
Parameterized probability monad

Adam Ścibior
University of Cambridge

and MPI Tübingen

Andrew D. Gordon
Microsoft Research

and University of Edinburgh

Abstract
Probability monads are an attractive tool both for specifying se-
mantics of probabilistic programs and for implementing embedded
probabilistic programming languages. We show that parameterized
monads can be used to ensure additional properties of distribu-
tions constructed by probabilistic programs. As a demonstration we
provide a Haskell implementation of a parameterized probability
monad that ensures all conditioning is performed statically.

1. Introduction
Probability monads (Giry 1982) have long been used for defining
semantics of probabilistic programs (Jones and Plotkin 1989; Ram-
sey and Pfeffer 2002), and more recently for implementation (Er-
wig and Kollmansberger 2006; Ścibior et al. 2015) of probabilistic
programming languages (PPLs). We explore how the use of a gen-
eralization of monads, called parameterized monads, can ensure
additional properties of distributions constructed with the monad
abstraction.

We start with a definition of a particular implementation of the
parameterized monad abstraction we use in this work. Then we
show our implementation of the parameterized probability monad
and discuss the static guarantees it provides. Finally we define
semantics of our implementation based on measure theory, and
conclude with suggesting further uses for parameterized monads
in probabilistic programming.

2. Parameterized monads
A monad defines two operations, called return and >>=, which in
Haskell corresponds to the following typeclass:

class Monad m where
return :: a -> m a
>>= :: m a -> (a -> m b) -> m b

A parameterized monad is a generalization which permits
greater flexibility in the types of arguments that those operations
accept. We use the implementation provided by the monad-param
library1, which uses the following typeclasses:

class Return m where
returnM :: a -> m a

class Bind m m’ m’’ | m m’ -> m’’ where
(>>=) :: m a -> (a -> m’ b) -> m’’ b

This definition of >>= allows any data types to be used. How-
ever, in order to sequence the applications of >>=, the result type of
the first one must match the argument type of the second one.

1 https://hackage.haskell.org/package/monad-param

3. Parameterized probability monad in Haskell
We improve on (Ścibior et al. 2015) by statically enforcing two
requirements which were earlier checked dynamically. The first is
that the function sample can only be applied to Dists that do not
contain conditioning operations. The second is that conditioning
is only allowed in the first argument of >>= and not in the second.
Below we present our new implementation and explain those points
in detail.

We use two GADTs to represent probability distributions (or,
equivalently, probabilistic programs). The first is for ‘pure’ distri-
butions without any conditioning statements

data Dist a where
Return :: a -> Dist a
Bind :: Dist b -> (b -> Dist a) -> Dist a
Primitive :: (Sampleable d) => d a -> Dist a

instance Return Dist where
returnM = Return

instance Bind Dist Dist Dist where
(>>=) = Bind

and the second one for distributions that may include condition-
ing

data CDist a where
Pure :: Dist a -> CDist a
CBind :: CDist b -> (b -> Dist a) -> CDist a
Conditional :: (a -> Prob) -> CDist a -> CDist a

instance Return CDist where
returnM = Pure . returnM

instance Bind CDist Dist CDist where
(>>=) = CBind

In the spirit of (Ścibior et al. 2015) we consider Dist to be a
tractable representation and we can easily sample from it. Specifi-
cally, we define the following function:

instance Sampleable Dist where
sample g (Return x) = x
sample g (Primitive d) = sample g d
sample g (Bind d f) = sample g1 $ f $

sample g2 d where
(g1 , g2) = split g

However, CDist is a declarative description of a distribution
which does not specify how to sample from it. To sample from
CDist we must first convert it into an equivalent Dist. Indeed, in
this framework we view inference algorithms, including random-
ized ones, as deterministic functions from CDist to Dist. For more
details we refer the reader to (Ścibior et al. 2015). With the def-
initions above, we can statically ensure that a suitable inference
algorithm is applied before sampling is performed.

https://hackage.haskell.org/package/monad-param


The restriction on the Bind instance of CDist enforces that the
observations do not change depending on what random choices
were made in the program. In standard machine learning tasks this
condition is always satisfied, so it does not limit the expressiveness
of the modelling framework. On the other hand, it brings two
important benefits:

1. It is possible to sample from the distribution lazily, as it is
guaranteed that conditioning is absent from the dynamically
generated parts of the model. Otherwise those parts could have
global influence on the sampling process, so the samples would
have to be generated eagerly.

2. Sequential Monte Carlo can be used for inference with each
conditioning point serving as a synchronization barrier (Wood
et al. 2014). Without the restriction, the algorithm might get
stuck if a particular barrier is not reached by some particles.

The only downside to this restriction is that programming with
CDist is somewhat less natural. For example, in a simple linear
regression example, the following would not be possible2, since
conditioning would now be placed on the right of >>=.

wrong :: Dist (Double ,Double)
wrong = do

a <- normal 0 1
b <- normal 0 1
condition (pdf (normal x 1) y)
return (a,b)

Instead, we need to resort to a less intuitive form, where the
prior distribution is explicitly passed as an argument to condition.

right :: Dist (Double ,Double)
right = condition (\(a,b) -> pdf (normal x 1) y)

d where
d = do

a <- normal 0 1
b <- normal 0 1
return (a,b)

4. Measure-theoretic semantics
We define semantics for Dist and CDist using measure theory.
This definition is very similar to (Ścibior et al. 2015) and the
same assumptions are in place. In particular we stress that this
semantics only works for the top-level distribution over sufficiently
simple types, which excludes function types and recursive types.
Distributions over those types can, however, be used at intermediate
stages.

type P a = [Double] -> Maybe (a, Prob , [Double ])

class ProbMeasure d where
semantics :: d a -> P a

instance ProbMeasure Dist where
semantics (Return x) tape = Just (x,1,tape)
semantics (Bind d f) tape = do

(x,p,t ) <- semantics d tape
(y,q,t’) <- semantics (f x) t
return (y,p*q,t’)

semantics (Primitive d) [] = Nothing
semantics (Primitive d) (r:rs) =

Just (sampleR r d,1,rs)

instance ProbMeasure CDist where
semantics (Pure d) tape = semantics d tape
semantics (CBind d f) tape = do

2 assuming here fictional condition :: Prob -> CDist ()

(x,p,t) <- semantics d tape
(y,q,t’) <- semantics (f x) t
return (y,p*q,t’)

semantics (Conditional c d) tape = do
(x,p,t) <- semantics d tape
return (x, p * c x, t)

density :: ProbMeasure d => d a ->
(a -> Bool) -> [Double] -> Prob

density m i t = case semantics m t of
Just (x,p,_) | i x -> p
_ -> 0

Most of the work is done by the semantics function, defined
both for Dist and CDist. It converts its input to a function from a
source of randomness (a finite list of real numbers) to a value and
associated weight, or Nothing if the source is too short. This allows
us to define the measure by integrating against all sources of ran-
domness. Specifically, for any value M :: Dist T or M :: CDist T

we define a measure µ as

µ(A) =
limn→∞ µn(A)

limn→∞ µn([[T ]])

µn(A) =

∫
(density M A) dνn

where [[T ]] is a σ-algebra corresponding to type T (Ścibior et al.
2015).

This definition could potentially be used to establish correctness
of inference algorithms, by requiring that the input CDist and the
result Dist correspond to the same measure under the semantics
above.

As mentioned above, this definition is only applicable to suffi-
ciently simple types T . It would be desirable to extend it to function
and recursive types.

5. Other uses of parameterized monads
In the above we have demonstrated how to utilise parameterized
monads to ensure that conditioning is performed statically in prob-
abilistic programs. However, there can be many more potential uses
for them. As particularly interesting we point out restricting the la-
tent space of a probabilistic program and keeping track of types of
data used for conditioning.

References
M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic func-

tional programming in haskell. J. Funct. Program., 16(1):21–34, Jan-
uary 2006.

M. Giry. A categorical approach to probability theory. In B. Banaschewski,
editor, Categorical Aspects of Topology and Analysis, volume 915 of
Lecture Notes in Mathematics, pages 68–85. Springer Berlin Heidelberg,
1982.

C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In
Proceedings of the Fourth Annual Symposium on Logic in Computer
Science, pages 186–195, 1989.

N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM,
2002.

A. Ścibior, Z. Ghahramani, and A. D. Gordon. Practical probabilistic
programming with monads. In Proceedings of the 8th ACM SIGPLAN
Symposium on Haskell, pages 165–176. ACM, 2015.

F. Wood, J.-W. van de Meent, and V. Mansinghka. A new approach to
probabilistic programming inference. In S. Kaski and J. Corander,
editors, Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, pages 1024–1032. JMLR, 2014.


	Introduction
	Parameterized monads
	Parameterized probability monad in Haskell
	Measure-theoretic semantics
	Other uses of parameterized monads

