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Adam Ścibior
University of Cambridge
ams240@cam.ac.uk

Ohad Kammar
University of Cambridge

ohad.kammar@cl.cam.ac.uk

Abstract
Recently there has been a lot of interest in the machine learning
community in expressing Bayesian models as probabilistic pro-
grams in order to make them more reusable and compositional.
Such programs have probabilistic effects and different ways of han-
dling those effects correspond to different inference algorithms.
Our goal is to present a problem that the HOPE community may
find interesting and potentially propose solutions for it.

In this talk we discuss several state-of-the-art Particle Markov
Chain Monte Carlo algorithms for inference in probabilistic pro-
grams. Our contribution is an implementation of those algorithms
using algebraic effect handlers. We utilise an existing effect handler
library1 to obtain a very simple, flexible, and type safe probabilis-
tic programming system. This is very much work in progress and
the talk should be treated as a problem description rather than a
solution.

Talk proposal
As probabilistic models get more complex and inference algo-
rithms more sophisticated, implementing them becomes a signifi-
cant software engineering effort. The machine learning community
is currently investigating the use of abstraction where a probabilis-
tic model is a program with probabilistic effects and an inference
algorithm is a particular way of handling those effects (Goodman
and Stuhlmüller 2014). Lots of different probabilistic programming
systems were proposed, but in this talk we mostly relate to a recent
one called Anglican (Wood et al. 2014).

Overall, the aim of the talk is to present the problem of doing
Bayesian inference with effects in an efficient way and to show
the sorts of implementation challenges faced by state-of-the-art
algorithms. We believe that the machine learning community is
lacking good tools that make such implementation easier and could
use input from the HOPE audience.

We now introduce the effects required for writing probabilistic
models as programs. We use the syntax of Haskell and an effect
handler library written by Kammar et al. (2013). The starting point
is a data structure Dist which encapsulates the common distribu-

1 https://github.com/slindley/effect-handlers
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tions such as Binomial or Normal that we use as basic building
blocks. We assume that Dist implements the following:

sample :: StdGen -> Dist a -> a
pdf :: Dist a -> a -> Double

The function sample g d generates a random variable from the
distribution d using the random number generator g. The function
pdf d x computes the probability density (or mass) function for a
distribution d at point x.

We need two types of effects for Bayesian inference. Those are:

[operation| forall a. Draw :: Dist a -> a |]
[operation| forall a. Observe :: Dist a -> a -> () |]

Here draw d generates a random value from a distribution d, and
observe d x asserts that a value x, drawn from a distribution d, was
observed. The observe has an effect of modifying the probabilities
of different outcomes in a monadic sequence according to the
Bayes’ rule (Barber 2012):

p(θ|x) = 1

Z
p(x|θ)p(θ)

Informally, the prior p(θ) is defined by draws and the likelihood
p(x|θ) is defined by observes.

A very simple but very popular model we can write as a prob-
abilistic program is linear regression. Here the task is to find a
straight line that best matches a set of points. We can write this
model as a monadic computation with the two effects above.

lr = do
a <- draw (Normal 0 1)
b <- draw (Normal 0 1)
observe (Normal (a*x + b) 1) y
-- potentially more observations here
-- can be written as a fold over the data points
return (a,b)

This specification of a probabilistic model is very abstract and
does not tie to any particular inference algorithm. It uses algebraic
effects (Plotkin and Pretnar 2009) to define an abstract, modular
interface for the probabilistic effects. Algebraic effects are an inter-
esting alternative to monad stacks, since they do not require explicit
lifting. We use effect handlers (Bauer and Pretnar 2012) to provide
a concrete implementation of effects in a modular way.

There are several libraries implementing effect handlers, such as
those written by Brady (2013), Kiselyov et al. (2013), and Kammar
et al. (2013). In this talk we are using the last of those.

The rest of this proposal presents a simple example of imple-
menting an inference algorithm known as rejection sampling using
effect handlers. Then we outline implementation of more sophisti-
cated algorithms and finally discuss some challenges for improving
them.

A very basic algorithm is that of rejection sampling. We start by
defining a new effect for rejection.
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[operation|Reject :: () |]

Now we can handle observe effects by sampling from the given
distribution and then comparing the result with the observed value.
If the two are the same we continue, otherwise we reject.

[handler|
forward h handles {Reject, Draw}.
Rejection a :: a handles {Observe} where
Return x -> return x
Observe d x k ->
do {y <- draw d; if x == y then k ()

else reject >>= k;}
|]

Finally we handle rejections by restarting the program from the
beginning.

[handler|
forward h.
Repeat a :: Comp (Repeat h a) a -> a handles {

Reject} where
Return x _ -> return x
Reject k c -> repeat c c

|]

To complete the implementation we only require a handler for
draws. We pass around a random number generator to actually
obtain values.

[handler|
Run a :: StdGen -> a handles {Draw} where
Return x g -> x
Draw d k g -> let (x,g’) = sample g d in k x g’

|]

Now we can obtain an executable program by composing the
handlers.

sampler :: StdGen -> (Double,Double)
sampler g = run g $ repeat d d where
d = rejection lr

Unfortunately, rejection sampling is slow and it is not applicable
to zero probability observations, such as drawing a particular value
from a continuous distribution. In particular running the above
program never terminates with probability 1. Nonetheless, rejection
sampling can be used with discrete distributions, although it is still
very slow.

In the talk we show a number of alternative, more efficient
inference algorithms. They range from relatively simple impor-
tance sampling, where the probability densities for each observe

are accumulated during the execution of the program and at the
end used to weigh the samples, to Particle Markov Chain Monte
Carlo (PMCMC), currently state-of-the-art for probabilistic pro-
gramming. Implementing PMCMC methods is more challenging,
since it requires pre-empting the execution of a program and po-
tentially spawning several independent copies of it at a given point.
Nonetheless, effect handlers make the task relatively easy.

We also indicate what are the possible ways to improve those al-
gorithms and what implementation challenges they present. A pop-
ular alternative to PMCMC is the single-site Metropolis-Hastings
(MH) algorithm introduced by Wingate et al. (2011). The key to
achieving good performance with MH is being able to identify ”the
same” random choices in different runs. Formally this is not a well-
defined problem, but in practice it seems that good heuristics can
be found. It would be interesting to see what are some principled
ways to derive such heuristics.

Other ideas for improving the inference algorithms include
adapting proposals for draws in subsequent runs, hence generat-
ing more good samples, or combining several inference algorithms
by composing their corresponding handlers. Overall, we believe
that significant advances can be made in improving inference algo-
rithms, but the speed with which that happens will greatly depend
on the availability of good tools that make implementation easier
and abstract away the irrelevant parts of the program.
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