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Bayesian linear regression

@ We have the model
R . M-1
t(x) =w'¢(x) =wo+ ) wg;(x)
j=1

and in a matrix-vector form
t=¢w+e

@ We want to present a full Bayesian analysis in this context.
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Likelihood and Prior

o Likelihood
p(D|w,c?) = N(D; pw, 7?1);

i.e. we assume €, ~ N (0, (72) where A = 1/02 is the associated
so-called precision

@ Prior
p(w,0?) = p(w,0?)p(c?)
where
p(w|c?) = N(w; m,c?V)
and

p(c?) =IG (c?;a,b)
which is written as

p(w, (72) =NZIG(w, o> m,V,a, b)
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Gamma distribution

e Gamma with shape a > 0 and rate (inverse scale) b > 0

1

p(Ala.b) = 15

b* A* lexp(—bA)
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Gamma or inverse gamma?

@ We can either put a prior on the variance ¢ or on the precision
A=1/c2

@ An easy to handle prior for A is A ~ Ga(a, b),
a > 0 is shape, b > 0 is inverse scale

G(Aiab) — r<13)mal exp(—bA)
E[A] = a/b

e The conjugate prior for ¢ is 0? ~ ZG(a, b),

a > 0 is shape, b > 0 is scale
TG(0%ab) = r(la>ba(a2)—<a+1>exp(—b/(a2)>

E[c?] = b/(a—1)
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Posterior Distribution for Bayesian Linear Regression

@ We have
p(D|w,o?)p(w,0?)

p(D)

2
p(w,0°|D) =
@ After tiedous calculations, we obtain

p(w,(Tz\D) = NIQ(W,(72; m*, V* a*, b*)

with
m* = V*(V*1m+ q)Tt)
-1
a* = a+N/2

1
b* = b+ E(mTv—lertTt — (m*)T(v)!

m")
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o Marginal likelihood or evidence is given by

p(D) = [ p(Dlw,c*)p(w,c?)dw
|V*‘1/2bar(a*)
V7257 T ()72
@ As evidence is available in closed form, additional hyper-parameters
(a, b, m, V) can be estimated if necessary by maximizing p(D).

o Take a simple form if V = §? (ngq))_l; this is the so-called g-prior.
We have

(072 +1) (p7 ) " V26T (a")
62 (T ) " [1/2(b*)7 T (a) tN/2

B 1 \M?  pr(a)
N <1+(52> (b*)2'T(a)7tN/2

p(D) =
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Posterior predictive distribution

@ The posterior predictive density is a Student or t-distribution

p(t|x, D) = /p(t|x,w,02)p(w,(72|D)dwd(72
= St(tlgp” (x) m*, b (1+¢7 (x) V¢ (x)),a")

and

St(t|p, v, c) =

I'(c/2+1/2) (t—p)2]et0/2
reme [ ]
where E(T) =pand V(T) =v/(c—2).

o | follow the parameterization of Denison p29. This is different from
Bishop!

v
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Student distribution is a mixture of Gaussians

@ The Student distribution is an infinite mixture of Gaussians with
different variances

St(t; A, v) = /N(t;y,r)g(r; a, b)dt
where v = 2a and A = a/b and Stg is Bishop's parameterization

I(v/2+1/2) ( A )”2 [1 N A(—uw S
v

Stg(t;u, A v) = (/) Py

where E(T) =pand V(T) = -1
@ Hence a student distribution has wider tails than a Gaussian.

e Asv — oo, St(y;u, A, v) — N(y; u, precision = A).
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Student has wider tails than Gaussian

05

vV — 0
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Robustness of student distribution to outliers
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Model Selection

o Let model My (< M = k) be polynomial regression of order k:

M
F00 = w90 = L e

@ Which model should we choose?
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Bayesian Model Selection

o We select V) = (52IA,;+1 where 62 =10, a= b = 1.

@ Now we have

p(D| M) p (M)

p(My| D) = Y Mus o (D| M) p (My)

o If we defined p (M) = ﬁ then picking the model having the
highest posterior proba is picking the model have highest evidence.
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Bayesian Model Comparison

o If we wish to compare two models, M; and M;, we can compute their
posterior odds

p(Mi|D) _ p(DIM=i) p(M=i)

= 5 X ;
p(M;|D) — p(DIM =j) ~ p(M = j)
@ We can cancel out any prior preference of model i/ to j by computing
the Bayes factor

p(Mi|D) ,p(M;) _ p(D|M;)
BF(M;, M;) = / _
7 p(MID)" p(M;) — p(DIM))

o If the prior on models is uniform, so p(M;) = p(M;), and if each
model has prior p(w, 0?|M;) = NZG(w,0?; m;, V;, a, b), then
V1217 2 (6>

TV AVAI AT
| Vit 2|V [H2(br)?

BF (M;, M)

where a* = af = af =a+ N/2.
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Model Evidence

Figure: Evidence p (D| M = k) and regression functions for random draws from
p(w|D, M= k).
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Bayesian Occam’s razor

e Amazingly, even if we have no explicit penalty on complex models (so
P(M = k) is uniform), merely by integrating over all possible
parameter values (i.e., by using
P(DIM = k) = [ P(D,w,0?|M = k)dwdo?), we automatically
prefer models that are not too complex (provided they fit the data
well).

@ This is called the Bayesian Occam'’s razor. (Occam's razor says: “if
two models are equally good at predicting, pick the simpler one”.)
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Another Example
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Beyond the Bayesian Folkore

@ Testing hypothesis in a Bayesian way is attractive.... but be careful to
vague priors!!!
o Assume you have X| (,0?) ~ N (p,0?) where 02 is assumed

known but y (the parameter ) is unknown. We want to test
Ho:p=0vs Hy: j ~ N (0,7%) then

Bio (x) = p(x|H) [N (x;pu,0®) N (1;0,7%) dp
10  p(x|Hy) N (x;0, 02)

2,2

(% X
N (202 (02 + T2>)

So what??
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Lindley's paradox

@ You might be tempted to use vague priors; that is take T2 — oo.
@ However, we have for any x

lim BlO (X) =0

Tc—00

@ So we will always select hypothesis Hy even if x = 10°.

@ Vague priors should be banned for Bayesian hypothesis testing/model
selection.
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Lindley's paradox for Bayesian linear regression

o Consider the polynomial regression case where model M; corresponds
to polynom of degree i.

o Consider the case where we take V = §° (¢T¢)_1 then

‘V ‘1/2|V*|1/2 b*)ax
J

(b))
!VII/QIV*IW(bi")"’*

B 1 (b*)a*
- <1+52> (b7)

J
lim BF (M;, M;) =0

* ) ax
bl
52 00

BF (M;, M;)

o It follows that if / > j then

o With a vague prior ((52 — oo), we would always select My! But you
can pick 62 maximizing the evidence!
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