Stat 535 C - Statistical Computing & Monte Carlo Methods

Arnaud Doucet

Email: arnaud@cs.ubc.ca
1.1– Outline

• Importance Sampling.

• Normalized Importance Sampling.

• Importance Sampling versus Rejection Sampling.
2.1– Summary of Last Lecture

• Let $\pi(x)$ be a probability density on \mathcal{X}.

• Monte Carlo approximation is given by

$$\hat{\pi}_N(x) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}(x)} \text{ where } X^{(i)} \overset{i.i.d.}{\sim} \pi.$$

• For any $\varphi: \mathcal{X} \to \mathbb{R}$

$$E_{\hat{\pi}_N}(\varphi(X)) = \frac{1}{N} \sum_{i=1}^{N} \varphi(X^{(i)}) \simeq E_\pi(\varphi(X))$$

and more precisely

$$E_X [E_{\hat{\pi}_N}(\varphi(X))] = E_\pi(\varphi(X)) \text{ and } \text{var}_X(E_{\hat{\pi}_N}(\varphi(X))) = \frac{\text{var}_\pi(\varphi(X))}{N}.$$
2.1– Summary of Last Lecture

• Direct methods feasible for standard distributions: inverse method, composition, etc.

• In case where \(\pi \propto \pi^* \) does not admit any standard form, we can use a proposal distribution \(q \) on \(X \) where \(q \propto q^* \).

• We need \(q \) to ‘dominate’ \(\pi \); i.e.

\[
C = \sup_{x \in X} \frac{\pi^*(x)}{q^*(x)} < +\infty.
\]
Consider \(C' \geq C \). Then the accept/reject procedure proceeds as follows:

Accept/Reject procedure

1. Sample \(Y \sim q \) and \(U \sim \mathcal{U}(0, 1) \).

2. If \(U < \frac{\pi^*(Y)}{C'q^*(Y)} \) then return \(Y \); otherwise return to step 1.
2.2– Accept Reject - Illustration

• This is a simple generic algorithm but it requires coming up with a bound C.

• Its performance typically degrade exponentially fast with the dimension of X.

• It seems you are wasting some information by rejecting samples.

• You need to wait a random time to obtain some samples from π.

• Is it possible to “recycle” these samples?
3.1– Importance Sampling

• Consider again the target distribution π and the proposal distribution q. We only require

$$\pi(x) > 0 \Rightarrow q(x) > 0.$$

• In this case, the Importance Sampling (IS) identity is

$$E_\pi(\varphi(X)) = \int_X \varphi(x)\pi(x)dx = \int_X \varphi(x)\frac{\pi(x)}{q(x)}q(x)dx = E_q(w(X)\varphi(X))$$

where the so-called Importance Weight is given by

$$w(x) = \frac{\pi(x)}{q(x)}$$

• This is a simple yet very flexible identity.
3.1– Importance Sampling

- Monte Carlo approximation of q is

$$\hat{q}_N (x) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}} (x) \text{ where } X^{(i)} \overset{\text{i.i.d.}}{\sim} q.$$

- It follows that an estimate of $E_\pi (\varphi (X)) = E_q (w(X) \varphi (X))$ is

$$E_{\hat{q}_N} (w(X) \varphi (X)) = \frac{1}{N} \sum_{i=1}^{N} w(X^{(i)}) \varphi(X^{(i)})$$

- It corresponds to the following approximation

$$\hat{\pi}_N (x) = \frac{1}{N} \sum_{i=1}^{N} w(X^{(i)}) \delta_{X^{(i)}} (x)$$
3.1– Importance Sampling

• We have

\[E_X [E_{\tilde{q}_N} (w(X)\varphi(X))] = E_\pi (\varphi(X)) \]

and

\[\text{var}_X (E_{\tilde{q}_N} (\varphi(X))) = \frac{\text{var}_q (w(X)\varphi(X))}{N} = \frac{E_\pi (w(X)\varphi^2(X)) - E_\pi^2 (\varphi(X))}{N} \]

• In practice, it is recommended to ensure

\[E_\pi (w(X)) = \int \frac{\pi^2(x)}{q(x)} dx < \infty. \]

• Even if it is not necessary, it is actually even better to ensure that

\[\sup_{x \in \mathcal{X}} w(x) < \infty. \]
3.2– Example

Target double exponential distributions and two IS distributions

![Graphs of double exponential, Gaussian, and t-Student distributions.]
3.2– Example

IS approximation obtained using a Gaussian IS distribution
3.2– Example

IS approximation obtained using a Student-t IS distribution
3.3– Optimal IS Distribution

• For a given test function, one can minimize the IS variance using

\[q_{\text{opt}}(x) = \frac{|\varphi(x)| \pi(x)}{\int_X |\varphi(x)| \pi(x) \, dx} \]

Proof:

\[
\text{var}_q(w(X)\varphi(X)) = \int q(x) \frac{\pi^2(x)}{q^2(x)} \varphi^2(x) \, dx - \left(\int \pi(x) \varphi(x) \, dx \right)^2
\]

and

\[
\int q(x) \frac{\pi^2(x)}{q^2(x)} \varphi^2(x) \, dx \geq \left(\int q(x) \frac{\pi(x) |\varphi(x)|}{q(x)} \, dx \right)^2 = \left(\int \pi(x) |\varphi(x)| \, dx \right)^2.
\]

This lower bound is attained for \(q_{\text{opt}}(x) \).
3.4– Normalized Importance Sampling

- In most if not all applications we are interested in, standard IS cannot be used as the importance weights \(w(x) = \pi(x) / q(x) \) cannot be evaluated in closed-form. In practice, we typically only know \(\pi(x) \propto \pi^*(x) \) and \(q(x) \propto q^*(x) \).

- Normalized IS identity is based on

\[
\pi(x) = \frac{\pi^*(x)}{\int \pi^*(x) \, dx} = \frac{w^*(x) q^*(x)}{\int w^*(x) q^*(x) \, dx} = \frac{w^*(x) q(x)}{\int w^*(x) q(x) \, dx}
\]

where

\[
w^*(x) = \frac{\pi^*(x)}{q^*(x)}.\]
3.4– Normalized Importance Sampling

• For any test function φ, we can also write

$$E_{\pi}(\varphi(X)) = \frac{E_q(w^*(X)\varphi(X))}{E_q(w^*(X))} = \frac{E_q(w(X)\varphi(X))}{E_q(w(X))}.$$

• Given a Monte Carlo approximation of q; $\hat{q}_N(x) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X(i)}(x)$ then

$$\hat{\pi}_N(x) = \sum_{i=1}^{N} W^{(i)} \delta_{X(i)}(x) \text{ where } W^{(i)} = \frac{w^*(X^{(i)})}{\sum_{j=1}^{N} w^*(X^{(j)})},$$

$$E_{\hat{\pi}_N}(\varphi(X)) = \sum_{i=1}^{N} W^{(i)} \varphi(X^{(i)}).$$

• The estimates are a ratio of estimates.
3.4– Normalized Importance Sampling

- Contrary to standard IS, this estimate is biased but asymptotically unbiased by the LLN it is asymptotically consistent.

- Derivation of the asymptotic bias and variance based on the delta method.
3.5– Proof using the Delta Method

- Assume you have $Z = g(A, B)$ with $E(A) = \mu_A$ and $E(B) = \mu_B$ then a two-dimensional Taylor series gives around $\mu = (\mu_A, \mu_B)$

$$Z \simeq g(\mu) + (A - \mu_A) \frac{\partial g}{\partial a}(\mu) + (B - \mu_B) \frac{\partial g}{\partial b}(\mu).$$

It follows that

$$E(Z) \simeq g(\mu),$$

$$Var(Z) \simeq \sigma^2_A \frac{\partial g^2}{\partial a}(\mu) + \sigma^2_B \frac{\partial g^2}{\partial b}(\mu) + 2 \frac{\partial g}{\partial a}(\mu) \frac{\partial g}{\partial b}(\mu) \sigma_{A,B}.$$

- In our case

$$Z = E_{\hat{\pi}_N}(\varphi(X)) = \frac{E_{q_N}(w^*(X)\varphi(X))}{E_{q_N}(w^*(X))} = \frac{A}{B}$$
3.6– Asymptotic Variance

- We have

\[
\frac{\partial g}{\partial a} (\mu) \frac{\partial g}{\partial b} (\mu) = -\frac{\mu_A}{\mu_B^3}, \quad \frac{\partial g^2}{\partial a} (\mu) = \frac{1}{\mu_B^2}, \quad \frac{\partial g^2}{\partial b} (\mu) = \frac{\mu_A^2}{\mu_B^4},
\]

\[
\mu_A = E_q (w^* (X) \varphi (X)), \quad \mu_B = E_q (w^* (X)),
\]

\[
\sigma_A^2 = \frac{\text{var}_q (w^* (X) \varphi (X))}{N}, \quad \sigma_B^2 = \frac{\text{var}_q (w^* (X))}{N}
\]

\[
\sigma_{A,B} = \frac{E_q \left((w^* (X))^2 \varphi (X) \right) - \mu_A \cdot \mu_B}{N}.
\]
3.6– Asymptotic Variance

- It follows that

\[
\text{Var} \left(E_{\hat{\pi}_N} (\varphi(X)) \right) \simeq \sigma_A^2 \frac{\partial g^2}{\partial a} (\mu) + \sigma_B^2 \frac{\partial g^2}{\partial b} (\mu) + 2 \frac{\partial g}{\partial a} (\mu) \frac{\partial g}{\partial b} (\mu) \sigma_{A,B}
\]

\[
= \frac{\sigma_A^2}{\mu_B^2} + \frac{\sigma_B^2 \mu_A^2}{\mu_B^4} - 2 \frac{\mu_A \sigma_{A,B}}{\mu_B^3}
\]

- Asymptotically, we have a central limit theorem

\[
\sqrt{N} \left(E_{\hat{\pi}_N} (\varphi(X)) - E_{\pi} (\varphi(X)) \right) \Rightarrow \mathcal{N} \left(0, \sigma_{IS}^2 (\varphi)\right)
\]

where

\[
\sigma_{IS}^2 (\varphi) = \int \frac{\pi^2 (x)}{q(x)} (\varphi(x) - E_{\pi} (\varphi))^2 \, dx
\]
• In practice, it is now necessary but highly recommended to select the proposal q such that

$$\sup_{x \in \mathcal{X}} w(x) < \infty \text{ or equivalently } \sup_{x \in \mathcal{X}} w^*(x) < \infty.$$

• There is some empirical evidence that Normalized IS performs better than standard IS in numerous cases.
3.7– Asymptotic Bias

- Using a second order Taylor expansion

\[Z \simeq g(\mu) + (A - \mu_A) \frac{\partial g}{\partial a}(\mu) + (B - \mu_B) \frac{\partial g}{\partial b}(\mu) \]

\[+ \frac{1}{2} (A - \mu_A)^2 \frac{\partial^2 g}{\partial a^2}(\mu) + \frac{1}{2} (B - \mu_B)^2 \frac{\partial^2 g}{\partial b^2}(\mu) + (A - \mu_A)(B - \mu_B) \frac{\partial^2 g}{\partial a \partial b}(\mu) \]

gives

\[E(E_{\hat{\pi}_N}(\varphi(X))) \simeq g(\mu) + \frac{1}{2} \sigma_A^2 \frac{\partial^2 g}{\partial a^2}(\mu) + \frac{1}{2} \sigma_B^2 \frac{\partial^2 g}{\partial b^2}(\mu) + \sigma_{A,B} \frac{\partial^2 g}{\partial a \partial b}(\mu). \]

- It follows that asymptotically we have

\[N(E_{\hat{\pi}_N}(\varphi(X)) - E_\pi(\varphi(X))) \to - \int \frac{\pi^2(x)}{q(x)} (\varphi(x) - E_\pi(\varphi)) \, dx. \]

- We have Bias\(^2\) of order 1/\(N^2\) and Variance of order 1/\(N\).
3.8– Optimal Importance Sampling

- For a given test function, one can minimize the normalized IS asymptotic variance using

\[q^{\text{opt}}(x) = \frac{|\varphi(x) - E_\pi(\varphi)| \pi(x)}{\int_\mathcal{X} |\varphi(x) - E_\pi(\varphi)| \pi(x) \, dx} \]

Proof:

\[
\int q(x) \frac{\pi^2(x)}{q^2(x)} (\varphi(x) - E_\pi(\varphi))^2 \, dx \geq \left(\int q(x) \frac{\pi(x) |\varphi(x) - E_\pi(\varphi)|}{q(x)} \, dx \right)^2
\]

\[
= \left(\int \pi(x) |\varphi(x) - E_\pi(\varphi)| \, dx \right)^2
\]

and this lower bound is attained for \(q^{\text{opt}}(x) \).

- This result is practically useless because it requires knowing \(E_\pi(\varphi) \) but it suggests approximations.
3.9– In practice...

- In statistics, we are usually not interested in a specific φ but in several functions and we prefer having $q(x)$ as close as possible to $\pi(x)$.

- For flat functions, one can approximate the variance by

$$\text{var} \left(\mathbb{E}_{\hat{\pi}_N} (\varphi(X)) \right) \simeq (1 + \text{var}_q(w(X))) \frac{\text{var} \left(\mathbb{E}_{\pi} (\varphi(X)) \right)}{N}.$$

- Simple interpretation: The N weighted samples are approximately equivalent to M unweighted samples from π where

$$M = \frac{N}{1 + \text{var}_q(w(X))} \leq N.$$
3.9– In practice...

- However, we are often interested in estimating the ratio of normalizing constants

\[
\frac{\int \pi^* (x) \, dx}{\int q^* (x) \, dx} = \int w^* (x) q(x) \, dx = E_q [w^* (X)].
\]

using

\[
E_{q_N} [w^*(X)] = \frac{1}{N} \sum_{i=1}^{N} w^*(X^{(i)})
\]

which is unbiased and has variance

\[
\text{var} [E_{q_N} [w^* (X)]] = \frac{\text{var}_q (w^* (X))}{N}.
\]
3.10– Open Question

• Clearly if you have $q(x) = \pi(x)$ then

$$\text{var} \left[E_{q_N} [w^* (X)] \right] = 0$$

• However if $q(x) = \pi(x)$ then the estimate is simply

$$E_{q_N} [w^* (X)] = \frac{\int \pi^* (x) \, dx}{\int q^* (x) \, dx}.$$

• **Open Question**: How could you come up with a good estimate of $\int \pi^* (x) \, dx$ based on samples of π.

– Importance Sampling
3.11– Application to Bayesian Inference

- Consider a Bayesian model: prior \(\pi(\theta) \) and likelihood \(f(x|\theta) \).

- The posterior distribution is given by
 \[
 \pi(\theta|x) = \frac{\pi(\theta)f(x|\theta)}{\int_{\Theta} \pi(\theta)f(x|\theta) d\theta} \propto \pi^*(\theta|x) \quad \text{where} \quad \pi^*(\theta|x) = \pi(\theta)f(x|\theta).
 \]

- We can use the prior distribution as a candidate distribution \(q(\theta) = q^*(\theta) = \pi(\theta) \).

- We also get an estimate of the marginal likelihood
 \[
 \int_{\Theta} \pi(\theta)f(x|\theta) d\theta.
 \]
3.11– Application to Bayesian Inference

- IS is more powerful than you think.

- Assume you have say to compute the importance weight

\[w(\theta^{(i)}) \propto \int f(x, z|\theta) \, dz; \]

i.e. the likelihood is very complex and might not admit a closed-form expression.

- You do NOT need to compute \(w(\theta^{(i)}) \) exactly, an unbiased estimate of it is sufficient.
3.12– Importance sampling does not work well in high-dimension

- Consider the case where $\mathcal{X} = \mathbb{R}^n$

$$
\pi(\theta) = \frac{1}{(2\pi)^{n/2}} \exp \left(-\frac{\sum_{i=1}^{n} \theta_i^2}{2} \right)
$$

and

$$
q_\sigma(\theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp \left(-\frac{\sum_{i=1}^{n} \theta_i^2}{2\sigma^2} \right)
$$

- We have for any $\sigma > 1$

$$
w_\sigma(\theta) = \frac{\pi(\theta)}{q_\sigma(\theta)} = \sigma^n \exp \left(-\sum_{i=1}^{n} \frac{\theta_i^2}{2} \left(1 - \frac{1}{\sigma^2} \right) \right) \leq \sigma^n \text{ for any } \theta
$$

and

$$
\text{var}_{q_\sigma} \left(\frac{\pi(\theta)}{q_\sigma(\theta)} \right) = \sigma^n \sigma'^n - 1 \text{ with } \sigma'^2 = \frac{\sigma^2}{\sigma^2 - 1/2} > 1
$$

- Despite having a very good proposal then the variance of the weights increases exponentially fast with the dimension of the problem.
3.13 – Rejection Sampling versus Importance Sampling

- Given N samples from q, we estimate $E_{\pi} (\varphi (X))$ through IS

$$\hat{E}^{IS}_{\pi} (\varphi (X)) = \frac{\sum_{i=1}^{N} w^* (X^{(i)}) \varphi (X^{(i)})}{\sum_{i=1}^{N} w^* (X^{(i)})}$$

or we “filter” the samples through rejection and propose instead

$$\hat{E}^{RS}_{\pi} (\varphi (X)) = \frac{1}{K} \sum_{k=1}^{K} \varphi (X^{(i_k)})$$

where K is a random variable.

- We want to know which strategy performs the best.
3.14– Rejection Sampling is a special case of Importance Sampling

- Define the artificial target $\pi^{\ast}(x, y)$ on $\mathcal{X} \times [0, 1]$ as

$$
\pi(x, y) = \begin{cases}
\frac{Cq^{\ast}(x)}{\int \pi^{\ast}(x) \, dx}, & \text{for } x \in \mathcal{X}, y \in \left[0, \frac{\pi^{\ast}(x)}{Cq^{\ast}(x)}\right] \\
0 & \text{otherwise}
\end{cases}
$$

then

$$
\int \pi(x, y) \, dy = \int_0^{\pi^{\ast}(x)} \frac{Cq^{\ast}(x)}{\int \pi^{\ast}(x) \, dx} \, dy = \pi(x).
$$

- Now let us consider the proposal distribution

$$
q(x, y) = q(x) U_{[0,1]}(y) \text{ for } (x, y) \in \mathcal{X} \times [0, 1].
$$
3.14– Rejection Sampling is a special case of Importance Sampling

- Then rejection sampling is nothing but IS on $\mathcal{X} \times [0, 1]$ where

$$w(x, y) = \frac{\pi(x, y)}{q(x) U_{[0,1]}(y)} = \begin{cases} \frac{C \int q^*(x) dx}{\int \pi^*(x) dx} & \text{for } Y^{(i)} \in \left[0, \frac{\pi^*(X^{(i)})}{Cq^*(X^{(i)})}\right] \\ 0, & \text{otherwise.} \end{cases}$$

- We have

$$\widehat{E}_\pi^{RS}(\varphi(X)) = \frac{1}{K} \sum_{k=1}^{K} \varphi(X^{(i_k)}) = \frac{\sum_{i=1}^{N} w(X^{(i)}, Y^{(i)}) \varphi(X^{(i)})}{\sum_{i=1}^{N} w(X^{(i)}, Y^{(i)})}.$$

- Compared to standard IS, RS performs IS on an enlarged space.
3.14– Rejection Sampling is a special case of Importance Sampling

- The variance of the importance weights from RS is higher than for standard IS:

\[\text{var}_q[w(X,Y)] \geq \text{var}_q[w(X)]. \]

More precisely, we have

\[
\text{var}[w(X,Y)] = \text{var}[E[w(X,Y)|X]] + E[\text{var}[w(X,Y)|X]]
\]

\[
= \text{var}[w(X)] + E[\text{var}[w(X,Y)|X]].
\]

- To compute integrals, Rejection sampling is inefficient and you should simply use IS.
Like Rejection, IS is useful for small non-standard distributions but collapses for most “interesting” problems.

In both cases, the problem is to be able to design “clever” proposal distributions.

Towards the end of this course, we will present advanced dynamic method to address this problem.