
Building inference algorithms from monad transformers

Adam Ścibior
University of Cambridge

and MPI Tübingen

Yufei Cai Klaus Ostermann
University of Tübingen

Zoubin Ghahramani
University of Cambridge

Abstract
We show how to decompose popular inference algorithms into a set
of simple, reusable building blocks corresponding to monad trans-
formers. We define a collection of such building blocks and imple-
ment them in Haskell producing a library for constructing infer-
ence algorithms in a modular fashion. We are also working towards
formalizing those concepts as monadic denotational semantics for
inference algorithms.

Introduction
A common approach to writing denotational semantics for pro-
gramming languages is to interpret expressions in a particular
monad that handles the program’s effects. While denotational se-
mantics is usually used for reasoning about programs and justifying
correctness of program transformations, it is also possible to build
interpreters by directly implementing denotational semantics.

Denotational semantics of probabilistic programs are usually
written in some variant of the Giry monad. While convenient for
reasoning about programs, the Giry monad is not suitable for a
direct implementation, since in general it involves computing in-
tractable integrals. We investigate the possibility of constructing
alternative denotational semantics for probabilistic programs that
would be suitable for direct implementation.

We build on the approach of Liang et al. (1995), who showed
that using monad transformers can lead to a practical and flexible
implementation of interpreters by using one layer in the monad
stack for each type of effect present in the program. In this work
we are investigating how their ideas can be extended to handle
probabilistic effects as well.

In principle it would be sufficient to add a single layer to the
monad stack corresponding to the Giry monad. This layer would
handle all the probabilistic effects, and although there might be
some non-trivial interactions between probabilistic and other ef-
fects, the task of building an interpreter would be relatively straight-
forward. Unfortunately this is not feasible in practice.

The task is therefore to build interpreters that execute suitable
approximate inference algorithms. However, since there is no one
best such algorithm, it is also desirable to have a flexible imple-
mentation where the algorithm can be easily adjusted. We show
that many popular inference algorithms can be implemented using
a stack of suitable monad transformers. Furthermore, alternative
variants of such algorithms can often be obtained by simply adding
another layer to the monad stack.

We implement a Haskell library1 for building inference algo-
rithms from monad transformers and use it to obtain simple imple-
mentations of popular inference algorithms. The library can either
be used for inference on probabilistic programs written directly in
Haskell, or as a tool for writing interpreters for other probabilistic

1 https://github.com/adscib/monad-bayes

programming languages (PPLs). We are also working towards for-
malizing the relevant concepts in category theory to provide a basis
for the construction of monadic denotational semantics of inference
algorithms in arbitrary PPLs.

To a certain extent our approach is compatible with the original
setup of Liang et al. (1995) in that other effects can be added by
introducing more layers to the transformer stack. For example, state
can be introduced by adding a state monad transformer on top
of the inference transformer stack. We leave for future work the
investigation of how other transformers interact with ones used for
inference.

Building blocks
We introduce several new terms in this work. The first is a proba-
bility monad, which means a monad equipped with operations for
drawing random variables from specific distributions and for in-
corporating likelihood scores. This is very much analogous to an
abstract state monad equipped with get and put operations. Ad-
ditionally we define a probability monad transformer, which is a
monad transformer T such that for any probability monad M, T M is
a probability monad.

The second term we introduce is inference transformation,
which is a natural transformation between two probability mon-
ads. An inference algorithm is obtained by composing a sequence
of such transformations.

Each building block consists of the following:

• a probability monad transformer T
• a set of inference transformations that accept a family of proba-

bility monad stacks involving T, at least one mapping from T M

to M for all probability monads M
• one or more ways to hoist an inference transformation through
T, that is functions
hoist :: (forall a. m a -> n a)-> T m a -> T n a

Table 1 presents examples of probability monad transformers and
Table 2 presents examples of inference transformations associated
with them.

In our framework inference algorithms are implemented by first
constructing a suitable probability monad transformer stack, then
using it to interpret the program, and finally applying a sequence of
inference transformations to the result. For example, the Sequential
Monte Carlo algorithm can be obtained by applying the following
transformation to the interpreted program.

smc :: Int -> Int -> Sequential (Population IO) a
-> Population IO a

smc k n = flatten .
composeCopies k (advance . hoist resample) .
hoist (spawn n >>)



Probability monad Representation Haskell type
Discrete distribution Set of outcome-probability pairs Dist a = [(a, Double)]
Random sampler Function from entropy source to outcome type R a = IO a
Sample with failure Distribution on outcomes allowing failure Rejection m a = m (Maybe a)
Weighted sample Distribution on outcome-weight pairs Weighted m a = m (a, Double)
Population Distribution on multisets of outcome-weight pairs Population m a = m [(a, Double)]
Suspendable generator Gradually constructed distributions Sequential m a = m (Either a (Sequential m a))
Joint distribution Distribution on traces of programs Traced m a

Table 1. A selection of probability monads and probability monad transformers serving as building blocks in our approach to constructing
inference algorithms. The list is non-exhaustive but sufficiently rich to construct many of the popular inference algorithms for probabilistic
programs. The implementation of Traced is too complicated to show here, but essentially it is a list of all random variables and their
distributions as used in the program.

Inference operation Action it performs Haskell function
Exhaustive enumeration Sums probabilities over all execution paths enumerate :: Dist a -> [(a, Double)]
Rejection sampling Attempts to sample, restarts if fails rejection :: Rejection m a -> m a
Increase population Initialises a population of size n spawn :: Int -> Population m ()
Resample population Draws a new population from the old one resample :: Population m a ->

Population m a
Collapse population Draws a single sample from the population collapse :: Population m a -> m a
Advance generation Generates the next part of the model advance :: Sequential m a -> Sequential m a
Lightweight Metropolis-Hastings Randomly mutates the execution trace mhStep :: Traced m a -> Traced m a

Table 2. Example inference transformations acting on probability monads presented in Table 1. While many more can be constructed, this
collection is sufficient to build some non-trivial inference algorithms.

where k is the number of observations, n is the number of par-
ticles used, and composeCopies j :: (a -> b)-> a -> b applies
the given function j times.

Our approach is easily extensible. For example, we may want to
add Metropolis-Hastings rejuvenation steps after each resampling
point, obtaining an algorithm known as resample-move Sequential
Monte Carlo. This only requires adding another layer to the trans-
former stack and some additional hoisting.

smcrm :: Int -> Int ->
Sequential (Traced (Population IO)) a ->
Population IO a

smcrm k n = marginal . flatten .
composeCopies k (advance . hoist mhStep .

hoist (hoist resample)) .
(hoist . hoist) (spawn n >>)

where one hoist is associated with Traced and the other with
Sequential.

Denotational Semantics
Apart from implementing a Haskell library, we are also working
on formalizing our approach as a denotational semantics. This
would allow us to formally reason about inference transformations
and to write practical interpreters for probabilistic programming
languages based directly on the formal semantics, potentially even
allowing such implementations to be formally verified.

For simple first-order languages this can be done by construct-
ing probability monads in the category Meas of measurable spaces,
but for higher-order languages this is difficult if not impossible,
since Meas is not Cartesian closed. The task becomes even more
difficult if we add advanced features of modern functional lan-
guages such as generalized algebraic datatypes, impredicative poly-
morphism and higher kinds.

The key to overcoming those difficulties is to observe that
countably based Scott domains are separable topological spaces,
each of which uniquely defines a measurable space: its standard
Borel space. In this way, the category CDom of countably based

domains can be viewed as a subcategory of Meas. Probabilistic
programs can be interpreted under the standard domain-theoretic
semantics as continuous functions in CDom, which are auto-
matically measurable. Scott domains can encode polymorphism,
higher-order recursive types and some dependent types. Monads
constructed using Population, Sequential and Traced are to be
shown as monads over CDom, and their probabilistic meaning are
expressed through a monad opfunctor (Street 1972) to the Giry
monad.

Definition 1. Let G : Meas → Meas be the Giry monad and let
B : CDom → Meas be the functor mapping each domain to its
standard Borel space. A probability monad is a pair (M,ω) such
that M is a monad over CDom and ω is a natural transformation
BM → GB such that ω◦BηM = ηG and ω◦BµM = µG◦Gω◦ω.
If (M,ωM ) and (N,ωN ) are probability monads, then an exact
inference transformation is a natural transformation τ : M → N
such that τ ◦ ωM = ωN .

Our goal is to show monads constructed using Population,
Sequential and Traced to be probability monads, and the asso-
ciated inference transformations to be exact. Since exact inference
transformations are closed under composition, inference algorithms
are exact if constructed from exact building blocks. For importance
samplers this means they converge to the true posterior, while for
Markov chain Monte Carlo methods it means that they leave the
true posterior invariant, a condition known as detailed balance. Def-
inition 1 provides a notion of correctness for inference algorithms,
which is satisfied by so-called exact approximate inference meth-
ods, like the ones described in this paper, but not by others such as
Variational Inference.

References
S. Liang, P. Hudak, and M. Jones. Monad transformers and modular

interpreters. POPL, 1995.
R. Street. The formal theory of monads. Journal of Pure and Applied

Algebra, 2(2):149 – 168, 1972.


