
Composing Modeling and Inference Operations
with Probabilistic Program Combinators

Eli Sennesh
Northeastern University

Boston, MA
esennesh@ccis.neu.edu

Adam Ścibior
University of Cambridge and MPI Tübingen

Cambridge, United Kingdom
ams240@cam.ac.uk

Hao Wu
Northeastern University

Boston, MA
haowu@ccis.neu.edu

Jan-Willem van de Meent
Northeastern University

Boston, MA
jwvdm@ccis.neu.edu

Abstract

Probabilistic programs with dynamic computation graphs can define measures over
sample spaces with unbounded dimensionality, which constitute programmatic
analogues to Bayesian nonparametrics. Owing to the generality of this model
class, inference relies on “black-box” Monte Carlo methods that are often not
able to take advantage of conditional independence and exchangeability, which
have historically been the cornerstones of efficient inference. We here seek to
develop a “middle ground” between probabilistic models with fully dynamic and
fully static computation graphs. To this end, we introduce a combinator library for
the Probabilistic Torch framework. Combinators are functions that accept models
and return transformed models. We assume that models are dynamic, but that
model composition is static, in the sense that combinator application takes place
prior to evaluating the model on data. Combinators provide primitives for both
model and inference composition. Model combinators take the form of classic
functional programming constructs such as map and reduce. These constructs
define a computation graph at a coarsened level of representation, in which nodes
correspond to models, rather than individual variables. Inference combinators
implement operations such as importance resampling and application of a transition
kernel, which alter the evaluation strategy for a model whilst preserving proper
weighting. Owing to this property, models defined using combinators can be
trained using stochastic methods that optimize either variational or wake-sleep
style objectives. As a validation of this principle, we use combinators to implement
black box inference for hidden Markov models.

1 Introduction

Bayesian nonparametric models have traditionally leveraged exchangeability in order to define
predictive distributions that marginalize over an unbounded number of degrees of freedom. In recent
years, the field of probabilistic programming has explored a different (yet related) class of models.
A probabilistic program can be thought of as a stochastic simulator that is conditioned on observed
variables. When the probabilistic programming language supports recursion, probabilistic programs
can define priors that sample from models with an unbounded number of random variables, providing
a programmatic alternative to classic Bayesian nonparametric models.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

A probabilistic program must support two operations. First, it must be possible to generate samples
by evaluating the program. In general, any (halting) evaluation instantiates some finite set of random
variables, whose values are referred to as a trace. The second operation that must be implemented is
the evaluation of the unnormalized density function of a program for any trace. These operations can
be formalized in two equivalent forms of denotational semantics in which a program f with inputs
y either evaluates to an unnormalized measure γf (x | y), or a weighted sample x,w ;f(y) [9, 8].
Inference seeks to characterize the target density πf (x | y) = γf (x | y)/Zf (y). As in other inference
problems, the integral Zf (y) =

∫
γf (x | y) dx is typically intractable, and is typically approximated

using Monte Carlo methods.

In both nonparametric models and general probabilistic programs, we can significantly improve
the performance of approximate Bayesian inference by imposing some a priori assumptions about
the graphical form of the joint distribution to be conditioned on our observations. For example, in
some models we can alternate between updates to local and global plates of variables. In a Hidden
Markov Model (HMM), for instance, we can predict transition probabilities from state sequences, or
vice versa. Research in probabilistic programming has traditionally emphasized the development of
assumption-free inference methods. To address model-specific inference optimizations, we develop
abstractions to modularly and compositionally specify models and inference strategies.

2 Model and Inference Composition

In recent years, there have been a number of efforts to develop specialized inference methods for
probabilistic programming. The Venture [3] platform provides primitives for inference programming
that can act on subsets of variables in an execution trace. There has also been work to formalize
notions of valid inference composition. The Hakaru language [5] frames inference as program
transformations, which can be composed so as to preserve a measure-theoretic denotation [11].
Work by Scibior et al. [9] defines measure-theoretic validity criteria for compositional inference
transformations.

Models in Probabilistic Torch are written in Python and can make use of if expressions, loops,
and other control flow constructs. Models can dynamically instantiate random variables in a data-
dependent manner, although the computation graph becomes difficult to analyze statically[7]. To
reason without static guarantees, we postulate these requirements for model and inference composi-
tion:

1. Composition is static, evaluation is dynamic. A model is statically composed from other models,
while each evaluation based on data generates a unique trace. In our later HMM example, we can
compose a model that samples global parameters with a model for a sequence of variably many states
and observations. Evaluations which traverse the same control-flow path while sampling different
random values yield traces we can use as samples from the same distribution.

2. Inference operations preserve proper weights. A program f defines a measure γf (x | y),
which may be unnormalized, conditioned on some set of inputs y. This measure can represent a prior
distribution, or a distribution that is conditioned using observed variables or factors. We here assume
that valid evaluation strategies for a program yield properly weighted [4] samples (X,W) such that,
for all measurable functions h,

E[h(X)W] =
∫
h(x) γf (x | y) dx. (1)

This property implies that E[W] = Z(y), i.e. the weightW is an unbiased estimator of the normalizer.
A default evaluation strategy that satisfies this assumption is likelihood weighting, in which samples
are proposed from the program prior and conditioning operations define an importance weight.

We require that any inference combinator must preserve proper weighting. Operations that satisfy
this requirement include importance sampling, importance resampling, Sequential Monte Carlo
(SMC), and application of a transition kernel. It follows that any composition of these operations
also preserves proper weighting, resulting in an inference strategy that is properly weighted by
construction[9].

2

Model Combinators
(x,w) ;f(y) (x′, w′) ;g(x)

(x′, w · w′) ;compose(f,g)(y)

(x,w) ;f(y1,y2)

(x,w) ;partial(f,y1)(y2)

(xn, wn) ;f(yn) for n = 1, . . . , N

((x1, . . . , xN),
∏N
n=1 wn) ;map(f,(y1, . . . , yN))

Table 1: Big-step semantics for model combinators.

Inference Combinators
(x,w) ;g(y) w′ = γf (x | y)/w
(x,w′) ;importance(f,g)(y)

(xk, wk) ;f(y) αk ∼ Cat
(

w1∑K
k=1 w

k , ...,
wK∑K
k=1 w

k

)
(xα

k

, 1
K

∑K
k=1 w

k) ;resample(f,K)(y)

(x,w) ;f(y) x′ ∼ qg(x′ | x) w′ =
γf (x

′|y)qg(x|x′)
γf (x|y)qg(x′|x) w

(x′, w′) ;move(f,g)(y)

Table 2: Big-step semantics for inference combinators.

3 Model Combinators

A model is a stochastic computation that returns a properly weighted sample. Model evaluation
produces a trace, an object that holds values and densities for the set of random variables instantiated
during a particular evaluation of the model. Traces can be conditioned on other traces to implement
proposals. Combinators accept models as inputs and return a model.

Table 1 shows a number of combinators corresponding to functional programming constructs, with
their semantics. In addition to those for which we give the semantics, we have also implemented
reduce as a basic folding combinator, and such common model families as ssm (state-space model),
mixture, and hmm (a hidden Markov model). Of particular note is that we can give semantics for
higher-order stochastic functions built using partial and compose.

4 Inference Composition

Consider running a probabilistic program f to draw a sample x from an unnormalized density
γf (x | y). We denote drawing a properly weighted sample x with weight w from γf (x | y) via f
as (x,w) ;f(y). Since proper weights are ratios of unnormalized densities, any joint distribution
formed by a probabilistic program constitutes a proper weight. We can thus express as a properly
weighted sampler any inference technique which only requires producing samples from programs.

Table 2 shows inference rule semantics for several inference combinators in terms of how they take
properly weighted samplers as arguments and return properly weighted samplers in turn. Note that
when q denotes a transition kernel that satisfies detailed balance, as used in Markov chain Monte
Carlo methods, the new proper weight w′ = w.

The proposed combinator framework is a natural fit for modern varational methods for training deep
probabilistic models. Because the weight w is an unbiased estimator of the normalizer, we can use its
logarithm as an evidence lower bound (ELBO) [2] or evidence upper bound (EUBO) [1] to perform

3

(d) VBEM HMM(c) Combinator Based HMM

G
ro

u
n
d
 T

ru
th

In
fe

re
n
ce

(a) Trajectory

(b) Displacement

Displacement Means Transition
Probabilities

Displacement Means Transition
Probabilities

G
ro

u
n
d
 T

ru
th

In
fe

re
n
ce

y
(t

)-
y
(t

-1
)

x
(t

)-
x
(t

-1
)

G
ro

u
n
d
 T

ru
th

In
fe

re
n
ce

Figure 1: Combinator-based variational inference in hidden Markov models (HMM). a) A bouncing
ball trajectory with initial velocity. b) The displacement along x and y axis, respectively. c) Inferred
travel directions and transition probabilities from combinator-based wake-sleep Sequential Monte
Carlo (SMC). d) Inferred travel directions and transition probabilities from Variational Bayesian
Expectation Maximization (VBEM).

variational inference by automatic differentiation in PyTorch. For a parameterized density γθ(x | y),
we can approximate the gradient∇θ logZθ(y) using the Monte Carlo estimator∑

k

wk∑
l w

l
∇θ log γθ(xk | y).

When we sample from an inference model qφ(x | y) we can perform wake-sleep style inference by
minimizing the objective KL(γθ(x ; y)/Zθ(y) || qφ(x | y)) using the estimator

−
∑
k

wk∑
l w

l
∇φ log qφ(xk | y).

Note that the gradient w.r.t. θ computes∇θ logw whereas the gradient w.r.t. φ computes −∇φ logw.
In other words, we can perform variational inference in any properly weighted model by automatic
differentiation on the importance weights.

5 Evaluation

Figure 1 shows inference results on simulated data. The data models a bouncing particle trajectory
in a closed box (Fig. 1a). This trajectory has a piece-wise constant noisy velocity, which means
that the displacements at each time step (Fig. 1b) can be described by an HMM with Gaussian
observations, where each state’s observation mean corresponds to the average velocity along one of
four possible directions of motion. We compare wake-sleep SMC inference results for a combinator-
based implementation (Fig. 1c) to those obtained using variational Bayesian expectation maximization
(VBEM) (Fig. 1d), for a set of 30 time series that each contain 200 time points. VBEM optimizes the
exclusive Kullback-Leibler (KL) divergence, DKL(q || p), while in our combinator-based inference
we optimized DKL(p || q), approximating the posterior with greater variance. The combinator-based
HMM implementation required 64 lines of model specific code.

6 Extensions and Future Work

In this work, we have considered the fewest assumptions possible about the structural form of the
generative model, and so we believe these inference techniques to be the most suited to dynamic
probabilistic programs with unbounded dimensionality. Our next step will be to apply combinators to
modeling intuitive physics in perception. A variety of extensions are possible that make use of some
information about the graphical structure of a model. One opportunity is to apply enumeration or
belief propagation to components of the model that are amenable to such operations. Recent work
by the Pyro team on sum-product implementations for deep probabilistic programs is relevant in
this context [10]. Recent just-in-time compilation strategies [6] could be adapted to construct static
graphs for such models, which an optional API could expose to implement inference optimizations.

Acknowledgments

The authors would like to thank David Tolpin for his early interest in this line of work, and the two
anonymous reviewers at the Bayesian Nonparametrics workshop for their detailed feedback.

4

References
[1] Jörg Bornschein and Yoshua Bengio. Reweighted Wake-Sleep. International Conference on Learning

Representations, 2015.

[2] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic differen-
tiation variational inference. The Journal of Machine Learning Research, 18(1):430–474, 2017.

[3] Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: A higher-order probabilistic programming
platform with programmable inference. arXiv, pages 78–78, March 2014.

[4] Christian Naesseth, Fredrik Lindsten, and Thomas Schon. Nested sequential monte carlo methods. In
International Conference on Machine Learning, pages 1292–1301, 2015.

[5] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. Probabilistic
inference by program transformation in Hakaru (system description). In International Symposium on
Functional and Logic Programming, pages 62–79. Springer, 2016.

[6] PyTorch. Torch Script. https://pytorch.org/docs/master/jit.html.

[7] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient Estimation Using Stochastic
Computation Graphs. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages 3528–3536. Curran Associates, Inc., 2015.

[8] Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani. Functional programming for modular bayesian
inference. Proc. ACM Program. Lang., 2(ICFP):83:1–83:29, July 2018.

[9] Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann,
Sean K. Moss, Chris Heunen, and Zoubin Ghahramani. Denotational Validation of Higher-order Bayesian
Inference. Proc. ACM Program. Lang., 2(POPL):60:1–60:29, December 2017.

[10] Uber AI Labs. Pyro documentation. http://docs.pyro.ai/en/dev/ops.html#pyro.ops.contract.ubersum.

[11] Robert Zinkov and Chung-chieh Shan. Composing inference algorithms as program transformations.
Uncertainty in Artificial Intelligence, 2017.

5

	Introduction
	Model and Inference Composition
	Model Combinators
	Inference Composition
	Evaluation
	Extensions and Future Work

