universal model types 1. Stochastic Gradient Descent (SGD) [1]

2. Peer to peer ML: no central coordinator 2. Blockchain

3. Prevent model poisoning 3. Verification through RONI [4]

4. Preserve privacy of the peers’ data 4. Differentially private noise [3] , secret 
sharing [2]

5. Maintain defenses against sybils 5. Stake weighted VRFs [5] for 3 and 4.

[1] Leon Bottou. “Large scale Machine Learning with Stochastic Gradient Descent” COMPSTAT 10
[2] Adil Shamir “How to share a secret.” ACM 1979
[3] Cynthia Dwork “Differential Privacy” ICALP 06
[4] Barreno et al “The security of machine learning” Machine Learning Journal 2010
[5] Micali et al  “Verifiable Random Functions” FOCS 99



● A client computes an SGD update.

2

Biscotti: Defending against poisoning attacks



● A client computes an SGD update.

● How do we check if it is poisoned?

3

Biscotti: Defending against poisoning attacks

??

Label: 1 Label: 7



● A client computes an SGD update.

● How do we check if it is poisoned?

○ The P2P system has a wealth of verification data at 
each node’s disposal
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Biscotti: Defending against poisoning attacks



● A client computes an SGD update.

● How do we check if it is poisoned?

○ The P2P system has a wealth of verification data at 
each node’s disposal

○ Select a subset of clients to act as a verification 
committee.
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Biscotti: Defending against poisoning attacks



● A client computes an SGD update.

● How do we check if it is poisoned?

○ The P2P system has a wealth of verification data at 
each node’s disposal

○ Select a subset of clients to act as a verification 
committee.

Problem: How do we select this committee in a way 

that it is completely random and prevents collusion 
among clients?

6

Biscotti: Defending against poisoning attacks



● Each client has some stake proportional to their  
contribution

● Clients accumulate stake by contributing updates

● POS is a popular alternative to POW to achieve 
Byzantine fault tolerance (e.g. Algorand [2])

● In each iteration, a verifiable random function 

(VRF) uses stake + randomness to select a 
committee responsible for validating updates  

Assumption: At any time in the system the majority of 

stake in the system is honest.

7

Key idea: Proof of stake[1] and VRF[3] 

[1] https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs
[2] Gilad et al “Algorand: Scaling Byzantine Agreements for Cryptocurrencies” SOSP 17
[3] Micali et al “Verifiable random functions” SOSP 17

https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs


● Each client has a region over a hash ring weighted 
by client stake allocated via consistent hashing.
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Biscotti: selecting verifiers



● Each client has a region over a hash ring weighted 
by client stake allocated via consistent hashing.

● A VRF hash using SHA-256 hash of the last 

generated block as the seed is computed.

9

Biscotti: selecting verifiers



● Each client has a region over a hash ring weighted 
by client stake allocated via consistent hashing.

● A VRF hash using SHA-256 hash of the last 

generated block as the seed is computed.

● The peer in whose region the hash lies is selected 

as the verifier.
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Biscotti: selecting verifiers



● Each client has a region over a hash ring weighted 
by client stake allocated via consistent hashing.

● A VRF hash using SHA-256 hash of the last 

generated block as the seed is computed.

● The peer in whose region the hash lies is selected 

as the verifier.

● The VRF hash is re-computed using the previous  
VRF hash to select multiple verifiers.
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Biscotti: selecting verifiers



● Each client has a region over a hash ring weighted 
by client stake allocated via consistent hashing.

● A VRF hash using SHA-256 hash of the last 

generated block as the seed is computed.

● The peer in whose region the hash lies is selected 

as the verifier.

● The VRF hash is re-computed using the previous  
VRF hash to select multiple verifiers.

The verifier selection is completely random and cannot 
be manipulated by any client
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Biscotti: selecting verifiers



● Each client has a region over a hash ring weighted 
by client stake allocated via consistent hashing.

● A VRF hash using SHA-256 hash of the last 

generated block as the seed is computed.

● The peer in whose region the hash lies is selected 

as the verifier.

● The VRF hash is re-computed using the previous  
VRF hash to select multiple verifiers.

The verifier selection is completely random and cannot 
be manipulated by any client

Once selected, how do the verifiers check updates for 
poisoning?

13

Biscotti: selecting verifiers
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Biscotti: Verification using RONI [1]

● Verifier determines whether the update improves 
performance of the model w.r.t his own data.

● Measures validation error of the current state of 

the model on his data (ErrW).

● Measures validation error of the model + update 

on his data (ErrW+Δw).

● If (ErrW - ErrW+Δw) > Threshold

○ Accept Update

● Otherwise:

○ Reject Update

[1] Barreno et al “The security of machine learning” Machine Learning Journal 2010
.

(ErrW - ErrW+Δw) 

>Thresh

Verifier

(ErrW - ErrW+Δw) 

<Thresh

Peer



● The client computes a SGD update.
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Biscotti: a robust poisoning defense



● The client computes a SGD update.

● The client sends the update to each verifier 

selected for RONI [1] verification.

16

Biscotti: a robust poisoning defense

[1] Barreno et al “The security of machine learning” Machine Learning Journal 2010



● The client computes a SGD update.

● The client sends the update to each verifier 

selected for RONI [1] verification.

● Verifiers return signatures if the update 

passes, and an update is accepted if it 

receives a majority of updates.
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Biscotti: a robust poisoning defense

[1] Barreno et al “The security of machine learning” Machine Learning Journal 2010



● The client computes a SGD update.

● The client sends the update to each verifier 

selected for RONI [1] verification.

● Verifiers return signatures if the update 

passes, and an update is accepted if it 

receives a majority of updates.

Problem remains: No Privacy!

Inversion Attack [2] 

18

Biscotti: a robust poisoning defense

[1] Barreno et al “The security of machine learning” Machine Learning Journal 2010
[2] Hitaj et al “Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning ” CCS17



● Since the SGD update cannot be revealed to the 
verifier, the update has differentially private noise [1] 

added to it.

○ With noise  added, the data gets obfuscated.

19

Biscotti: Adding privacy using noise

Update + Noise

[1] Cynthia Dwork “Differential Privacy” ICALP 06



● Since the SGD update cannot be revealed to the 
verifier, the update has differentially private noise [1] 

added to it.

○ With noise  added, the data gets obfuscated.
○ Verifiers verify the noisy update, and return 

signatures if they pass RONI.

20

Biscotti: Adding privacy using noise

Update + Noise

Signatures

[1] Cynthia Dwork “Differential Privacy” ICALP 06



● Since the SGD update cannot be revealed to the 
verifier, the update has differentially private noise [1] 

noise added to it.

○ With noise added, the data gets obfuscated.
○ Verifiers verify the noisy update, and return 

signatures if they pass RONI.
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Biscotti: Adding privacy using noise

Update + Noise

Signatures

Problem remains: noise harms utility

[1] Cynthia Dwork “Differential Privacy” ICALP 06



● Since the SGD update cannot be revealed to the 
verifier, the update has noise added to it.

○ With noise added, the data gets obfuscated.

○ Verifiers verify the noisy update, and return 
signatures if they pass RONI.
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Biscotti: Adding privacy using noise

Update + Noise

Signatures

Verifier signs the updates without the noise.

Problem remains: noise harms utility

[1] Cynthia Dwork “Differential Privacy” ICALP 06
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Biscotti: Adding privacy with commitments

COMM(Update)
COMM(Noise)
Update + Noise

● Peer uses commitments to hide individual updates and noise.
○ Reveals commitments and the sum to verifier
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Biscotti: Adding privacy with commitments

COMM(Update)
COMM(Noise)
Update + Noise

● Peer uses commitments to hide individual updates and noise.
○ Reveals commitments and the sum to verifier

● Trivial for verifiers to verify that commitments add up to the 

revealed value because of homomorphic property

COMM(Update) * COMM(Noise) = 
COMM(Update + Noise)
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Biscotti: Adding privacy with commitments

COMM(Update)
COMM(Noise)
Update + Noise

COMM(Update)
Signed

● Peer uses commitments to hide individual updates and noise.
○ Reveals commitments and the sum to verifier

● Trivial for verifiers to verify that commitments add up to the 

revealed value because of homomorphic property
● Returns a signature of the commitment to the update if 

verification passes



26

Biscotti: Adding privacy with commitments

COMM(Update)
COMM(Noise)
Update + Noise

COMM(Update)
Signed

Problem:

Noise can be used to 

make poisoned update 

look good after addition 
of noise

● Peer uses commitments to hide individual updates and noise.
○ Reveals commitments and the sum to verifier

● Trivial for verifiers to verify that commitments add up to the 

revealed value because of homomorphic property
● Returns a signature of the commitment to the update if 

verification passes Label: 1

+                    = 

Label: 1

This bypasses 
verification and goes 

into the block!



● We cannot give a peer control of the noise used for their update
○ Could be used to manipulate verification result

● Solution: Noise is pre-committed in the genesis block in a matrix.

○ SGD training usually done for a predefined number of iterations. [1]
○ Pre-commit for N peers over T iterations. . Can’t go back on commitment

● Only the commitments to the noise are published

27

Biscotti: Pre-committing noise

[1] Leon Bottou. “Large scale Machine Learning with Stochastic Gradient Descent” COMPSTAT 10



● Each peer computes a VRF that outputs the indices of noise to use 
○ The index selects from the precommitted values, and is unique to each peer.

28

Biscotti: Adding the pre-committed noise and revealing to verifiers



● The peer retrieves the noise vectors from each noising peer
○ The noising peer committee is unique to each client.

○ Noise can be verified by matching with corresponding commitment in the genesis block

29

Biscotti: Adding the pre-committed noise and revealing to verifiers



● The peer combines the precommitted noise vectors from the respective noising peers
○ Sends commitment to the update, commitments to the noise vectors, and noisy update

○ Peer collects signatures from verifiers

30

Biscotti: Adding the pre-committed noise and revealing to verifiers



● The peer combines the precommitted noise vectors from the respective noising peers
○ Sends commitment to the update, commitments to the noise vectors, and noisy update

○ Peer collects signatures from verifiers
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Biscotti: Adding the pre-committed noise and revealing to verifiers

How do we determine  the 
aggregate of verified updates 
and create next block with 
updated model?

??
∑Δw



- Similar to verification, an aggregation committee is selected for creating the new 
block using another stake-weighted VRF function
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Biscotti: Aggregation and Block Generation

COMM(Update)sig COMM(Update)sig

COMM(Update)sig



- Each peer’s update can be considered to be a d-degree polynomial.
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Biscotti: Aggregation using Shamir secret sharing[1]

COMM(Update)sig

Update as a polynomial



- Each peer’s update can be considered to be a d-degree polynomial. 
- Update can be broken into n-secret shares such d+1 are needed to reconstruct.
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Biscotti: Aggregation using Shamir secret sharing[1]

COMM(Update)sig

Update as a polynomial
d=2

Share
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Biscotti: Aggregation using Shamir secret sharing[1]

COMM(Update)sig

Update as a polynomial

Share

Share 1

Share 2

Share 3

Share 6

.

.

.

- Each peer’s update can be considered to be a d-degree polynomial. 
- Update can be broken into n-secret shares such d+1 are needed to reconstruct.

- These shares are distributed among aggregators equally such that n=2*(d+1)

Update as a polynomial
d=2
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Biscotti: Aggregation using Shamir secret sharing[1]

COMM(Update)sig

Update as a polynomial

Share

Share 1

Share 2

Share 3

Share 6

.

.

.

- Each peer’s update can be considered to be a d-degree polynomial. 
- Update can be broken into n-secret shares such d+1 are needed to reconstruct.

- These shares are distributed among aggregators equally such that n=2*(d+1)

Update as a polynomial
d=2
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Biscotti: Aggregation using Shamir secret sharing[1]

COMM(Update)sig

Update as a polynomial

Share Majority needed 
to reconstruct 
and compromise 
privacy

Share 1

Share 2

Share 3

Share 6

.

.

.

- Each peer’s update can be considered to be a d-degree polynomial. 
- Update can be broken into n-secret shares such d+1 are needed to reconstruct.

- These shares are distributed among aggregators equally such that n=2*(d+1)

Update as a polynomial
d=2
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Biscotti: Aggregation using Shamir secret sharing[1]

COMM(Update)sig

Update as a polynomial

Share Majority needed 
to reconstruct 
and compromise 
privacy

Share 1

Share 2

Share 3

Share 6

.

.

.

- Each peer’s update can be considered to be a d-degree polynomial. 
- Update can be broken into n-secret shares such d+1 are needed to reconstruct.

- These shares are distributed among aggregators equally such that n=2*(d+1)

Update as a polynomial
d=2
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Biscotti: Aggregation using Shamir secret sharing[1]

COMM(Update)sig

Update as a polynomial

Share The peer could 
provide shares for 
a malicious 
update. 

Share 1

Share 2

Share 3

Share 6

.

.

.

- Each peer’s update can be considered to be a d-degree polynomial. 
- Update can be broken into n-secret shares such d+1 are needed to reconstruct.

- These shares are distributed among miners equally such that n=2*(d+1)

Update as a polynomial
d=2
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Biscotti: Aggregation using Shamir secret sharing[1]

COMM(Update)sig

Share

Share 1, Witness 1

Share 2, Witness 2

.

.

.Update as polynomial
d=3

Share 3, Witness 3

Share 8, Witness 8

Share 4, Witness 4

- Each share is accompanied by a witness that proves in zk the validity of the share.
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Biscotti: Aggregation using Shamir secret sharing[1]

COMM(Update)sig

Share

Share 1, Witness 1

Share 2, Witness 2

.

.

.

- Each share is accompanied by a witness that proves in zk the validity of the share.

Update as polynomial
d=3

Share 3, Witness 3

Share 8, Witness 8

Share 4, Witness 4

● A witness is a commitment to a polynomial !(x) => COMM(!(x))

● The witness polynomial divides the update polynomial by the secret share.

What is a witness?
Given an update polynomial and a secret share 
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Biscotti: Aggregation using Shamir secret sharing[1]

COMM(Update)sig

Share

Share 1, Witness 1

Share 2, Witness 2

.

.

.Update as polynomial
d=3

Share 3, Witness 3

Share 8, Witness 8

Share 4, Witness 4

- Each share is accompanied by a witness that proves in zk the validity of the share.

- Using the divisibility property of the witness and the update polynomial
- Aggregator can verify share came from the signed update



- How do we recover the aggregate of the updates? 
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Biscotti: Aggregation using Shamir secret sharing[1]

Secret Sharing ∑?



- The aggregators compute the sum of their secret shares. 
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Biscotti: Aggregation using Shamir secret sharing[1]

Secret Sharing

∑ shares ∑ shares ∑ shares ∑ shares

∑?



- The aggregators compute the sum of their secret shares.
- The aggregated shares are shared with the rest.
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Biscotti: Aggregation using Shamir secret sharing[1]

Secret Sharing ∑?
∑ shares ∑ shares ∑ shares ∑ shares



- The aggregators compute the sum of their secret shares.
- The aggregated shares are shared with the rest.

- If the aggregated shares are interpolated, the aggregate of the updates can be 

computed.

47

Biscotti: Aggregation using secret sharing

Secret Sharing ∑Δw
∑ shares ∑ shares ∑ shares ∑ shares



- The aggregators figure out out the aggregate of updates without the noise using 
secret sharing
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Biscotti: Aggregation and Block generation



- The block with the updated global model is created and added to blockchain. The 
model has optimal utility since it does not have noise added in the final output.
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Biscotti: Aggregation and Block generation



Evaluation: goals

● Performance

○ Biscotti’s performance compare to federated learning.
○ Performance bottlenecks in Biscotti.

○ Variation in performance as the size of verifier, noiser and aggregator sets increase

● Security and privacy
○ Poisoning attacks

○ Privacy with Sybils

● Fault tolerance
○ Performance with node churn
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Dataset Model Type Examples (n) Params (d)

Credit Card LogReg 21000 25
MNIST Softmax 60000 7850

Table 1: The final convergence rate and number of parame-
ters across other model types and parameters (LogReg, Soft-
max).

Parameter Default Value

Privacy budget (e) 2
Number of noisers 2

Number of verifiers 3
Number of aggregators 3

Proportion of secret shares needed u 0.125
Initial stake Uniform, 10 each

Stake update function Linear, +/- 5

Table 2: The default parameters used for all experiments in
Biscotti, unless otherwise stated.

ing [27, 22] and measured their effectiveness under various
attack scenarios and Biscotti parameters. We also evaluated
the performance implications of our design by isolating spe-
cific components of our system and varying the VRF com-
mittee sizes with different numbers of peers.

By default, we execute Biscotti with the parameter val-
ues in Table 2. Table 1 shows the datasets, types of model,
number of training examples n, and the number of param-
eters d in the model that we used for our experiments. In
local training we were able to train a model on the Credit
Card and MNIST datasets with accuracy of 100% and 96%,
respectively.

6.1 Baseline performance

We start by evaluating how Biscotti generalizes to different
workloads and model types. We evaluated Biscotti with lo-
gistic regression and softmax classifiers. However, due to
the general-purpose PyTorch API, we claim that Biscotti can
generalize to models of arbitrary size and complexity, as long
as they can be optimized with SGD and can be stored in our
block structure. We evaluate logistic regression with a credit
card fraud dataset from the UC Irvine data repository [15],
which uses an individual’s financial and personal informa-
tion to predict whether or not they will default on their next
credit card payment. We evaluate softmax with the canon-
ical MNIST [24] dataset, a task that involves predicting a
digit based on its image.

We first execute Biscotti in a baseline deployment and
compare it to the original federated learning baseline [26].
For this we partitioned the MNIST dataset [24] into 100
equal partitions, each of which was shared with an honest
peer on an Azure cluster of 20 VMs, with each VM hosting
5 peers. These Biscotti/Federated Learning peers collabo-

Figure 6: Comparing the time to convergence of Biscotti to
a federated learning baseline

Figure 7: Comparing the iterations to convergence of Bis-
cotti to a federated learning baseline

rated on training an MNIST softmax classifier, and after 100
iterations both models approached the global optimum. The
convergence rate over time for both systems is plotted in Fig-
ure 6 and the same convergence over the number of iterations
is shown in Figure 7. In this deployment, Biscotti takes about
8.3 times longer (6 minutes vs. 50 minutes) than Federated
Learning, yet achieves similar model performance after 100
iterations.

6.2 Performance cost break-down

In breaking down the overhead in Biscotti, we deployed Bis-
cotti over a varying number peers in training on MNIST. We
captured the total amount of time spent in each of the ma-
jor phases of our algorithm in Figure 2: collecting the noise
from each of the noising clients (steps 2 and 3 ), execut-
ing RONI and collecting the signatures (steps 4 and 5 )
and securely aggregating the SGD update (steps 6 and 7 ).
Figure 8 shows the breakdown of the total cost per iteration
for each stage under a deployment of 40, 60, 80 and 100
nodes. Biscotti spends most of its time in the verification
stage. We found this to be a limitation of the go-python li-
brary and performing RONI on models in PyTorch. Optimiz-
ing these components remains future work.
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● Deployed on 20 Azure VMs with 5 peers each.

● Biscotti achieves similar training error in a similar number of iterations
● Biscotti has a 6x performance overhead compared to federated learning
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Evaluation - Baseline (Biscotti vs Federated Learning)



● Deployed on 20 Azure VMs with 5 peers each.

● Biscotti achieves similar training error in a similar number of iterations
● Biscotti has a 6x performance overhead compared to federated learning

52

Evaluation - Baseline (Biscotti vs Federated Learning)

Biscotti performs as well as federated learning in the 
same number of iterations, but in 8X more time.



● Time per iteration increases exponentially with the number of nodes

● Verification of updates is the most costly operation.
● Noising and aggregation have negligible overhead on the total performance cost.
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Evaluation - Component-wise Performance Breakdown



● Time per iteration increases exponentially with the number of nodes

● Verification of updates is the most costly operation.
● Noising and aggregation have negligible overhead on the total performance cost.
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Evaluation - Component-wise Performance Breakdown

Biscotti scales up to 100 nodes. As the number of peers 
increases, Biscotti’s verification overhead increases.



● Time per iteration increases exponentially with more verifiers due to expensive RONI operation

● Time per block remains constant with increase in the noiser set as it only adds few RTT’s per iteration
● Aggregation time decreases owing to sufficient shares able to be quickly collected and non-

participation of aggregators in generating updates.
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Evaluation - Performance as the size of the VRF set varies (50 peers total) 



● Time per iteration increases exponentially with more verifiers due to expensive RONI operation

● Time per block remains constant with increase in the noiser set as it only adds few RTT’s per iteration
● Aggregation time decreases owing to sufficient shares able to be quickly collected and non-

participation of aggregators in generating updates.
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Evaluation - Performance as the size of the VRF set varies 

Biscotti’s performance can scale to accommodate more 
noisers or aggregators. 



● Poisoning attack on the credit card dataset evaluated with 49% poisoners in the system.

● Federated learning unable to defend against such attacks.
● Biscotti able to converge faster if it has sufficient number of verifiers in the VRF set.
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Evaluation - Poisoning attack



● Poisoning attack on the credit card dataset evaluated with 49% poisoners in the system.

● Federated learning unable to defend against such attacks.
● Biscotti able to converge faster if it has sufficient number of verifiers in the VRF set.
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Evaluation - Poisoning attack

Whereas federated learning struggles with large scale 
poisoning, Biscotti can prevent poisoning of up to 49% 

adversaries.



● Extremely low probability of being able to unmask a client’s updates 

● Probability gets close to zero with sufficient number of noisers in the system.
● Stake distribution uniform.

59

Evaluation - Sybil attack on privacy (noisers that don’t add any noise)



● Extremely low probability of being able to unmask unmasking a client’s updates 

● Probability goes close to zero with sufficient number of noisers in the system.
● Stake distribution uniform.
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Evaluation - Sybil attack on privacy

With a large enough VRF noising set (N=10), 
deanonymizing a client’s data requires over 50% of stake.



● Biscotti was able to resist node churn of up to 4 nodes/minute with negligible effect on convergence.

● Training error reaches expected value after 100 iterations.
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Evaluation - Fault Tolerance



● Biscotti was able to resist node churn of up to 4 nodes/minute with negligible effect on convergence.

● Training error reaches expected value after 100 iterations.
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Evaluation - Fault Tolerance

Biscotti can resist failures of up to 4 nodes/minute, and 
performs as well as baseline with node churn.



● Relies on an assumption of stake

○ Proof of X: should be something hard to fake and inherent to the system

○ Training data comes to mind, but has privacy concerns

● Can’t handle full range of poisoning attacks (only class level):

○ Adversarial examples, backdoors, targeted poisoning

● Better use of the blockchain 

○ The blockchain provides a provenance record for the training process.
○ Audit trail could be leveraged to re-train the model by omitting certain poisoned 

updates after it is detected.
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Limitations / Future Work



● The first peer to peer system to empower collaborative ML training:

○ Preserving privacy with noisy verification and secure aggregation
○ Defending against poisoning attacks with RONI
○ A novel design that combines blockchain primitives with cryptography

■ Mitigates sybils with verifiable random functions and client stake

● Biscotti is able to produce models similar to federated learning:

○ At a wall clock overhead of 6X, but similar iteration overhead
○ While scaling up to 100 nodes, and with tunable parameters for each stage
○ While being robust to node churns up to 4 nodes/minute. 
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Contributions
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Private ML in the cloud : review

● Cloud ML today: centralize all the things
● Federated learning: an alternative, but actively involves clients (sybils)

● FoolsGold: detect sybils in targeted sybil poisoning

● P2P ML: can we forego centralization altogether?
● Biscotti: a solution based on blockchain, diff priv, and crypto 
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UBC research @ nss.cs.ubc.ca



!w3

!w3

!w3

The easy part: SGD + Blockchain

● Each block stores a set of SGD updates from multiple peers
○ Each peer computes SGD using their blockchain state

○ With each block, the set of updates is added, updating the 

global model
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Blockchain

W1W0 W2 W3 W4

SGD

No poisoning defense and no privacy!


