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Abstract
Quasi-Borel spaces are a new mathematical structure that supports
higher-order probability theory, first-order iteration, and modular se-
mantic validation of Bayesian inference algorithms with continuous
distributions. Like a measurable space, a quasi-Borel space is a set with
extra structure suitable for defining probability and measure distribu-
tions. But unlikemeasurable spaces, quasi-Borel spaces and their struct-
ure-preserving maps form a well-behaved category: they are cartesian-
closed, and so suitable for higher-order semantics, and they also form
a model of Kock’s synthetic measure theory, and so suitable for proba-
bilistic, and measure-theoretic, developments, such as the Metropolis-
Hastings-Green theorem underlying Markov-Chain Monte-Carlo algo-
rithms.

Keywords probabilistic programming, denotational semantics, quasi-
Borel spaces, quasi-toposes, universal algebra, recursive types, higher-
order recursion, extensional type theory, categories of partial maps, do-
main theory

1 Motivation
Semantics of programming languages We motivate quasi-Borel
spaces from the viewpoint of semantic models of programming lan-
guages.
We put probability to one side for a moment, to consider a very sim-

ple finite functional programming language. For simplicity we assume
all programs terminate with a (deterministic) result. We consider types
for the language, given by the grammar

A,B ::= bool | unit | A × B | A→ B

In this language, types can be interpreted as finite sets, and a program
of type A is interpreted as an element of the corresponding set. In par-
ticular, this allows us to understand inhabitants of the function type
as functions in the usual mathematical sense. This is the basic idea of
functional programming.
Next, we consider a probabilistic extension to the programming lan-

guage, with the same types. Now, we interpret a program of typeA, not
as an element of the corresponding set, but as a probability distribution
on the set.
Finite probability theory is not particularly expressive, and so we

consider infinite types such as natural numbers and real numbers. The
standard way to formally understand probabilities on the real numbers
(or indeed the function space 2N) is through measure theory. Indeed if
we restrict to a first-order type theory, with no function types:

A,B ::= real | bool | unit | A × B
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then we can interpret each type as a measurable space (a set with a
given σ -algebra of subsets), and each program of typeA as measure on
the corresponding measurable space.
A fundamental problem with measurable spaces is that they do not

form a cartesian closed category [1]. This result means that we cannot
interpret arbitrary function types as measurable spaces without los-
ing the basic equational theory of functions (λ-abstraction and β and η
laws).
Nonetheless, we argue, functions are a crucial part of programming

and software engineering, and a valuable idea in statistics. Moreover,
functions are perfectly consistent with probabilistic constructions: the
problem is with the standard measure-theoretic starting point. Quasi-
Borel spaces [4] shift the focus from axiomatising the measurable obser-
vations in the space to axiomatising the random elements of the space.
We argue that quasi-Borel spaces are a firm yet practical foundation
for higher-order probabilistic programming.

Example higher-order probabilistic programs Examples of higher-
order functions abound throughout programming language theory and
software engineering. Our account of inference algorithms in [8]makes
extensive use of higher-order functions and their compositional inter-
action with the other type-constructors, and we found that quasi-Borel
spaces are a convenient way to understand what they meant and why
the inference algorithms are correct. For a simple example ([8, Ex. 5.2])
the initial monad Sam with an operation sample : Sam [0, 1] is based
on the type

Sam α = {Returnα | Sample ([0, 1]→ Sam α )};

i.e. decision trees with [0, 1]-indexed branching, and the monadic bind
operation [(Sam α ) → (α → (Sam β )) → Sam β] is a second-order
function. This freemonad plays a crucial role in ourmethod: it provides
a representation for probabilistic programs without conditioning, i.e.,
samplers.

2 Quasi-Borel spaces
When considering probabilistic programs, the distributions we manip-
ulate are not arbitrary, but come from a particular random source. Sim-
ilarly, in statistics and probability theory, the focus is primarily on ran-
dom variables over some fixed global sample space rather than arbi-
trary probability measures.
With this observation, we replace the measure-theoretic axiomati-

sation of measurable subsets of a space X with an axiomatisation of
random elements of a space X : functions α : R → X along which
we can push-forward a measure onto our space. Thus, in quasi-Borel
spaces, each probabilistic program of type A will be interpreted as a
random element R→ X , where X is the set corresponding to the type
A and R is a sample space. In the case X = R, we cannot define the
crucial probabilistic concepts such as the expectation of a real-valued
random elementR→ R, i.e., a random variable, for arbitrary functions.
In measure theory, we derive the functions admitting such properties,
i.e., the measurable functions, from themeasurable subsets in the space.
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In contrast, in a quasi-Borel space over a set X we axiomatise a set of
admissible random elementsMX ⊆ (R→ X ).
For the formal definition, first recall that the Borel sets of the real

numbersR include the intervals and are closed under countable unions
and complements; a Borel-measurable functionR→ R is one for which
the inverse image of a Borel set is Borel. These are the Lebesgue in-
tegrable functions (with respect to the Borel sets). The space R will
form our random source. Its flexibility as a source comes from the fact
that it is isomorphic to many other spaces, including the unit interval
I := [0, 1], the unit square I2, real sequencesRω , and boolean sequences
2ω . These isomorphic spaces are called ‘uncountable standard Borel
spaces’, and we pick one, R.
Definition 1 ([4]). A quasi-Borel space (qbs)X is a pair ( |X | ,MX ) con-
sisting of a set |X |, its carrier, and a subset of functions MX ⊆ |X | |R |
(informally, the set of admissible random elements) such that:
• Every element of the carrier is a random element: for every x in
|X |, the constant function λr .x is inMX ;
• Measurable rearrangement of random elements is a random ele-
ment: for every Borel-measurable function ϕ : R→ R and every
α ∈ MX , the precomposition α ◦ ϕ is inMX ;
• Measurable, countable pasting of random elements is a random
element: for every countable, measurable partition R =

⊎
n In

and every sequence (αn ) inMX , the case-split [r ∈ In 7→ αn (r )]n
is in MX .

A morphism f : X → Y of qbses is a function f : |X | → |Y | between
their carriers that preserves the random elements: for every α in MX ,
the postcomposition f ◦ α is inMY .
We can equip each measurable space S with a qbs structure by set-

ting MS to be all the measurable functions from R to S . The concrete
choice of uncountable Borel space R is irrelevant: as they are all mea-
surably isomorphic, they lead to isomorphic categories of quasi-Borel
spaces. We pick one and call the category Qbs. Fig. 1 illustrates the
three axioms graphically.
The category Qbs is cartesian closed, and, for example, the carriers

of the exponentials YX and XR are the set of qbs-morphisms from X
to Y , and the set of random elements of X , respectively.
A measure µ on a qbs X is a triple (S,α , µ ) consisting of a standard

Borel spaceS, a random element α in X , and a σ -finite measure µ on
S. Each measure µ = (S,α , µ ) induces an integration operator:∫

X
µ : [0,∞]X → [0,∞]

∫
X
µ f B

∫
S

µ (dr ) ( f ◦ α )(r )

We consider two measures as equivalent, if they induce the same in-
tegration operator. The collection of such measures, quotient by this
equivalence, has a qbs structure, and forms a commutative monad over
Qbs, that contains a Giry-like probability monad as a sub-monad.

3 Further examples
Beyond using higher-order functions to organize programs and sup-
port modularity, quasi-Borel spaces allow us to speak of probability
measures on arbitrary function spaces. We use these here in some fur-
ther motivating examples.
An important but difficult problem is program induction: given some

argument/result pairs, what deterministic program might have gener-
ated them? If by ‘program’ we merely mean ‘linear function’, then this
problem is linear regression. In keepingwith the Bayesian tradition, we

should find a distribution over functions, rather thanmerely an optimal
(e.g. least squares) fit.

For example, consider a Bayesian linear regression Anglican model:

1 (defquery Bayesian-linear-regression

2 (let [f (let [s (sample (normal 0.0 3.0))
3 b (sample (normal 0.0 3.0))]
4 (fn [x] (+ (* s x) b)))]

5 (observe (normal (f 0.0) 0.5) 0.6)
6 (observe (normal (f 1.0) 0.5) 0.7)
7 (observe (normal (f 2.0) 0.5) 1.2)
8 (observe (normal (f 3.0) 0.5) 3.2)
9 (observe (normal (f 4.0) 0.5) 6.8)
10 (observe (normal (f 5.0) 0.5) 8.2)
11 (observe (normal (f 6.0) 0.5) 8.4)

12 (predict :f f)))

Lines 2–4 set up the prior, which is over linear functions f whose slope
s and intercept b are very roughly 0. Lines 5–9 record some observa-
tions about noisy measurements of f (0) . . . f (6). Here we plot 1000
values of f from the posterior:

Anglican is untyped, but nonetheless, in this example, it is instruc-
tive to think of f as ranging over arbitrary measurable functions R→
R. Thuswe can understand the entire program as describing a posterior
distribution on the space of functions (R→ R).
Classicalmeasure theory can account for the above example by think-

ing of f as ranging over linear functions R→ R, since the space of lin-
ear functions is isomorphic to (R×R). However, this perspective of f is
neither modular nor compositional. To illustrate this lacking, consider
a function piecewise, which takes a random function R → R, and
randomly forms a piecewise version of it, with the subdomains chosen
randomly (we omit the definition). So if F is a random linear function
then (piecewise F ) is a random piecewise linear function. We fit a
piecewise linear function to the data by replacing lines 1–4, the prior,
with

1 (defquery Bayesian-piecewise-linear-regression

2 (let [F (fn [] (let [s (sample (normal 0.0 3.0))
3 b (sample (normal 0.0 3.0))]
4 (fn [x] (+ (* s x) b))))
5 f (piecewise F) ] ...
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and the rest of the program describes the observed data points as before.
Here are some functions from the posterior:

Classical measure theory can still account for this program, by en-
coding the piecewise linear functions R → R in a different classical
measure space. But we retain a more modular and abstract perspec-
tive by thinking of f as ranging over the full quasi-Borel space of all
measurable functions: changing the implementation of the model does
not change our interpretation of the program’s type. Moreover, quasi-
Borel spaces also facilitate a compositional account: we can understand
the program fragment piecewise as a higher-order random function
P (R → R) → P (R → R), where P is the probability monad of quasi-
Borel spaces. This compositional perspective has no simple counterpart
in classical measure theory.
Stepping further, using a prior over functions R → R definable in

some programming language would take us to full program induction.

4 Further topics
We now collect some topics of interest in developing the theory of
quasi-Borel spaces. For more on the practical side of using quasi-Borel
spaces, please see our forthcoming POPL 2018 paper [8]. Elsewhere [4]
we have also shown that quasi-Borel spaces support a variant of de
Finetti’s theorem, a cornerstone of Bayesian statistics.

4.1 The Quasi-topos of quasi-Borel spaces
In topology, by contrast to measure theory, there has been a long stand-
ing effort to build convenient cartesian closed categories of spaces. Al-
though our work is measure-theoretic rather than topological, it is con-
nected with that tradition through the notion of a quasi-topos. Many
categories of topological spaces form quasi-toposes, and the category
of quasi-Borel spaces does too. In brief, this fact means that it has well
understood connections with algebra and logic.
Grothendieck quasi-toposes have several characterisations [5, Vol. 2,

Part C, Thm. 2.2.13], in terms of geometric, algebraic, and logical struc-
ture. Geometrically, a Grothendieck quasi-topos consists of an index
categoryC, together with two Grothendieck topologies: J for imposing
the sheaf condition, and a finer topology K for imposing the separated-
ness condition. For Qbs, the index category is C := Sbs, i.e., standard
Borel spaces. The topology J is generated, at each standard Borel space
S , by the countable covers of S with measurable subsets. The topology
K is generated, at each standard Borel space S , by the covers consisting
of all singleton inclusions into S . The question of whether J is ‘canoni-
cal’ is currently open.

4.2 Algebra: equational logic and monads
Every Grothendieck quasi-topos is locally presentable. Hence, it can
express (categorical) universal algebra. To describe its syntax and equa-
tional logic, we need an index of presentability and a characterisation
of the presentable objects. Let c be the continuum cardinality, and c+
its successor cardinal.
Theorem 2. Qbs is locally c+-presentable. A qbs is c+-presentable iff it
has at most c random elements.
This theorem generalises to every regular cardinal κ > c.
Using the presentable objects as arities, we develop a universal al-

gebra for qbses. A signature Σ consists of a set of operation symbols f
and an assignment f : P → A of two c+-presentable qbses P (the pa-
rameter type) and A (the arity). Each signature Σ induces a term qbs,
whose carrier and random elements are given by mutual induction in
Fig. 2. To form terms and/or random elements, we need to show that
each function that appears in the syntax is a qbs-morphism in a well-
founded manner, i.e., show that each random element in the concrete
qbses X , P , or A yields a random element that was formed previously.
Using signatures and terms, we define axioms, presentations, algebras,
homomorphisms, and free algebras. We show that this syntax fully cap-
tures the universal algebra induced by Qbs:
Theorem 3. A strong monad over Qbs is c+-ranked iff it is isomorphic
to a free-algebra monad for some c+-presentation.
The proof utilises an induction principle for the term qbs.
Fig. 3 shows two example presentations, for the cofree qbs struc-

ture on a set [4], and for a ranked commutative probability distribution
monad. We are still analysing the latter monad and its relationship to
the monad P we present here.

4.3 Monads of unnormalized measures
In the setting of classical measure theory, it has long been known that
probabilitymeasures form a commutative strongmonad. This fact helps
us to understand Haskell-like do notation, and denotational seman-
tics, for probabilistic programming. However, to give a compositional
treatment of probabilistic programs, even at first-order, it is helpful to
understand programs as unnormalized measures – measures that sum
to more or less than one. It is unknown whether unnormalized mea-
sures form a strong monad on the category of measurable spaces (see
also [7]).
However, we argue [10] that for first-order probabilistic programs, s-

finite measures and s-finite kernels suffice. A measure/kernel is s-finite
if it is a countable sum of subprobability measures/kernels. Still, in clas-
sical measure theory, it is unknown whether s-finite kernels arise as a
Kleisli category for a strong monad. This lacking highlights another
current advantage of quasi-Borel spaces: the monad of measures as
given in §2 has the property that a Kleisli morphism X → M (Y ) is
the same thing as an s-finite kernel, when X and Y are standard Borel
spaces. Thus, in contrast to the classical situation, quasi-Borel spaces
do support a natural commutative strong monad of unnormalized mea-
sures.

4.4 Logic: dependent and refinement types
Every Grothendieck quasi-topos is complete and cocomplete, and can
interpret a rich internal logic. We characterise the limits and the colim-
its in Qbs using the following notion. We say that a functor generates
(co)limits when it preserves and lifts them.
Theorem 4. The forgetful functor functor U : Qbs → Set generates
limits and colimits.
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For example, we can use this structure to build inductive types.
Every Grothendieck quasi-topos can also interpret extensional type-

theory. We give an explicit description of the dependent product:
Theorem 5. Let f : X → Y be a qbs-morphism. The dependent product∏

f : Qbs/X → Qbs/Y is given, for every P : Z → X by ���∏f P
��� B∏

|f | |P | andMdom
∏

f P is given by:
α : R→ dom

∏
|f | |P |

���������
∀β ∈MX .

(
∀r ∈R.( f ◦ β ) (r ) = (

∏
f
P ) (α (r ))

)
=⇒ λr ∈R.α (r ) (β (r )) ∈ ���ZR���


Every Grothendieck topos has a well-behaved class of monomor-

phisms: the strong monomorphisms, together with a strong sub-object
classifier, which we characterise here:
Theorem 6. A qbs morphism f : X → Y is strong iff it is injective,
and MX =

{
β ∈ |X | |R | ���f ◦ β ∈ MY

}
. The strong subobject classifier is

the cofree qbs over the booleans.
Strong monomorphisms give rise to a well-behaved notion of a sub-

space induced by a subset, by taking all the random elements that fac-
tor through the inclusion. We have used this notion to refine/impose
invariants on types when validating Bayesian inference algorithms [8].

4.5 Recursion: domains and partial maps
Every probabilistic programming language with primitive recursion
and soft constraintswill by definition support first-order iteration (while
loops). To do so, use these basic features to define the counting mea-
sure on N, which assigns measure 1 to every natural number, and we
can use this measure as an oracle that decides how many iterations to
run. (See [10, §4.2] for details, although the observation that inference
is undecidable in general is older.)
Moreover, quasi-Borel spaces, as a quasi-topos, form a model of de-

pendent type theory with all inductive types, that is, initial algebras
for all strictly-positive functors, and higher-order inductive definitions.
However, in common with many other models of type theory, quasi-
Borel spaces do not support definitions of higher-order recursive func-
tions, nor the solution of mixed-variance recursive domain equations.
This means that we cannot, at present, give a quasi-Borel space seman-
tics of an untyped language.
The problem of finding an elegant domain theory that supports prob-

ability is a difficult one on which steady progress has been made over
the last 30 years. The quasi-Borel space mentality, where random ele-
ments and random variables play a prominent role, is also familiar from
some domain theoretic work (e.g. [2, 3, 6, 9]). We are currently inves-
tigating a domain theoretic version of quasi-Borel spaces with a view
to contributing to this development. A preliminary idea is to equip the
carrier set |X | with the structure of a domain, and to require the func-
tions inMX to be suitably continuous.

Summary. Quasi-Borel spaces provide a convenient setting for study-
ing higher-order concepts in probabilistic programming. On the practi-
cal side, they provide a straightforward model for Bayesian regression
and for compositional inference algorithms, as demonstrated in our
forthcoming paper at POPL [8]. On the theoretical side, as we have
argued in this abstract, they support a rich logical theory with connec-
tions to quasi-topos theory and recent ideas in domain theory.
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λr .x7−−−−→
ϕ
7−−−→ α7−−−→

[r ∈In 7→αn (r )]n7−−−−−−−−−−−−→

Figure 1. the quasi-Borel space axioms for R := I2

|TermsΣX | :

vx
(x ∈ |X |)

χ : A→ TermsΣX
fp χ

( f : P → A ∈ Σ,p ∈ |P |)

���(TermsΣX )R��� :
λr .vχ (r )

(χ ∈ MX )
χ : R ×A→ TermsΣX

λr . fρ (r ) (χ (r ,−))
( f : P → A ∈ Σ, ρ ∈ ���PR���)

t ∈ |TermsΣX |
λr .t

α ∈ ���(TermsΣX )R���
α ◦ ϕ

(ϕ : R→ R)
for all n: αn ∈ ���(TermsΣX )R���

[(r ∈ In ) 7→ αn (r )]n
(R =

⊎
n

In , In measurable)

Figure 2. term and random element formation from a qbs signature Σ

Let R̂ := ( |R| , |R| |S | ) be the cofree qbs
over |R|, and |R| ⊙ 1 the free qbs over |R|:

Σ B
{
eval : R̂→ |R| ⊙ 1

}
For each r ∈ R, the axiom:

evalr (λs .vs ) = vr

Signature:

Σ B
{∫
−U : 1→ I

}
Axioms:∫

v⋆U (dx ) = v⋆∫
vϕ1 (x )U (dx ) =

∫
vϕ2 (y )U (dy) (ϕ1,ϕ2 : I→ I,ϕ1

∗U = ϕ2
∗U)∫

U (dx1)
∫

U (dx2)v(x1,x2 ) =
∫

U (dz)vϕ (z ) (ϕ : I→ I × I,ϕ∗U = U ⊗ U)

(a) presenting the cofree qbs monad (b) a ranked, commutative, probability distribution monad

Figure 3. example presentations
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