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Abstract
We propose denotational semantics for a language of probabilistic
arithmetic expressions based on reproducing kernel Hilbert spaces
(RKHS). The RKHS approach has numerous practical advantages,
but from a semantics point of view the most important is ability to
provide convergence guarantees on approximate evaluations of ex-
pressions. We present preliminary results on convergence bounds,
adapting them to more general settings is still work in progress.

1. A grammar of probabilistic expressions
As an example of a probabilistic programming language we con-
sider a simple grammar of probabilistic expressions.

e ::= r | v | f(e1, e2) | D(e1, e2)

| let v = e1in e

where r is a real number, v is a variable, f is a deterministic
(measurable) function from a predefined collection, D is a proba-
bility distribution (parametrised by real numbers) from a predefined
collection. Although for simplicity we only consider real-valued
primitives here, we emphasize that our approach is equally appli-
cable to other data types, such as integers or strings, as long as we
can define a positive definite kernel for them. Similarly, the syntax
only includes binary functions for clarity of notation, but functions
of arbitrary arity could be used instead.

Expressions generated by this grammar correspond to probabil-
ity distributions over the set of real numbers, as long as they contain
no free variables. It is straightforward to give semantics to those
expressions using e.g. the probability monad, but in practice the re-
quired computation may be prohibitively expensive. We show how
to derive equivalent semantics based on RKHS and how to compute
it approximately, potentially with convergence guarantees.

2. Introduction to RKHS
Our approach is based on the existing large body of work on RKHS
(Berlinet and Thomas-Agnan 2004; Schölkopf and Smola 2001).
This is a vast topic, so we only provide a short introduction to the
main concepts below.

The basic idea is to map points in the input space X (here
X = R) to a feature space H where the relationships we are
interested in have a simpler algebraic form. For example, in support
vector machines (SVM) non-linear boundaries in the input space
become linear in the feature space. However, the feature space is
usually higher dimensional than the input space, so performing
computation in it is more expensive.

Working explicitly with elements of the feature space can be
avoided if the feature space H is an RKHS. To construct an RKHS

we start with a symmetric function k : X ×X → R satisfying
the following condition: for any m ∈ N, a1, . . . , am ∈ R, and
x1, . . . , xm ∈ X

m∑
i,j=1

aiajk(xi, xj) ≥ 0.

Such a function is called a positive definite kernel.
We say that H is an RKHS for k if there exists a mapping

Φ : X → H such that 〈Φ(x),Φ(x′)〉 = k(x, x′). For our
purposes the exact structure of H does not matter, as long as this
relationship holds. We should note, however, that for every positive
definite k it is possible to construct such H and Φ.

We can extend the mapping Φ to distributions over X (Smola
et al. 2007). Let P1

+(X ) denote the set of all Borel probability
measures over set X . For p ∈P1

+(X ) satisfying

Ex,x′∼p[k(x, x′)] <∞

we can define

µ : P1
+(X )→H

µ(p) = Ex∼p[Φ(x)]

which allows us to map probability distributions to elements of H .
From now on we assume that k is a characteristic kernel, which
means that µ is injective (Steinwart 2002). Apart from that the
choice of kernel is largely arbitrary, although in practice it has a
large impact on the quality of results when only a finite number
of samples is used. In machine learning two popular kernels are
Gaussian

k(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
and Laplacian

k(x, x′) = exp

(
−‖x− x

′‖
σ

)
.

3. Kernel-based semantics
We now turn to defining semantics of the grammar of probabilistic
expressions above in terms of RKHS elements. We fix the RKHS
H by selecting a particular kernel k. By construction H is sep-
arable, which implies that any h ∈ H can be written as a poten-
tially infinite sum of the form

∑
i αiΦ(xi), where for all i αi ∈ R,

xi ∈ X . We use this property for writing the denotations of subex-
pressions as



[[e1]]k =
∑
i

αiΦ(xi)

[[e2]]k =
∑
j

βjΦ(yj)

Using those expansions we can write the semantics as

[[r]]k = Φ(r)

[[f(e1, e2)]]k =
∑
i,j

αiβjΦ(f(xi, yj))

[[D(e1, e2)]]k =
∑
i,j

αiβjµ(D(xi, yj))

[[let v = e1in e]]k =
∑
i

αi[[e[xi/v]]]k

If k is a characteristic kernel this semantics is equivalent to a
standard one based on measure theory. To be precise, if we write
P (·) for the standard semantics, then for any e we have

[[e]]k = µ(P (e))

µ−1([[e]]k) = P (e)

However, the RKHS representation can be more convenient for
further processing. We list several applications of RKHS in section
5.

Of course, obtaining exact results is in general intractable. In
the RKHS formulation this is witnessed by the potentially infinite
sums in the definition of semantics. In practice we need to trun-
cate the sums to keep the computational cost feasible. Choosing a
suitable truncation is a task well-studied in the RKHS literature,
usually referred to as ”reduced expansion set methods”. From a
theoretical perspective, however, it is more interesting to note that
under certain conditions it is possible to provide concrete conver-
gence guarantees for the approximate expansions (Sriperumbudur
et al. 2008).

4. Convergence guarantees
This section is work in progress and we only present preliminary
results that indicate what kinds of guarantees can be possible. We
are working on generalising those results to a setting such as the
semantics above.

The first theorem (Schölkopf et al. 2015, theorem 2) applies
to situations where we compute functions of random variables for
which we can generate perfect samples from their distributions.

Theorem 1. Let X and Y be independent random variables, with
i.i.d. samples x1, . . . , xm and y1, . . . , ym accordingly. For any
measurable function f we have∥∥∥∥∥ 1

m2

m∑
i,j=1

Φ(f(xi, yj))− µ[f(X,Y )]

∥∥∥∥∥ = Op

(
1√
m

)
as m→∞.

The second theorem (Schölkopf et al. 2015, theorem 3) applies
when computing functions of RKHS approximations, where the
samples may not be uniformly weighted. However, it still assumes
that the samples are independent and identically distributed (i.i.d.),
which is not generally the case for the semantics above.

Theorem 2. Let X and Y be independent random variables,
with i.i.d. samples x1, . . . , xm and y1, . . . , ym accordingly. As-
sume the constants (αi)

m
i=1 and (βi)

m
i=1 satisfy

∑m
i=1 αi = 1 and∑m

i=1 βi = 1. Assume limm→∞
∑m

i=1 α
2
i = limm→∞

∑m
i=1 β

2
i =

0. Then ∥∥∥∥∥
m∑

i,j=1

αiβjΦ(f(xi, yj))− µ[f(X,Y )]

∥∥∥∥∥ =

Op

√∑
i

α2
i +

√∑
i

β2
i


as m→∞.

Theorem 1 is a special case of theorem 2.

5. Ongoing work
We are currently exploring two main directions extending this ap-
proach. The first is to provide compositional convergence guaran-
tees, similar to those shown in section 4, ideally covering the entire
semantics presented in section 3. This would in particular require
relaxing the i.i.d. assumption from theorem 2.

Another direction is extending the semantics presented above to
deal with more general models and conditioning. For the latter we
hope to employ conditional mean embedding operators (Song et al.
2009), but we do not have a clear idea how to approach the former.

Finally, an important question is what to do with the result
expressed as an RKHS element. It could either be converted to a
probability measure, at a significant computational cost, or used in
another method that takes RKHS elements as input, such as kernel
two-sample testing (Gretton et al. 2012) or kernel independent
component analysis (Bach and Jordan 2003).
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