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Regression

Assume you are given some training data {xn, tn}Nn=1 where xn ∈ Rd

and tn ∈ Rc .

Given an input test data x, you want to predict/estimate the output t
associated to x.
Applications:

x: location, t sensor reading.
x: stock at time k − d , k − d + 1, ..., k − 1, t: stock at time k .
x: facebook activity, number of friends etc., t: budget spent on
entertainment.
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Formalization

We want to learn a mapping/predictor based on {xn, tn}Nn=1:

t̂ (x) : Rd → Rc

which allows us to predict the response t given a new input x.
Linear regression is the simplest approach to build such a mapping
and is ubiquitous in applied science.
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Linear Regression: The Simplest Case

For sake of simplicity, consider the simplest case c = 1 and d = 1.

Linear regression assumes a model

t̂ (x) = w0 + w1x

where w1,w0 ∈ R.

Given only 2 training data, we can solve for w1 and w0 but the result
would be dependent of the 2 training data selected and very sensitive
to the noise in the training responses tn.

A more sensible approach is to minimize the residual errors εi over the
N training data

εn = tn − t̂ (xn)
= tn − (w0 + w1xn)
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Least square Regression

We select (w0,w1) as the coeffi cients minimizing the sum of the
squared residual errors

E (w0,w1) =
N

∑
n=1

(
tn − t̂ (xn)

)2
Clearly as N → ∞

lim
N→∞

1
N
E (w0,w1) =

∫ (
t − t̂ (x)

)2 p (x , t) dxdt
where p (x , t) is the unknown density of the training data {xn, tn}Nn=1 .
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Least square Regression

Rewritten in vector-matrix form, we have

t︸︷︷︸
N×1

=t̂+ ε = φ︸︷︷︸
N×2

w︸︷︷︸
2×1

+ ε︸︷︷︸
N×1

where t = (t1, ..., tN )
T , ε = (ε1, ..., εN )

T, [φ]n,1 = 1, [φ]n,2 = xn for

n = 1, ...,N and w = (w0 w1)
T .

With this notation, we have

E (w0,w1) = E (w) = (t−φw)T (t−φw)

We can easily minimize E (w) w.r.t w to obtain

wLS =
(

φTφ
)−1

φTt.
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Linear Regression: A More General Case

Consider now the case where x =
(
x0, x1, ..., xM−1

)
∈ RM where

x0 = 1 by convention (i.e. before we considered M = 2) and t ∈ R

then we can use the model

t̂ (x) = wTx =w0 +
M−1
∑
j=1

wjx j

where w is to be determined.
Similarly, in a matrix-vector form

t︸︷︷︸
N×1

=t̂+ ε = φ︸︷︷︸
N×M

w︸︷︷︸
M×1

+ ε︸︷︷︸
N×1

where [φ]n,k = x
k−1
n is the so-called design matrix.

We can select w minimizing

E (w) = (t−φw)T (t−φw)

and again obtain

wLS =
(

φTφ
)−1

φTt.
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Nonlinear Regression using Basis Functions

Consider again x =
(
x1, ..., xd

)
∈ Rd and t ∈ R then you can

consider the nonlinear model

t̂ (x) = wTφ(x) = w0 +
M−1
∑
j=1

wjφj (x)

where φ0(x) = 1 by convention, φj (x) : Rd → R is an arbitrary
“basis” function for j = 1, ...,M − 1 and w is a M−dimensional
vector to be determined.
In this case, in a matrix-vector form we have

t =t̂+ ε = φw+ ε

where
[φ]n,k = φk−1(xn).

Once more, if we minimized the sum of squared errors
E (w) = (t−φw)T (t−φw) then

wLS =
(

φTφ
)−1

φTt.
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Nonlinear Regression using Basis Functions

Example: Φ (x) =
(
1,x ,x2

)T (d = 1,M = 3); Φ (x) = x =
(
1,x1,x2

)
(d = 2,M = 3); Φ (x) =

(
1,x1,x2,

(
x1
)2 , (x2)2) (d = 2,M = 5).
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Figure 1.20: More examples of regression. (a) We fit a degree 2 polynomial to the 1d input. Produced by linregPolyVsDegree. (b)
Input is 2d. Vertical axis is temperature, horizontal axes are location within a room. Data was collected by some remote sensing motes at
Intel’s lab in Berkeley, CA (data courtesy of Romain Thibaux). The fitted plane has the form f̂(x) = w0 + w1x1 + w2x2. (c) Temperature
data is fitted with a quadratic of the form f̂(x) = w0 + w1x1 + w2x2 + w3x

2
1 + w4x

2
2. Figure generated by surfaceFitDemo.

(We discuss pdf’s in more detail in Section 2.4.1; we discuss the Gaussian distribution in more detail in Section 2.4.2.) To make
the output y depend on the input x, we can write

p(y|x,θ) = N (y|µ(x), σ2(x)) (1.30)

In the simplest case, we assume µ is a linear function of x, so µ = wTx, and that the noise is fixed, σ2(x) = σ2. This model
is called linear regression, and is illustrated in 1d in Figure 1.19(a-b). It can be equivalently written in the following form:

y(x) = wTx + ε (1.31)

where ε ∼ N (0, σ2) is the residual error between our linear predictions and the true response.
Linear regression is very widely used because it is simple to understand, and it is easy to fit, as we explain in Section 1.3.2.

It can be made to model non-linear relationships using basis function expansion, as illustrated in Figure 1.20. For example,
Figure 1.20(a) illustrates the case where we fit a polynomial model to 1d input, φ(x) = [1, x, x2]. Figure 1.20(b) illustrates the
case where we fit a linear model to 2d input, φ(x) = [1, x1, x2]. Figure 1.20(c) illustrates the case where we fit a quadratic
model to 2d input, φ(x) = [1, x1, x2, x

2
1, x

2
2]. (We could also incorporate interaction terms of the form x1x2 if we wished.)

Another way to perform nonlinear regression is to use kernels to define the basis functions,φ(x) = [κ(x,µ1), . . . , κ(x,µD′)].
For example, Figure 1.21 shows a 1d data set fit with D′ = 10 uniformly spaced RBF prototypes, but with the bandwidth rang-
ing from small to large. Small values lead to very wiggly functions, since the predicted function value will only be non-zero
for points x that are close to one of the prototypes µk. If σ2 is very large, the design matrix reduces to a constant matrix of 1’s,
since each point is equally close to every prototype; hence the corresponding function is just a straight line.

Many other variants on the basic linear regression model are possible, such as the following:

• We can transform the outputs before fitting the model. For example it is common to use models of the form log(ŷ) =
w0 + w1x1 + · · ·wDxD + ε, where ε ∼ N (0, σ2). This is equivalent to saying that the residual error has a log normal
distribution. On the original y scale, this model becomes ŷ = ew0ew1x1 × · · · × ewdxdeε, so we see that the inputs (and
noise) have a multiplicative effect on the output. In other words, if xj is increased by one unit, then y is multiplied by
ewj on average.

• We can allow the variance of the noise to depend on the inputs; this is called heteroscedasticity, and is illustrated in
Figure 1.19(c).

• We can use non-Gaussian noise, which can make the model more robust to outliers, as explained in Section 1.3.4.

1.3.2 Maximum likelihood and least squares
The most common way to estimate the parameters of a statistical model is the method of maximum likelihood. This principle
says we should choose the parameters θ which assign highest probability to the training data. More precisely, the maximum
likelihood estimate or MLE is defined as

θ̂ := arg max
θ

p(D|θ) (1.32)

Intuitively the ML criterion makes sense: we “wiggle” the parameters θ until we find a setting that makes the model assign the
highest probability to the observed data. There are also various strong theoretical arguments to support the use of MLE, some
of which we will discuss in Section 10.6.

Machine Learning: a Probabilistic Approach, draft of January 4, 2011
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Nonlinear Regression using Basis Functions: Kernel
Regression

A standard way to perform nonlinear regression is to use kernels to
define the basis functions Φ (x) =

(
1,K (x, µ1) , ...,K

(
x, µM−1

))
where

K (x, µ) = exp

(
− (x− µ)T (x− µ)

2σ2

)
.

Alternatively we can use any function: wavelets, curvelets, splines etc.

Selecting
(
µ1, ..., µm , σ

2
)
can be diffi cult.

How to select µ: 1) place the centers unformly spaced in the region
containing the data, 2) place one center at each data point, 3) cluster
the data and use one center for each cluster, 4) use CV, MLE or
Bayesian approach.

How to select σ2 : 1) use average squared distances to neighboring
centers (scaled by a constant), 2) use CV, MLE or Bayesian approach.
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Kernel Regression

(Left) RBF basis in 1d. (Middle) Basis functions evaluated on a grid.
(Right) Design matrix.
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Geometric Interpretation of Least Squares

We want to model the data t ∈RN .

Consider the M vectors ϕj =
(

φj−1(x1), ...., φj−1(xN )
)T
∈RN for

j = 1, ...,M and
y = φwLS

Then whatever being wLS then y lies in the space spanned by{
ϕj

}M
j=1
.

If M ≥ N (and if the vectors
{

ϕj

}M
j=1

are not colinear) then the space

spanned by
{

ϕj

}M
j=1

is RN so we will be able to find potentially an

infinity of w ∈RN such that t̂ = φw =t.

If M < N then the vectors
{

ϕj

}M
j=1

span a M-dimensional subspace

of RN and the y = φwLS is the point in this subspace that is the
closest to t (in sense of the square error).
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Geometric Interpretation

y = φwLS is the orthogonal projection of t on the subspace spanned

by
{

ϕj

}M
j=1
.

AD () June 2011 13 / 37



Geometric Interpretation

To check that this is is the orthogonal projection, we need to establish
that

φT (t−φwLS ) = 0;

that is the residual is orthogonal to all the vectors
{

ϕj

}M
j=1
.

We have
t−φwLS = t−φ

(
φTφ

)−1
φTt

so
φT (t−φwLS ) = φTt−φTφ

(
φTφ

)−1
φTt = 0
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Least Squares: A Probabilistic Interpretation

Consider the following probabilistic regression model

p ( t| x,w, β) = N
(
t; t̂ (x) , β−1

)
where t̂ (x) = wTφ(x); i.e.

t = t̂ (x) + ε

with ε ∼ N
(
0, β−1

)
.

Given the training set D = {xn, tn}Nn=1 , the ML estimates of (w, β)
is given by

(wML, βML) = argmax
(w,β)

N

∑
i=1
log p

(
tn | xn,w, β−1

)
where

N

∑
n=1

log p ( tn | xn,w, β) = −
N
2
log
(
2πβ−1

)
− βE (w)

2

We obtain wML = wLS and β−1ML = E (wLS ) /N.
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Examples: Mean Square Errors on Training and Test Sets
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Figure 1.54: MSE on training and test sets vs size of training set, for data generated from a degree 2 polynomial with Gaussian noise of
variance 4. We fit polynomial models of varying degree to this data. (a) Degree 1. (b) Degree 2. (c) Degree 25. Note that for small training
set sizes, the test error of the degree 25 polynomial is higher than that of the degree 2 polynomial, due to overfitting, but this difference
vanishes once we have enough data. Note also that the degree 1 polynomial is too simple and has high test error even given large amounts of
training data. Figure generated by linregPolyVsN.

1.7.1.3 Overfitting in unsupervised learning

Overfitting can also arise in unsupervised learning settings. For example, we may use too many clusters, some of which might
be used to model outliers or noise. Or we may pick a low dimensional subspace that is too high dimensional, thus capturing the
noise as well as the signal. We will discuss these issues later.

1.7.2 The benefits of more data

One way to avoid overfitting it to use lots of data. Indeed, it should be intuitively obvious that the more training data we have,
the better we will able to learn. (This assumes the training data is randomly sampled, and we don’t just get repetitions of the
same examples. Having informatively sampled data can help even more; this is the motivation for an approach known as active
learning, where you get to choose your training data.) Thus the test set error should decrease to some plateau as N increases.

This is illustrated in Figure 1.54, where we plot the mean squared error incurred on the test set achieved by polynomial
regression models of different degrees vs N (a plot of error vs training set size is known as a learning curve). The level of the
plateau for the test error consists of two terms: an irreducible component that all models incur, due to the intrinsic variability of
the generating process (this is called the noise floor); and a component that depends on the discrepancy between the generating
process (the “truth”) and the model: this is called structural error.

In Figure 1.54, the truth is a degree 2 polynomial, and we try fitting polynomials of degrees 1, 2 and 25 to this data. Call the
3 modelsM1,M2 andM25. We see that the structural error for modelsM2 andM25 is zero, since both are able to capture
the true generating process. However, the structural error forM1 is substantial, which is evident from the fact that the plateau
occurs high above the noise floor.

For any model that is expressive enough to capture the truth (i.e., one with small structural error), the test error will go to
the noise floor as N → ∞. However, it will typically go to zero faster for simpler models, since there are fewer parameters to
estimate. In particular, for finite training sets, there will be some discrepancy between the parameters that we estimate and the
best parameters that we could estimate given the particular model class. This is called approximation error, and goes to zero
as N →∞, but it goes to zero faster for simpler models. This is illustrated in Figure 1.54.

So far, we have been talking about test error, which is what we mostly care about. But it is also interesting to look at the
training error vs N for the different models. For models that are too simple, the training error is initially high, since we cannot
model the truth, but will go down as we estimate the parameters more reliably. But for models that can capture the truth, the
training error will increase to some plateau as N increases. The reason is this: initially the model is sufficiently powerful to
simply memorize the training data, but as we are given more examples, it becomes harder to fit them perfectly given a fixed-
complexity model. Eventually the error on the training set will match the error on the test set, as shown in Figure 1.54. (If the
error on the training set increases with N , it is a sign that we are overfitting.)

In domains with lots of data, simple methods can work surprisingly well [HNP09]. However, there are still reasons to study
more sophisticated learning methods, because there will always be problems for which we have little data, especially little
labeled data.

1.7.3 `2 regularization

In cases where we have little data relative to the complexity of the model, we can minimize the chance of overfitting by
penalizing overly “extreme” parameter values. This is called regularization. For example, when fitting a polynomial regression

c© Kevin P. Murphy. Draft — not for circulation.

Data generated from a degree 2 poly. with Gaussian noise of var. 4. We
fit polynomial models. For N small, test error of the degree 25 poly. is
higher than that of the degree 2 poly., due to overfitting, but this
difference vanishes once as N increases. Note also that the degree 1 poly.
is too simple and has high test error even given large N.
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Limitations of Least-Square Regression and MLE

Remember that our estimate is given by

wMLE = wLS =
(

φTφ
)−1

φTt.

This assumes that the M ×M matrix φTφ is invertible.

We have rank
(
φTφ

)
=rank(φ) ≤ min (N,M) . Hence in common

scenarios where N < M, we can never invert φTφ!
We have also problems when columns/rows of φ are almost linearly
dependent (collinearity).
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The Need for Regularization

When we have a small number of data, we want to be able to
regularize the solution and limit overfitting.

When fitting a polynomial regression model, “wiggly” functions will
have large weights w.
For example for the 14 polynomial model fitted previously, we have 11
coeffi cients wk such that |ŵk ,LS | > 100!
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Regularized Least Squares - Penalized Likelihood

Two problems with MLE: overfitting and wML might not exist.
To control this problem we are going to add a regularization term;
e.g. instead of minimizing

E (w) = (t−φw)T (t−φw)

we minimize

E ′ (w) =
E (w)
2

+ λEW (w)

where λ > 0 is a penalization term and EW (w)→ ∞ as ‖w‖ → ∞.
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Bayesian MAP Interpretation

If we set a prior distribution on w of the form

p (w| β,λ) ∝ exp (−βλEW (w))

then minimizing E ′ (w) is equivalent to compute the Maximum A
Posteriori estimate of w defined by

wMAP = argmax
w

p (w|D, β,λ)

Similarly most regularized least squares procedures have a Bayesian
interpretation.
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L2 Penalization - Ridge Regression

Consider the case where

EW (w) =
1
2
wTw⇔p (w) = N

(
w; 0, (βλ)−1 I

)
In this case, we minimize

E ′ (w) =
1
2
(t−φw)T (t−φw) +

λ

2
wTw

and the closed-form solution is

wMAP =
(

φTφ+ λI
)−1

φTt

This is a very popular approach as
(
φTφ+ λI

)−1
always exists.
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Ridge Regression as A Constrained Optimization Problem

Minimizing

E ′ (w) =
1
2
(t−φw)T (t−φw) +

λ

2
wTw

is equivalent to minimize

(t−φw)T (t−φw) s.t. wTw ≤ t (λ)

where t (λ)→ 0 as λ→ ∞.
This shrinks the value of wMAP towards zeros.
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Example of Ridge Regression
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Figure 1.55: Degree 14 Polynomial fit to N = 21 data points with increasing amounts of L2 regularization. The error bars, representing the
noise variance σ2, get wider since we are ascribing more of the data variation to the noise. Figure generated by linregPolyVsRegDemo.

−25 −20 −15 −10 −5 0 5
0

5

10

15

20

25

log lambda

mean squared error

 

 

train mse

test mse

(a)

−25 −20 −15 −10 −5 0 5
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

log lambda

m
s
e

5−fold cross validation, ntrain = 21

(b)

−25 −20 −15 −10 −5 0 5
−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

log alpha

log evidence

(c)

Figure 1.56: (a) Training and test set error for a degree 14 polynomial fit by ridge regression, plotted vs log(λ). Note: Models are ordered
from complex (small regularizer) on the left to simple (large regularizer) on the right. The stars correspond to the values used to plot the
functions in Figure 1.55. (b) Estimate of test MSE produced by 5-fold cross-validation (see Section 1.8.5.1). The lowest CV error is indicated
by the vertical line. Note the vertical scale is in log units. (c) Log marginal likelihood vs log(α). The largest value is indicated by the vertical
line. Figure generated by linregPolyVsRegDemo.
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Degree 14 polynomial fit to N = 21 data points with increasing λ. The

errors bars, represents the standard deviation
√

β̂
−1
MAP .
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Regularization Path for Ridge Regression
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Profile of Ridge coeffi cients for an example on real data where M = 8 vs
bound on wTw, i.e. small t (λ) means large λ.
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L1 Penalization - Lasso

Consider the case where

EW (w) =
1
2 ∑M−1

j=0 |wj |

then
p (w| β,λ) = ∏M−1

j=0 p (wj | β,λ)

where

p (wj | β,λ) =
λβ

2
exp (−λβ |wj |)

This prior is a so-called double exponential.

There is no closed-form expression for the minimizer of E (w).
The optimization problem is convex and can be solved using standard
quadratic programming algorithms.
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Lasso as A Constrained Optimization Problem

We minimize in this case

E ′ (w) =
1
2
(t−φw)T (t−φw) +

λ

2 ∑M−1
j=0 |wj |

It can be shown that this is equivalent to minimize

(t−φw)T (t−φw) s.t. wTw ≤ t (λ)

where t (λ)→ 0 as → ∞.
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Regularization Path for Lasso
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Profile of Lasso coeffi cients for an example on real data where M = 8 vs

bound on
M−1
∑
j=0
|wj |, i.e. small t (λ) means large λ.
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L1 versus L2 penalization

Plot of the contours of the unregularized error function (blue) for ridge
regression (left) and Lasso (right)

The lasso give a sparse solution as w ∗1 = 0. The corners of the
simplex is more likely to intersect the ellipse than one of the sides as
they “stick out”more.
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Diabetes Data

This is a data set where N = 442 and M = 10.
We compute the solution for various regularization parameters λ
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Pros and Cons of Lasso

Pros

Lasso has remarkable properties. For a properly selected penalization, it
can find the ‘right’variables to include in the model (asymptotically):
no need to variable selection model...
Effi cient packages have been developed to implement it.
You can find the regularization path by running it only once.

Cons

Finite sample properties are less clear.
The posterior distribution associated to Lasso is multimodal.

Lasso is becoming prevalent in machine learning and statistics.
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Summary

MLE has bad properties.

Penalized MLE has nicer properties and can be reinterpreted as
Bayesian MAP estimate.

For non-quadratic penalizations, the posterior might not admit a
closed-form but can still lead to tractable optimization problems.

We have yet to address key problems

How to set the free parameters of the regression model? i.e.
regularization parameter λ
How to select the number of basis M to include?
Given different models (e.g. radial basis functions, wavelets), which
one should we pick?

Various approaches are possible: cross-validation, full Bayesian
analysis.
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Cross-Validation: Ridge Regression Example

In practice, we need to adjust parameters of the model; e.g. when
performing ridge regression, you need to set λ.
We want procedures to do perform well on training data but also to
perform well on unseen ‘test’data.
However, in real-world applications, we cannot evaluate our prediction
error on the test set!
A simple idea to evaluate the error rate consists of splitting the
training data into two blocks: a block used as training data and the
other block known as validation set.
Example: Assume you are given {xn, tn}Nn=1 training data, then only
Ntrain < N data, say {xn, tn}Ntrainn=1 are used as training data whereas
the remaining Nvalid = N −Ntrain data {xn, tn}Nn=Ntrain+1 are used to
assess the performance of our regression function using say
MSE = 1

Nvalid ∑N
n=Ntrain+1 (tn − y (xn))

2 where y (xn) = wTMAPφ (xn)
for ridge regression.
Compute MSE for various λ and select the one which minimizes Err .
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Cross-Validation

If N is small, this technique is unreliable as the model won’t have
enough data to train on, and we won’t have enough data to make a
reliable estimate of the future performance.
A simple and popular solution to this is K -fold cross validation
(CV). We split the training data into K folds then, for each fold
k ∈ {1, 2, ...,K}, we train on all the folds but the k’th, and test on
the k’th, in a round-robin fashion to estimate MSE = 1

K ∑K
k=1MSEk .

N-fold CV is called leave-one-out CV.

Figure: 5-fold cross validation
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Cross-Validation for Ridge Regression
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Figure 1.55: Degree 14 Polynomial fit to N = 21 data points with increasing amounts of L2 regularization. The error bars, representing the
noise variance σ2, get wider since we are ascribing more of the data variation to the noise. Figure generated by linregPolyVsRegDemo.
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Figure 1.56: (a) Training and test set error for a degree 14 polynomial fit by ridge regression, plotted vs log(λ). Note: Models are ordered
from complex (small regularizer) on the left to simple (large regularizer) on the right. The stars correspond to the values used to plot the
functions in Figure 1.55. (b) Estimate of test MSE produced by 5-fold cross-validation (see Section 1.8.5.1). The lowest CV error is indicated
by the vertical line. Note the vertical scale is in log units. (c) Log marginal likelihood vs log(α). The largest value is indicated by the vertical
line. Figure generated by linregPolyVsRegDemo.

Machine Learning: a Probabilistic Approach, draft of January 4, 2011

(left) Training and test error for a degree 14 poly. with increasing λ.
(center) Estimate of test MSE produced by 5-fold CV. (right)
Log-marginal likelihood vs log (α) where α = λβ.
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Cross-Validation

Cross-validation is extremely general.

It can be used to pick the number of basis M for your regression
model: you just need to compute the MSE on validation sets for
various M ∈ {1, 2, ...,Mmax} .
It can also be used for classification as described later.

Main problem of Cross-Validation: It can be very computationally
intensive...
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A (Semi)-Bayesian Approach: Using the Evidence

Assume you are interested in performing ridge regression, you need to
set λ.

Using the Bayesian interpretation of ridge regression, you have a
Gaussian prior p (w| β,λ) = N

(
w; 0, (βλ)−1 I

)
. (Assume β is

known here for sake of simplicity).

Combined to the likelihood of the data, we have the posterior

p (w|D, β,λ) = p (D |w, β,λ) p (w| β,λ)
p (D | β,λ)

but also the marginal likelihood, known as the evidence, given by

p (D | β,λ) =
∫
p (D |w, β,λ) p (w| β,λ) dw

which can be computed exactly.

It is sensible to set λ as the value which maximizes p (D | β,λ).
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A (Semi)-Bayesian Approach: Using the Evidence

Assume you are interested in performing lasso regression, you need to
set λ.
Using the Bayesian interpretation of lasso regression, you have

p (w| β,λ) = ∏M−1
j=0

λβ

2
exp (−λβ |wj |)

Combined to the likelihood of the data, we have the posterior

p (w|D, β,λ) = p (D |w, β,λ) p (w| β,λ)
p (D | β,λ)

but also the marginal likelihood, known as the evidence, given by

p (D | β,λ) =
∫
p (D |w, β,λ) p (w| β,λ) dw

which can NOT be computed exactly. Approximations are required.
It is sensible to set λ as the value which maximizes p (D | β,λ).
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