
Machine Learning: Waseda University
Kernel Methods

AD

June 2011

AD () June 2011 1 / 34



Feature space

Most/all of the algorithms we have discussed rely on a finite
dimensional vector of features Φ (x).
In this way, a model that is linear in x may be made nonlinear by
using a nonlinear mapping Φ (x).
In many situations, we only rely on Φ (x) through the scalar product

k
(
x, x′

)
= ΦT (x)Φ

(
x′
)

This is a symetric function of its arguments

k
(
x, x′

)
= k

(
x′, x

)
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Kernels

A valid kernel is a function k(x, x′) that corresponds to a scalar
(inner) product in some (perhaps infinite dimensional) feature space,
i.e. k(x, x′) = ΦT (x)Φ (x′).
For example assume x = (x1, x2) and

k
(
x, x′

)
=

(
xTx′

)2
=

(
x1x ′1 + x2x

′
2

)2
= x21

(
x ′1
)2
+ x22

(
x ′2
)2
+ 2x1x ′1x2x

′
2

=
(
x21 ,
√
2x1x2, x22

) ((
x ′2
)2
,
√
2x ′1x

′
2,
(
x ′2
)2)

= ΦT (x)Φ
(
x′
)

where
Φ (x) =

(
x21 ,
√
2x1x2, x22

)
.
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Positive Semi-definite Kernels

Losely speaking, a kernel k(x, x′) can be written as a scalar product
possibly in an infinite-dimensional space if it is positive semidefinite;
that is for any n, (x1, ..., xn) ∈ X n and (α1, ..., αn) ∈ Rn then

∑
i

∑
j

αiαjk (xi , xi ) ≥ 0

Indeed for continuous symetric positive semidefinite kernel, we have
Mercer’s theorem. There exists a positive sequence {λi} and
functions Φi (x) such that

k
(
x, x′

)
=

∞

∑
i=1

λiΦi (x)Φi
(
x′
)
.

More later...
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Kernel trick

In many situations, as mentioned earlier, we actually only use Φ (x)
through ΦT (x)Φ (x′) .
Moreover it is often very diffi cult to design good features Φ (x) .
Wherever we have ΦT (x)Φ (x′) , we can ‘kernelize’the algorithm
and replace it by k (x, x′) where k (x, x′) is a p.s.d. kernel.
So we can use infinite number of features.

We can think of k (x, x′) as a similarity measure: it can be easier to
design k (x, x′) than Φ (x) .
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Dual Representation of Linear Regression

Consider

J(w) =
1
2

N

∑
n=1
(wTΦ(xn)− tn)2 +

λ

2
wTw

where λ > 0.

By setting ∂J
∂w = 0 we obtain

w = − 1
λ
(wTΦ(xn)− tn)Φ(xn) =

N

∑
n=1

anΦ(xn) = ΦTa

where an = − 1
λ (w

TΦ(xn)− tn) and Φ is the design matrix

Φ =

 ΦT (x1)
...

ΦT (xN )


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We now write w = ΦTa and plug this expression in J(w) so

J(a) =
1
2
aTΦΦTΦΦTa− aTΦΦTt+

1
2
tTt− λ

2
aTΦΦTa

=
1
2
aTKKa− aTKt1

2
tTt+

λ

2
aTKa

where K = ΦΦT.

K is the Gram matrix

[K ]i ,j = ΦT(xi )Φ(xj )

Note that by construction, K is a p.s.d. matrix; that is αTKα ≥ α for
all α.
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Solving ∂J
∂a = 0 yields

a = (K + λIN )
−1t

It follows that

y(x,w) = wTΦ(x) = aTΦΦ(x) = k(x)T(K + λIN )
−1t

where
k(x) = (k(x, x1), ..., k(x, xN ))

T

We now have to invert an N ×N matrix instead of an M ×M matrix
(where Φ(x) ∈ RM ).

Now if we let k(x, x′) be a p.s.d. then you can still define y(x,w)
whereas M is infinite!
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Constructing kernels

Mercer’s theorem reformulated: k (x, x′) is a valid kernel iff the Gram
matrix K = [k(xn, xm)] is positive semi definite for all possible {xn}.
A matrix A is psd iff αTAα ≥ 0 for all α.

The corresponding features Φ(·) are eigenfunctions of k, i.e.∫
k(x, x′)Φi (x)dx = λiΦi (x).
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Example Kernels

Stationary: k(x, x′) = k(x− x′).
Isotropic: k(x, x′) = k(||x− x′||).
Monomials of order M: k(x, x′) = (xTx′)M .
Monomials of order up to M: k(x, x′) = (xTx′ + c)M

“Gaussian” k(x, x′) = exp(−||x− x′||2/2σ2).

Sigmoid “kernel” (does not satisfy Mercer’s theorem!):
k(x, x′) = tanh(axTx′ + b).
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Combining Kernels

Assume k1(x, x′) and k2(x, x′) are p.s.d. kernels then we can combine
them in multiple ways to obtain new kernels.

For any α, β > 0 k(x, x′) = αk1(x, x′) + βk2(x, x′) is p.s.d.
k(x, x′) = f (x) k1(x, x′)f (x′) is p.s.d.
k(x, x′) = exp (k1(x, x′)) is p.s.d.
k(x, x′) = k1(x, x′)k2(x, x′) is p.s.d.
k(x, x′) = k1(Φ (x) ,Φ (x′)) is p.s.d.
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Gaussian kernel

The Gaussian kernel exp(−||x− x′||2/2σ2) might be the most used
kernel in practice.

It is not limited to Euclidean space. Consider that

||x− x′||2 =
(
x− x′

)T (x− x′)
= xTx+ x′Tx′ − 2xTx′

then we can consider a nonlinear kernel where

||x− x′||2 ←→ k1 (x, x) + k1
(
x, x′

)
− 2k1

(
x, x′

)
We then consider the kernel

k(x, x′) = exp
(
− 1
2σ2

(
k1 (x, x) + k1

(
x, x′

)
− 2k1

(
x, x′

)
)
))

Any algorithm where a distance appears can be kernelized...
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Kernels on graphs, sets, strings etc

Over the past few years, there has been a lot of work on defining
kernels between non-Euclidean objects.

The aim is to come up with a p.s.d. kernel.

It is not though because a kernel is p.s.d. that it is a ‘good’measure
of similarity.
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Kernels derived from probabilistic models

Generative models (eg HMMs) provide a way to deal with
variable-dimension objects (eg strings of different lengths).

We can then use these for discriminative learning by defining kernels.

For example for a generative model p (x), we could define

k(x, x′) = p (x) p
(
x′
)

or
k(x, x′) =

∫
p (x| θ) p

(
x′
∣∣ θ
)
p (θ) dθ
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Fisher Kernel

Consider a parametric generative model p (x| θ) .
We introduce the kernel which uses a feature vector of size |θ|

k(x, x′) = g (θ, x) F−1g
(
θ, x′

)
where

g (θ, x) = ∇θ log p (x| θ)
F = Ex[g (θ, x)

T g
(
θ, x′

)
]

F is the Fisher information matrix, the kernel is invariant to the
parametrization of θ.
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Gaussian Processes

A stochastic process is a collection of RVs indexed by the input vector
x. A Gaussian Process is a stochastic process for which
(y(x1), . . . , y(xn)) is jointly Gaussian for any {xn}.
A GP can be characterized by its mean function m(x) (often assumed
0) and its covariance function k(x, x′); i.e.

E [y(x)] = m (x) , cov
[
y(x), y(x′)

]
= k(x, x′)

For any {xn}, we have

y(x1:n) ∼ N (m(x1:n),K (x1:n))

where y(x1:n) = (y(x1), . . . , y(xn))T,
m(x1:n) = (m(x1), . . . ,m(xn))T,

[K (x1:n)]i ,j = k(xi , xj ).

A GP gives a prior on the space of functions.
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Samples from the prior for Matern covariance
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Samples from the prior for a periodic covariance
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Sample paths from the prior for l > 1 (left) and l < 1 (right) where
kν(x, x′) = exp

(
−2 sin2 (π (x− x′)) /l2

)
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Samples from the prior with a Gaussian covariance
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Function drawn at random from a Gaussian Process with Gaussian covariance
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Bayesian linear regression & Gaussian Processes

Consider the linear regression model where

y (x,w) = wTΦ(x)

and we set w ∼N (0, α−1I ).
y (x,w) is a linear combination of Gaussians rvs so it is a GP with

E [y (x,w)] = E
[
wT
]

Φ(x) = 0

and

cov
[
y (x,w) , y

(
x′,w

)]
= ΦT(x)E

[
wwT

]
Φ(x)

= α−1ΦT(x)Φ(x′).

Instead of introducing a prior on y (x) by defining a prior on w and
introducing a finite dimensional vector of features, we can directly
introduce a GP prior on y (x).
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Bayesian regression with Gaussian Processes

Consider the data D = {xn, tn}Nn=1 where

tn = t (xn) = y (xn) + εn where εn ∼ N
(
0, σ2

)
and

y (x) ∼ GP
(
m (x) = 0, k

(
x, x′

))
We have

y (x)|D ∼ GP
(
mpost (x) , kpost

(
x, x′

))
where

mpost (x) = k (x, x1:N )
[
K (x1:N , x1:N ) + σ2I

]−1 t1:N ,

kpost
(
x, x′

)
= k

(
x, x′

)
−

k (x, x1:N )
[
K (x1:N , x1:N ) + σ2I

]−1
k
(
x1:N , x′

)
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From the prior to the posterior
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Random draws from the prior (left) and the posterior (right): The shaded
area represents the pointwise mean +/- twice the standard deviation.
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Predictive distribution and Interpretation

Given x∗, we have

p ( t∗| x1:N , t1:N , x∗) = N
(
t∗; µ (x∗) , σ2 (x∗)

)
where

µ (x∗) = k (x∗, x1:N )
[
K (x1:N , x1:N ) + σ2I

]−1 t1:N ,

σ2 (x∗) = k (x∗, x∗) + σ2

−k (x∗, x1:N )
[
K (x1:N , x1:N ) + σ2I

]−1
k (x1:N , x∗)

The mean µ (x∗) is linear in two ways

µ (x∗) =
n

∑
i=1
ai ti =

n

∑
i=1
biK (x∗, xi )

The variance is of the form

σ2 (x∗) = prior variance - positive terms dependent on x1:N

Remark: the variance is independent of the observations t1:N .
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Computational Complexity

The central computation operation in using GP involves inverting a
N ×N matrix. Standard methods requires O

(
N3
)
operations.

In the finite basis function model with M basis, we have to invert a
M ×M matrix.

So if the number M of basis functions is smaller than N then we are
better off with the standard method.

If the kernel considered corresponds to an infinite M, we do not have
the choice!

Several techniques have been developed to perform approximate
inference.
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Learning the hyperparameters

In practice, we often parametrize the kernel by some parameters θ.

To estimate θ, we can maximize the marginal log-likelihood

log p (t1:N | θ, x1:N ) = −
1
2
log
∣∣∣K θ
N

∣∣∣− 1
2
tT1:N

[
K θ
N

]−1
t1:N −

N
2
log 2π

using
[
K θ
N

]
i ,j = K

θ (xi , xj ).
The gradient of the log-likelihood is given by

∂ log p (t1:N | θ, x1:N )

∂θi
= −1

2
Tr

([
K θ
N

]−1 ∂K θ
N

∂θi

)

+
1
2
tT1:N

[
K θ
N

]−1 ∂K θ
N

∂θi

[
K θ
N

]−1
t1:N

The log-likelihood is typically not concave in θ.
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Example: Fitting the length scale parameter

Parameterized covariance function: k (x, x′) = ν exp
(
− ‖x−x

′‖2
l

)
.

­ 10 ­ 8 ­ 6 ­ 4 ­ 2 0 2 4 6 8 10
­ 0.5

0

0.5

1

1.5
observations
too short
good length scale
too long

The mean posterior predictive distribution is plotted for 3 different
length scales (the green curve corresponds to optimizing the
likelihood). Note that we can get an almost perfect fit for a small
length scale but the marginal likelihood does not favour it.
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Using a finite number of basis functions can be dangerous
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Automatic Relevance Determination

We can extend the technique described before to select automatically
the relevant input variables; i.e. say

k
(
x, x′

)
= ν20 exp

(
−∑D

i=1 (xi−x ′i )
2

2ν2i

)
where θ =

(
ν20, ν

2
1, ..., ν

2
D

)
.

We have
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Gaussian Processes for Binary Classfication

The input is given by x and the output t ∈ {0, 1} with

Pr ( t = 1| x) = g (a (x)) .

We model a (x) through a Gaussian process define by

E [a (x)] = 0 and cov
[
a (x) a

(
x′
)]
= k

(
x, x′

)
= m

(
x, x′

)
+ νδ

(
x− x′

)
We are interested in computing

p ( t∗| x1:N , t1:N , x∗) =
∫
p ( t∗| a (x∗)) p (a (x∗)| t1:N ) da (x∗)

=
∫
g (a (x∗)) p (a (x∗)| t1:N ) da (x∗)
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Laplace Approximation

We have

p (a (x∗)| t1:N ) =
∫
p (a (x∗) , a (x1:N )| t1:N ) da (x1:N )

=
∫
p (a (x∗)| a (x1:N )) p (a (x1:N )| t1:N ) da (x1:N )

We have

p (a (x∗)| a (x1:N )) = N (a (x∗) ; kT (x∗, x1:N )K
−1
N a (x1:N ) ,

k (x, x)− kT (x∗, x1:N )K
−1
N k (x∗, x1:N ))

We make a Gaussian approximation of p (a (x1:N )| t1:N ) using
Laplace.
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The unnormalized posterior is given by

log p (a (x1:N ) , t1:N )

= log p (a (x1:N ) , t1:N ) + log p (t1:N | a (x1:N ))

= −1
2
aT (x1:N )K

−1
N a (x1:N )−

N
2
log (2π)− 1

2
log |KN |

+tT1:Na (x1:N )−
N

∑
n=1

log (1+ exp a (xN )) + cst

as g (a)t (1− g (a))1−t = exp (at) g (−a)
We perform a Taylor expansion of the log p (a (x1:N ) , t1:N ) around its
mode which can be computed using a Newton-Raphson method where

∇ log p (a (x1:N ) , t1:N ) = t1:N − σ1:N −K−1N a (x1:N )

and
∇∇ log p (a (x1:N ) , t1:N ) = −WN −K−1N

where WN =diag(g (a (xN )) (1− g (a (xN )))) .
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The Newton-Raphson formula takes the form

a(k+1) (x1:N ) = KN (I +WNKN )
−1 {t1:N − σ1:N +WNa (x1:N )}

Once the mode a∗ (x1:N ) has been found, we compute the associated

H = −∇∇ log p (a (x1:N ) , t1:N ) = WN +K
−1
N

The Gaussian approximation is given by

q (a (x1:N )) = N (a (x1:N ) ; a
∗ (x1:N ) ,H)

It follows that we obtain a Gaussian approximation of p (a (x∗)| t1:N )
with

E (a (x∗)| t1:N ) = k (x∗, x1:N ) (t1:N − µ1:N ) ,

V (a (x∗)| t1:N ) = k (x∗, x∗)

−kT (x∗, x1:N )
(
W−1N +KN

)−1
k (x∗, x1:N )
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Now we finally use the approximation combining logistic and Gaussian

p ( t∗| x1:N , t1:N , x∗) =
∫
g (a (x∗)) p (a (x∗)| t1:N ) da (x∗)

which states that∫
g (a)N

(
a; µ, σ2

)
da ' g

(
µ√

1+ πσ2/8

)
The Laplace approximation also yields an approximation of the
log-marginal likelihood

log p (t1:N ) ' log p (a∗ (x1:N ) , t1:N )−
1
2
|H |+ N

2
log (2π)
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Example of Binary Classification using GP

Left: Optimal decision boundary (green) and GP classifier (black).
Right: predicted posterior proba for the blue and red classes
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