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1.1— Outline

e Classical “exact” simulation methods.
e Accept/Reject.

e Variations over the Accept/Reject algorithm
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2.1-— Summary of Last Lecture

e Let m (x) be a probability density.

e Monte Carlo approximation is given by
1 N ..
v (@) = = ; 5 (1) where X 'K 7

e For any v : X —R

and more precisely

vary () |

Ex [Bny ()] = Ex (¢) and varx (Ezy (9)) = =
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2.1-— Summary of Last Lecture

e If we could sample from any distribution 7 easily,

then everything would be easy.
e Unfortunately, there is no generic algorithm to sample exactly from any .

e Today, we discuss simple methods which are the building blocks of
more complex algorithms; i.e. MCMC and SMC.
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3.1— Sampling from Uniform Random Variables

e All algorithms discussed here rely on the availability of a generator

of uniform random variables in [0, 1].

e It is impossible to get such numbers and we only get
pseudo-random numbers which look like they are i.i.d. U [0, 1].

e There are a few standard very good generators available.
We will not give any detail as their constructions are based

on techniques very different from the ones we address here.
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3.2— Sampling from A Discrete Distribution

e Consider X ={1,2,3} and

and its inverse for u € [0, 1]

Fi' (u) =inf{z € X;Fx () > u}
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3.2— Sampling from A Discrete Distribution

The distribution and cdf of a discrete random variable
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3.2— Sampling from A Discrete Distribution

e To sample from this discrete distribution, sample U ~ U [0, 1].
e Find X = F' (U).

e The probability of U falling in the vertical interval 7 is precidely equal to
the probability m (X = 1).
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3.3— Sampling from a continuous distribution: Inverse Method

e Assume the distribution has a density, then the cdf takes the form
+00 T
Fy (z) = P(X<z) = / 7 (u) I(u < 2)du = / 7 (1) du.

e We would like to use the same algorithm; i.e.

U~U[0,1] and set X = Fyx' (U).

e Question: Do we have X ~ 7?7

— Classical Methods Page 9



3.3— Sampling from a continuous distribution: Inverse Method

The distribution and cdf of a normal distribution
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3.3— Sampling from a continuous distribution: Inverse Method

e Proof of validity:

Pr(X <z) = Pr(Fy'(U)<u)

= Pr(U < Fx (z)) since Fx is non decreasing
1
= / [(u< Fx (x))du since U ~ U [0, 1]
0

= FX (ZIZ)

e The cdf of X produced by the algorithm above is precisely the cdf of !
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3.4— Inverse Method: Example

e Consider the exponential of parameter 1 then

7 (r) = exp (—) I[[o,oo)
thus the cdf of X is

FX(:E)=/ 7 (u) du = <

l—exp(—z) ifz>0

\

e Thus the inverse cdf is

l—exp(—1)=u<z=—log(l—u)=Fx'(u).

e Inverse method: U ~ U [0,1] then X = —log(1-U) ~7
and X = —log(U) ~ .
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3.4— Inverse Method: Example

e Simple method to sample univariate distributions.

e This method is only limited to simple cases where the inverse cdf admits

a closed form or can be tabulated.

e In practice, it is really very limited.
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3.5— General Transformation Methods

e ‘Idea’: Using the fact that 7 is related to other distributions easier to sample.
e This is very specific!

o If X; ~E&xp(1l) then
Y = 2) X;~x3,,
j=1

Y = ﬁZXjNg(aaﬁ)a
j=1

* X
Y = Z]_l ’ ~ Be (a, 3) .

+
> X;
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3.6— Box Muller Algorithm to sample Gaussian random variables

e Consider X7 ~ N (0,1) and X5 ~ N (0, 1) then its polar coordinates (R, 0)
are independent and distributed according to

R* = X{+X3~E&Exp(1/2),

0 ~ U|0,27].

o It is simple to simulate R = y/—2log (U;) and 6 = 27Uy where
Ul, U2 ~ U [0, 1] then

X1 = RCOSHZ\/—210g<U1>COS(27TU2)7

X, = Rsinf =+/—2log(U;)sin (2rUs) .

¢ By construction X; and X5 are two independent N (0, 1) rvs.
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3.7— Simulation by Composition

e Assume we have

w(o) = [ 7 (@y)dy

where it is easy to sample from « (x,y) but difficult/impossible
to compute 7 ().

e In this case, it is sufficient to sample (X,Y) ~7T = X ~ 7.

e One can sample from 7 (x,y) =7 (y) 7 (x| y) by

Y ~7then X|Y ~7(:]Y).
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3.8— Simulation by Composition for Mixture

e Assume one wants to sample from .
m(z) = Zm X 1; ()
i=1

where m; >0, >0, m; =1 and m; () >0, [m; (x)dx = 1.

e We can introduce Y € {1,...,p} and introduce
(

J7(z,y)dy =7 (x)
T (2,y) = my X 7y (T) = <

[ 7 (ey)de =7 (y) =,

\

e To sample from 7 (x), then sample Y ~ 7T (discrete distribution such
that Pr (Y = k) = ) then

X|Y ~7(-]Y) =7y
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3.9— Simulation by Composition: Scale Mixture of Gaussians

e A very useful application of the composition method is for scale mixture of

(Gaussians; i.e.

ﬂwsz@mvwﬂm@.

e For various choices of the mixing distributions 7 (y), we obtain
distributions 7 (x) which are t-student, a—stable, Laplace, logistic.

e Example: If
Y ~x2and X|Y ~N(0,v/y)

then X is marginally distributed according to a t-Student with v degrees
of freedom.

e Conditional upon Y, X is Gaussian: This structure will be used to develop
later efficient MCMC algorithm.
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3.10— Accept Reject - The first generic method

e The rejection method allows one to sample according to a distribution 7

defined on X only known up to a proportionality constant, say m oc 7*.

e It relies on samples generated from a proposal distribution ¢ on X.

g might as well be known only up to a normalising constant, say q o< ¢*.

e We need ¢ to ‘dominate’ ; i.e.

C' =sup ™ (2)
zexX q* (37)

< 400

e This implies 7*(x) > 0 = ¢*(z) > 0 but also that the tails of ¢*(x)
must be thicker than the tails of 7*(x).
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3.11— Accept Reject - Illustration

Consider C’ > C. Then the accept/reject procedure proceeds as follows:

Accept /Reject procedure

1. Sample Y~q and U ~ U (0, 1).

2. U < qug(g) then return Y'; otherwise return to step 1.
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3.11— Accept Reject - Illustration

The idea behind the rejection method for 7 (x) = n* (x) = Be (x;1.5,5),

q(x) =q* () =Upq (), C'=C.

- c Uo,1)
3 —
-
2.5
-
2 ' Reject
- cq(xX)u where u-~-U(O,1)
.Accept
1.5 —
Beta(1.5,5)
1 L .
0.5 - \tilde{x}~gq=U(0,1)
(@)
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3.12— Accept Reject - Proof of Validity

e We now prove that Pr (Y < z|Y accepted) = Pr(X < z).

e We have for any x € X
Pr(Y <z and Y accepted)

|
O\H
P
8 )

=
A~

Q

VAN
Q5
| *

e The probability of being accepted is the marginal of Pr (Y < x and Y accepted)

fx T (y) dy
C" [y q* (y)dy

Pr (Y accepted) =
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3.12— Accept Reject - Proof of Validity

e Thus

Pr(Y <z and Y accepted)
Pr (Y accepted)

[T dy T
L (y) dy _/_mﬁ(y)dy'

Pr(Y <x|Y accepted) =

3—1

o Ezample: We want to sample from Be (z; c, 5) oc 21 (1 — x)” " using U 1.

One can find

a—1 1 — p—1
R )

z€[0,1] 1

analytically for a, 5 > 1! We do not need the normalizing constant of Be.
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3.13— Accept Reject - Efficiency

e The acceptance probability Pr (Y accepted) is a measure of efficiency.
e The expected number of trials before accepting a candidate is

1
Pr (Y accepted)

e The number of trials before success is thus an unbiased estimate of

1
Pr (Y accepted)’

e This is important to better understand Metropolis-Hastings.
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3.14— Accept Reject as a Sampling through composition

e Almost unknown result (Peterson & Kronmal, 1982): One can rewrite

m (@)=Y pir ()

1—1

where p; = p(1 —p) ~ and

r=rr (V< 50)

e Instead of simulating from Geo(p) directly which is impossible, one simulate

an element which admits this probability distribution.
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3.15— Alternative Formulation of Accept Reject

e In the standard Rejection algorithm, the candidate is sampled before U.

This is not necessary.

e Proposition (Beskos et al., 2005): Let (Yy, I,,),~, be a sequence of i.i.d.
rvs taking values in Xx {0, 1} such that Y7 ~ g and

PI’([l :1‘Y1 :y):

Define 7 = min{i > 1: I; = 1}, then Y, ~ .
e This result is useful if there are ways of constructing condition for the

acceptance or rejection of the current proposed element Y from

minimal information about it.
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3.16— Accept Reject - Example

e The target m is given by
m(x) x ™ (x) = exp (—%) m (z)

where m (z) < M for any x € X.

o If we use q(x) =¢* (z) = (27‘(‘)_1/2 exp (—562—2), then we have
* (:Ij) 1/2 fx T (y) dy
<(Cy=2rm)"" M and Pr (Y accepted) = :
g <O =(em) (Y accepted) = 25
o If we use ¢* (z) = exp (—%), then we have
W* () < C5 = M and Pr (Y accepted) = fxﬂ (y)1/2y = fXW ) dy
q (ZIZ) Cy (27‘(’) &

e You don’t lose anything by not knowing the normalizing constant of ¢*.
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3.17— Accept Reject - Application to Bayesian Estimation

e Consider a Bayesian model: prior 7 (#) and likelihood f (x|@).

e The posterior distribution is given by

T (0|x) = x 7 (0| x) where n* (0| z) =7 (0) f (z|0).

e We can use the prior distribution as a candidate distribution
q(0)=q*(0) =m(0) as long as

T (0] )
su = su x| 0) < (.
eeg q* (0) eegf( 10) <

e In many applications, the likelihood is bounded so one can use the rejection
procedure and it is accepted with proba [o 7 (6) f (x| #) d§/C. End of the course???
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3.18— The Rejection method does not work well in high-dimension

e Consider the case where X = R"

7 (0) = —— exp (—Z?ﬂe@?)

and n 2
1 - B3
4o (0) = > exp (— 2@212 : )
(27702)n/ 20

e We have for any o > 1

7 (0) - 1
=og" — E ;| 1—=— )| <o"f 0
o (0) o exp( : ( 202)) < ¢" for any

1=1

and 1
Pr (Y accepted) = —

o

e Despites having a very good proposal then the acceptance probability
decreases exponentially fast with the dimension of the problem.
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3.19— Advantages and Drawbacks of the Rejection method

Advantages.

e Rather universal, and compared to the inverse cdf method requires less alge-

braic properties.

e Neither normalisation constant of m nor that of ¢ are needed.
Drawbacks.

e How to construct the proposal ¢ (x) automatically?

e Typically the performance of the method decrease exponentially

with the dimension of the problem.
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3.20— Envelope Rejection method

e Squeeze principle: Assume we have

then we can modify the algorithm as follows.

Envelope Accept/Reject procedure

1. Sample Y~qg and U ~ U (0,1).

U< C‘{Lp(?,) then return Y

()

3. Otherwise, accept X if U < C, T (V)

otherwise return to step 1.
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3.21—- Adaptive Rejection Sampling

e Consider the class of univariate log-concave densities; i.e. we have

0% log ()

o <0,

e The idea is to construct automatically an piecewise linear upper (and lower)
bound for the target.
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3.21—- Adaptive Rejection Sampling

Here a nice graph should appear but it does not for whatever reason.

See Fig. 2.5, page 57 in Monte Carlo Statistical Methods.
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3.21—- Adaptive Rejection Sampling

e Initialize n = 0 and Sy

At iteration n > 1

1. Generate Y ~ q,.

2. If U < % then return Y; otherwise set S,.1 =S, U{Y }.
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3.22— Adaptive Rejection Sampling: Example

e Consider n data (x;,Y;)

Y;| z; ~ Poisson (a + bx;) .

and we set the prior
m(a,b) = N (a;0,0%) N (b;0,77)
e We have

logm(al1.m,Y1:0,0) = aZyi—eaZef’“b—f/QaQ

3210gﬂ(a\$1:n,ylzn,b) a x;b —2
— s — —¢ Ze —0o “<O0.

e Thus 7 (a| x1.n, Y1.n, b) is log-concave, similarly 7 (b| 1., Y1.n, @) is log-concave.
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3.23— Summary

e There exists standard techniques to sample from classical distributions.

e Rejection is useful for small non-standard distributions

but collapses for most “interesting” problems.

e These algorithms will be building blocks of more complex

Monte Carlo algorithms.
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