
Strongly typed tracing of probabilistic programs
Adam Ścibior

University of Cambridge and MPI Tübingen
ams240@cam.ac.uk

Michael Thomas
Independent Researcher
mthomas180@gmail.com

Introduction
A commonly encountered concept in probabilistic program-
ming literature is that of a trace, which is a record of all the
random variables sampled during the program execution.
Traces serve two roles, namely providing observed values
for some of the variables on which to perform conditioning
and facilitating implementations of certain inference algo-
rithms. Typical examples of such inference algorithms are
importance sampling, where a guide program with a trace
matching the original program is provided as a proposal
distribution, and MCMC where a part of the trace is updated
at each iteration.

In this work we propose a method for constructing traces
in PPLs in a statically typed fashion using lenses. Our ap-
proach statically ensures absence of certain bugs, such as
misspelling a name of a random variable, and can be used to
statically enforce certain properties of the program, such as
the restriction of having a fixed number of random variables
of fixed types, used in Stan programs.We focus on a situation
where the user provides explicit names for the random vari-
ables. This is in contrast to the situation where the random
variables are not explicitly given unique names and these
have to be assigned automatically using a heuristic, such as
in the work of Wingate et al. [6].

How traces are constructed
The trace is a record of all the random variables sampled in
the program execution. PPLs extending dynamic languages
are not concerned with statically determining any properties
of the trace and they typically represent it as a dictionary
mapping from strings representing variable names to records
describing distributions and values sampled from them. We
will use Pyro [1] as an example of such a language although
many others use similar approaches to tracing. In statically
typed PPLs this construction is unsatisfactory, as we would
like to be able to statically verify that the right variables of
the right types are recorded in the right places in the trace.

Stand-alone PPLs can force the users to specify programs
in a way that makes it easy to determine what should be
included in the trace. For example Stan [2] requires that the
user declares all the random variables for the whole program
in seperate data and parameters blocks. This approach works
well in Stan’s setting but it is less suitable for PPLs that extend
existing languages. Dalibard [3] uses a similar approach in
a PPL based on C++ but it places significant constraints on
how the program can be structured.

Lenses
Lenses are a well-established functional programming tool
for extracting and updating values in immutable data struc-
tures. For example, consider the following record.

type person = {name : string; surname : string}

A lens for accessing the field namewould consist of a getter
and a setter.

type ('r,'v) lens =

{ get : 'r -> 'v; set : 'v -> 'r -> 'r }

let name_ : (person ,string) lens = {

get = (fun p -> p.name);

set = (fun n p -> { p with name = n })

}

By convention lenses associated with a record field have
the same name followed by an underscore. Lenses compose
naturally as functions allowing direct access to fields in
nested records.

Strongly typed tracing
We propose to use strongly typed records instead of dictio-
naries for tracing in order to take advantage of static typing.
To illustrate this idea we introduce a small PPL called Roc
extending OCaml where models have type (trace, a) model,
where trace is the type of the trace and a is the type of the re-
turn value. The model type conforms to the standard monadic
interface with respect to a.
In Roc the trace is a model-specific data type that holds

values for all the random variables. It can be any data struc-
ture, although typically it is a flat record. The only important
requirement is that it comes with a lens for every random
variable in the trace, which recovers a record associated with
the particular variable.
The trace is a collection of special records, one for each

variable. These records are of type 'a obs, which is a special
algebraic data type for storing information about the random
variable.

type 'a obs =

| Empty

| Observed of 'a

| Sampled of 'a dist * 'a

obs encodes the information we have about the specific
random variable. It can either be no information, a value
that was observed in the model, or the information that the
random variable was previously sampled, obtaining a given

1



LAFI’19, January 15, 2019, Lisbon, Portugal Adam Ścibior and Michael Thomas

def model ():

rain = pyro.sample('rain ',

dist.Bernoulli (0.2))

if rain.item() == 1.0:

p = 0.7

else:

p = 0.1

wet = pyro.sample('wet ',

dist.Bernoulli(p))

return rain

(a) Pyro

data {

int <lower=0,upper=1> wet;

}

parameters {

int <lower=0,upper=1> rain

}

model {

real <lower=0,upper=1> p;

rain ~ bernoulli (0.2)

p = rain ? 0.7 : 0.1

wet ~ bernoulli(p)

}

(b) Stan

type trace = {

rain : bool obs;

wet : bool obs;

}

let model () : (trace , bool) model =

sampleAs rain_ (bernoulli 0.2)

>>= fun rain ->

let p = if rain then 0.7 else 0.1 in

sampleAs wet_ (bernoulli p)

>>= fun wet ->

return rain

(c) Roc

Figure 1. The classic sprinkler model implemented in several PPLs. Pyro does not define a model-specific trace data structure,
instead using a generic one with dynamically chosen fields, eschewing static guarantees. In Stan the user needs to define all
the random variables and their types in separate blocks and the contents of these blocks defines the trace. Our PPL Roc uses a
user-defined model-specific trace data structure and employs lenses to establish correspondence between the model and the
trace.

value from a given distribution. The last possibility is useful
for various inference algorithms.

The randomvariables are associatedwith the trace through
a special function sampleAs which performs sampling from
a given distribution and additionally records the sampling
result in the trace.

let sampleAs {get;set} d : ('trace , 'a) model =

getTrace >>= fun tr ->

match get tr with

| Empty -> sampleAndRecord d set

| Observed y ->

factor (pdf d y) >>= fun _ ->

return y

| Sampled (y, q) ->

factor (pdf d y / pdf q y) >>= fun _ ->

return y

If the trace contains Empty for the given variable then we
sample its value from the prior and record it as Sampled. If it is
Observed thenwe include its likelihood as a factor in themodel
and return the oberved value. Finally, if the random variable
was already Sampled then we use the previously obtained
value and introduce a factor equal to the ratio of densities
of the current distribution and the one that was used for
sampling the recorded value. Note that this is only meant to
happen if the value was previously sampled from a proposal
distribution in a guide program. It is an error to sample the
same random variable twice within the model.
In the example shown in Figure 1 the names of lenses

correspond to the names of program variables. This is by no
means necessary and the two can be completely different.
However, they often will be the same so we would find our-
selves unnecessarily typing the name twice. This boilerplate
can be avoided with a simple macro, similarly to what Turing
[4] does with untyped traces.

Extensions
The design shown above allows us to statically impose Stan-
like restrictions on PPLs extending statically typed functional
languages. However, we can easily extend our approach
to add more features. For example, Stan programs do not
compose easily, since the parameters block is global to the
whole program. Fortunately, it is easy to define nested trace
data structures that hold smaller traces. We can then access
the smaller traces through suitably defined lenses.
The restriction that the numbers and types of random

variables in the program are known statically can be very
useful for inference but it is sometimes too restrictive for
modelling. We can partially relax this requirement while
retaining as much of the static guarantees as possible. For
example, we define a data constructor multiple, similar to
obs, which holds values for some statically unknown number
of random variables. This can be used to type traces for
programs where a submodel is executed a certain number of
times, that number itself being a random variable.

Future work
Our design provides certain static guarantees, but there are
additional properties of probabilistic programs that wewould
like to ensure. In particular, we might want to enforce that
each random variable is sampled at most once or exactly
once. This restriction is not enforced in Stan, and violating
it results in counterintuitive behaviour which Hur et al. [5]
labelled as incorrect, even though it matches the semantics
of Stan.

Another direction is reflecting more of a program’s struc-
ture in the trace. In particular Pyro encodes certain infor-
mation about conditional independence which is useful for
performing inference.

2



Strongly typed tracing of probabilistic programs LAFI’19, January 15, 2019, Lisbon, Portugal

References
[1] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,

Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul
Horsfall, and Noah D. Goodman. 2018. Pyro: Deep Universal Proba-
bilistic Programming. https://arxiv.org/pdf/1810.09538.pdf. (2018).

[2] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee,
Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo,
Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming
language. Journal of Statistical Software 76 (2017).

[3] Valentin Dalibard. 2017. A framework to build bespoke auto-tuners
with structured Bayesian optimisation. Ph.D. Dissertation. University
of Cambridge.

[4] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language
for flexible probabilistic inference. In AISTATS.

[5] Chung-Kil Hur, Aditya Nori, Sriram K. Rajamani, and Selva Samuel.
2015. A Provably Correct Sampler for Probabilistic Programs. In
FSTTCS.

[6] DavidWingate, Andreas Stuhlmüller, and Noah Goodman. 2011. Light-
weight Implementations of Probabilistic Programming Languages Via
Transformational Compilation. In AISTATS.

3


	References

