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Introduction

. . ;N ;
@ Assume you are given some training data {x’,y’}i:1 where x'€ R
and y' can take C different values.

e Given an input test data x, you want to predict/estimate the output y
associated to x.

@ A common approach consists of using

ki Py =K Py =K
P e Gy = el =)

@ This requires modelling and learning the parameters of the class
conditional density of features p (x|y = k).

@ This can be tedious for complicated problems.
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Logistic Regression

e Discriminative model: we model and learn directly p (y = k| x) and
bypassing the introduction of p (x| y = k).
e Consider the following model for C = 2 (binary classification)

ply=1xw) = 1-p(y=0[xw)
= g(wa)
wherew =(wg - wg)', x=(x0 -+ xg)' so
d
z:wa:Wo+ZWij
j=1

and g is a “squashing” function: g : R — [0, 1].
@ Logistic regression corresponds to
g(2)

_ 1 __exp (z)
l+exp(—z) 1l4exp(z)
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Logistic Function
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(Left) logistic or sigmoid function (Right) logistic regression for x=SAT
score and y=pass/fail class (solid black dots are the data), open red
circles are predicted probabilities.
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Logistic Regression

@ The log odds ratio satisfies

— ply=1xw) 1
LOR (x) = log by =0/ xw) =W X

so the logistic parameters are easily interpretable.

o If w; > 0, then increasing x; makes y = 1 more likely while decreasing
xj makes y = 0 more likely (and opposite if wj = 0). w; = 0 means
xj has no impact on the outcome.

o Logistic regression partitions the input space into two regions whose
decision boundary is {x :LOR (x) =0} = {x:w'x =0}

@ Simple model of a neuron: it forms a weighted sum of its inputs and
the “fires” an output pulse if this sum exceeds a threshold. Logistic
regression mimics this as you can sort of think of it as a process
which “fires” if p(y = 1|x,w) > p(y = 0|x, w) equivalently if
LOR (x) > 0.
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W= (1,4) W= (5,4)

W-(2,3)

Plots of p(y = 1| wix; + wax2) . Here w = (wy, wy) define the normal to
the decision boundary. Points to the right have w'x >0 and to the left
have w'x <0.
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Using Basis Functions for Logistic Regression

@ Similarly to regression, we can use basis functions; i.e.
ply=1xw) =g (w(x)

where w = (wy -+ Wp)', @ (x) = (P1 (x) - D (x))".

@ For example, if x €R then we can pick

e For x €RY, we can pick some radial basis functions

-
D;(x) =exp | — (X _ yj) (X _ yj)

202
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(left) Logistic regression in the original feature space x = (xi, x2). (right)
Logistic regression obtained after performing a 2nd degree poly expansion
P (x) = (1,x1,x2,xl2,x22) )
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Example
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(left) Logistic regression for ® (x) = (1,x1,x2, ...,xllo, leo). (right)
Logistic regression using 4 radial basis functions with centers ; specified
by black crosses.
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MLE Parameter Learning for Logistic Regression

@ To learn the parameters w, we can maximize w.r.t w the (conditional)
log-likelihood function

o) = tog o (] 3 w) = 1oe] o (/. w)

N . .
= ) logp (v|x, w)
i=1

Iw) = Y ylogp(y =1|x",w)+ (1—y')logp(y' =0|x' w)
i1

I
.Mz

I
—

(1—y)w'd(x Zlog(l—}—exp( wie (x)))

e Good news: /(w) is concave so there is no local maxima.
@ Bad news: there is no-closed form solution for W g.

1
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Gradient Ascent

@ Gradient ascent is one of the most basic method to maximize a
function.

@ It is an iterative procedure such that at iteration t :
t) _ o (t—1
wit = w4y Vil (w)] e

where the gradient is

Val (w) = [ 2w dl) }T

ow; owp,

and 77 > 0 is the learning rate.
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Gradient Descent Example

Gradient descent on a simple function, starting from (0,0) for 20 steps
using 7 = 0.1 (left) and 7 = 0.6 (right)
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Gradient Ascent for Logistic Regression

o We have
Vi (w) = é (V-g(we)))ox) =T (y-p

where [®]; . = D, (x), y=(y"--- yN)T and
p=(gWe(x)) - gwie ")
@ So in vector-form, we will do
Wl = WD L Vil () e
— witD @ (y _”(t—l))

where u(t=1) corresponds to # computed using w(t=1),
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Iterative Reweighted Least Squares

e Newton's method is a generic (second order) optimization algorithm
which converges faster than the simple gradient algorithm. It
proceeds as follows at iteration t

w® = wle D — [921 (w )] w7 (wlt0)

@ We have
V3 (w) = —®TUD

with U a diagonal matrix with diagonal element
U], =g (WTCID (xi)) [1 —g <wTCI> (x'))} :
@ It can be written as

w(t) — (q;T U(f—l)q>>71 dT Y1)

(o ] o)
t—1)

where U(t=1) and u(t=1) corresponds to U and p with w(t=1).
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Regularized Logistic Regression via Gaussian Prior

o Similarly to regression, we can regularize the solution by assigning a
Gaussian prior to w

pwzﬁmmzﬁNWﬂm

@ This pushes the parameters w towards zero and can prevent
overfitting. In this case, we have

Wyap = argmax P(W|{X'VY'},-:1>
T
w'w
= / - .
argmax [ (w) o

@ Wy ap can be computed iteratively using
w1 4 1 {_/\f1w(t71)+ o7 (y _”(tq))}

@ Regularization parameter can be estimated using cross-validation or
by maximizing marginal likelihood.
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Regularized Logistic Regression via Laplace Prior

@ Similarly to regression, we can regularize the solution by assigning a
Gaussian prior to w

@ This pushes the parameters w towards zero and can prevent
overfitting. In this case, we have

N
Wpap = argmax p (W’ {X"y’}i:1>
= argmax /(w Z |wi| -

@ The objective function is convex and efficient procedures have been
developed to compute wyap. Similarly to the regression case, this
can lead to sparse solution; e.g. you can have wy yap = 0 exactly.

@ Regularization parameter can be estimated using cross-validation or
by maximizing marginal likelihood.
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Multinomial Logistic Regression

@ Consider now the case where C > 2. We could consider the following
generalization

p(y=clx {we}Cy) =

but this is not identifiabICe as
p(y=clx{we+w}) =p(y=clx{w},).

exp (W] ® (x))

forc=1,...,C
Y pexp (w] P (x))

o Hence we set we = (0 --- 0)" to obtain
T
o
p(y:c|x, {wc}f;f) = exp( <XT)) forc=1,..C
1+ lexp (w] @ (x))

1
1+ Y exp (Wi (x))

@ The (conditional) log-likelihood is concave w.r.t {WC}CC;11 so MLE
estimates can be computed using gradient.

p(y=Clxiw}l) =
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Example

Linear Mutinomial Logistic Regression Kernel-RBF Muttinomial Logistic Regression

(left) Some 5 class data in 2d (center) Multinomial logistic regression in
the original feature space x = (xi, x2) (right) RBF basis functions with
bandwidth 1 using m = 1+ N. We use all the data points as centers.
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Full Bayesian Analysis of Logistic Regression

@ Even for Gaussian priors on w, one cannot compute

(L] B w) e (wl )

iV N < WV A) =
P({y };:1’{ }/=1 A) p({yi}ll'\lzl‘{xi}’,'\lzl'A)

where

p (L] I A) = [ o (L] 0 w) p(wi)

o Contrary to regression, there is no closed form Bayesian analysis
possible.

o If you want to do Bayesian inference, then approximations are
necessary.

dw
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