
Machine Learning - Waseda University
Lecture 4: Bayesian approaches to parameter estimation

and model selection

AD

June 2011

AD () June 2011 1 / 20



Bayesian linear regression

We have the model

t̂ (x) = wTφ(x) = w0 +
M−1
∑
j=1

wjφj (x)

and in a matrix-vector form

t = φw+ ε

We want to present a full Bayesian analysis in this context.
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Likelihood and Prior

Likelihood
p(D |w, σ2) = N (D;φw, σ2I );

i.e. we assume εn
i.i.d.∼ N

(
0, σ2

)
where λ = 1/σ2 is the associated

so-called precision
Prior

p(w, σ2) = p(w, σ2)p(σ2)

where
p(w| σ2) = N (w;m, σ2V )

and
p(σ2) = IG

(
σ2; a, b

)
which is written as

p(w, σ2) = NIG(w, σ2;m,V , a, b)
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Gamma distribution

Gamma with shape a > 0 and rate (inverse scale) b > 0

p(λ|a, b) = 1
Γ(a)

ba λa−1 exp(−bλ)
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Gamma or inverse gamma?

We can either put a prior on the variance σ2 or on the precision
λ = 1/σ2.
An easy to handle prior for λ is λ ∼ Ga(a, b),
a > 0 is shape, b > 0 is inverse scale

G(λ; a, b) =
1

Γ(a)
baλa−1 exp(−bλ)

E[λ] = a/b

The conjugate prior for σ2 is σ2 ∼ IG(a, b),
a > 0 is shape, b > 0 is scale

IG(σ2; a, b) =
1

Γ(a)
ba(σ2)−(a+1) exp(−b/(σ2))

E[σ2] = b/(a− 1)
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Posterior Distribution for Bayesian Linear Regression

We have

p(w, σ2|D) = p(D |w, σ2)p(w, σ2)
p(D)

.

After tiedous calculations, we obtain

p(w, σ2|D) = NIG(w, σ2;m∗,V ∗, a∗, b∗)

with

m∗ = V ∗(V−1m+φT t)

V ∗ =
(
V−1 +φTφ

)−1
a∗ = a+N/2

b∗ = b+
1
2
(mTV−1m+ tT t− (m∗)T (V ∗)−1m∗)
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Evidence

Marginal likelihood or evidence is given by

p(D) =
∫
p(D |w, σ2)p(w, σ2)dw

=
|V ∗|1/2baΓ(a∗)

|V |1/2(b∗)a∗Γ(a)πN/2

As evidence is available in closed form, additional hyper-parameters
(a, b,m,V ) can be estimated if necessary by maximizing p(D).

Take a simple form if V = δ2
(
φTφ

)−1
; this is the so-called g-prior.

We have

p(D) =
|
(
δ−2 + 1

) (
φTφ

)−1 |1/2baΓ(a∗)

|δ2
(
φTφ

)−1 |1/2(b∗)a∗Γ(a)πN/2

=

(
1

1+ δ2

)M/2 baΓ(a∗)
(b∗)a∗Γ(a)πN/2
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Posterior predictive distribution

The posterior predictive density is a Student or t-distribution

p(t|x,D) =
∫
p(t|x,w, σ2)p(w, σ2|D)dwdσ2

= St(t|φT (x)m∗, b∗(1+φT (x)V ∗φ (x)), a∗)

and

St(t|µ, v , c) = Γ(c/2+ 1/2)
Γ(c/2)

√
πv

[
1+

(t − µ)2

v

]−(c+1)/2
where E (T ) = µ and V (T ) = v/(c − 2).
I follow the parameterization of Denison p29. This is different from
Bishop!
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Student distribution is a mixture of Gaussians

The Student distribution is an infinite mixture of Gaussians with
different variances

St(t; µ,λ, ν) =
∫
N (t; µ, τ)G(τ; a, b)dτ

where ν = 2a and λ = a/b and StB is Bishop’s parameterization

StB (t; µ,λ, ν) =
Γ(ν/2+ 1/2)

Γ(ν/2)

(
λ

πν

)1/2 [
1+

λ(t − µ)2

ν

]−(ν+1)/2
where E (T ) = µ and V (T ) = 1

λ
ν

ν−2 .

Hence a student distribution has wider tails than a Gaussian.

As ν→ ∞, St(y ; µ,λ, ν)→ N (y ; µ, precision = λ).
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Student has wider tails than Gaussian
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Robustness of student distribution to outliers
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Model Selection

Let model Mk (⇔ M = k) be polynomial regression of order k:

t̂ (x) = wTφ(x) =
M

∑
j=0
wjx j

Which model should we choose?
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Figure: As M increases, the model overfits in a MLE framework.
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Bayesian Model Selection

We select VM = δ2IM+1 where δ2 = 10, a = b = 1.

Now we have

p (Mk |D) =
p (D |Mk ) p (Mk )

∑Mmax
l=0 p (D |Ml ) p (Ml )

If we defined p (Mk ) =
1

kmax+1
then picking the model having the

highest posterior proba is picking the model have highest evidence.
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Bayesian Model Comparison

If we wish to compare two models, Mi and Mj , we can compute their
posterior odds

p(Mi |D)
p(Mj |D)

=
p(D |M = i)
p(D |M = j)

× p(M = i)
p(M = j)

We can cancel out any prior preference of model i to j by computing
the Bayes factor

BF (Mi ,Mj ) =
p(Mi |D)
p(Mj |D)

/
p(Mi )

p(Mj )
=
p(D |Mi )

p(D |Mj )

If the prior on models is uniform, so p(Mi ) = p(Mj ), and if each
model has prior p(w, σ2|Mi ) = NIG(w, σ2;mi ,Vi , a, b), then

BF (Mi ,Mj ) =
|Vj |1/2|V ∗i |1/2(b∗j )

a∗

|Vi |1/2|V ∗j |1/2(b∗i )
a∗

where a∗ = a∗i = a
∗
j = a+N/2.
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Figure: Evidence p (D |M = k) and regression functions for random draws from
p (w|D,M = k).
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Bayesian Occam’s razor

Amazingly, even if we have no explicit penalty on complex models (so
P(M = k) is uniform), merely by integrating over all possible
parameter values (i.e., by using
P(D |M = k) =

∫
P(D,w, σ2|M = k)dwdσ2), we automatically

prefer models that are not too complex (provided they fit the data
well).

This is called the Bayesian Occam’s razor. (Occam’s razor says: “if
two models are equally good at predicting, pick the simpler one”.)
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Another Example
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Beyond the Bayesian Folkore

Testing hypothesis in a Bayesian way is attractive.... but be careful to
vague priors!!!

Assume you have X |
(
µ, σ2

)
∼ N

(
µ, σ2

)
where σ2 is assumed

known but µ (the parameter θ) is unknown. We want to test
H0 : µ = 0 vs H1 : µ ∼ N

(
0, τ2

)
then

B10 (x) =
p (x |H1)
p (x |H0)

=

∫
N
(
x ; µ, σ2

)
N
(
µ; 0, τ2

)
dµ

N (x ; 0, σ2)

=
σ√

σ2 + τ2
exp

(
τ2x2

2σ2 (σ2 + τ2)

)

So what??

AD () June 2011 18 / 20



Lindley’s paradox

You might be tempted to use vague priors; that is take τ2 → ∞.
However, we have for any x

lim
τ2→∞

B10 (x) = 0

So we will always select hypothesis H0 even if x = 109.

Vague priors should be banned for Bayesian hypothesis testing/model
selection.
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Lindley’s paradox for Bayesian linear regression

Consider the polynomial regression case where model Mi corresponds
to polynom of degree i .

Consider the case where we take V = δ2
(
φTφ

)−1
then

BF (Mi ,Mj ) =
|Vj |1/2|V ∗i |1/2(b∗j )

a∗

|Vi |1/2|V ∗j |1/2(b∗i )
a∗

=

(
1

1+ δ2

) (i−j)
2 (b∗j )

a∗

(b∗i )
a∗

It follows that if i > j then

lim
δ2→∞

BF (Mi ,Mj ) = 0

With a vague prior
(
δ2 → ∞

)
, we would always select M0! But you

can pick δ2 maximizing the evidence!
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