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1.1– Outline

• Classical “exact” simulation methods.

• Accept/Reject.

• Variations over the Accept/Reject algorithm
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2.1– Summary of Last Lecture

• Let π (x) be a probability density.

• Monte Carlo approximation is given by

π̂N (x) =
1
N

N∑
i=1

δX(i) (x) where X(i) i.i.d.∼ π.

• For any ϕ : X →R

Eπ̂N
(ϕ) =

1
N

N∑
i=1

ϕ
(
X(i)

)
� Eπ (ϕ)

and more precisely

EX [Eπ̂N
(ϕ)] = Eπ (ϕ) and varX (Eπ̂N

(ϕ)) =
varπ (ϕ)

N
.
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2.1– Summary of Last Lecture

• If we could sample from any distribution π easily,
then everything would be easy.

• Unfortunately, there is no generic algorithm to sample exactly from any π.

• Today, we discuss simple methods which are the building blocks of
more complex algorithms; i.e. MCMC and SMC.
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3.1– Sampling from Uniform Random Variables

• All algorithms discussed here rely on the availability of a generator
of uniform random variables in [0, 1].

• It is impossible to get such numbers and we only get
pseudo-random numbers which look like they are i.i.d. U [0, 1].

• There are a few standard very good generators available.
We will not give any detail as their constructions are based
on techniques very different from the ones we address here.
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3.2– Sampling from A Discrete Distribution

• Consider X = {1, 2, 3} and

π (X = 1) =
1
6
, π (X = 2) =

2
6
, π (X = 3) =

1
2
.

• Define the cdf of X for x ∈ [0, 3] as

FX (x) =
3∑

i=1

π (X = i) I (i ≤ x)

and its inverse for u ∈ [0, 1]

F−1
X (u) = inf {x ∈ X ;FX (x) ≥ u}
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3.2– Sampling from A Discrete Distribution

The distribution and cdf of a discrete random variable
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3.2– Sampling from A Discrete Distribution

• To sample from this discrete distribution, sample U ∼ U [0, 1].

• Find X = F−1
X (U) .

• The probability of U falling in the vertical interval i is precidely equal to
the probability π (X = i).
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3.3– Sampling from a continuous distribution: Inverse Method

• Assume the distribution has a density, then the cdf takes the form

FX (x) = P (X≤x) =
∫ +∞

−∞
π (u) I(u ≤ x)du =

∫ x

−∞
π (u) du.

• We would like to use the same algorithm; i.e.

U ∼ U [0, 1] and set X = F−1
X (U) .

• Question: Do we have X ∼ π?

– Classical Methods Page 9



3.3– Sampling from a continuous distribution: Inverse Method

The distribution and cdf of a normal distribution
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3.3– Sampling from a continuous distribution: Inverse Method

• Proof of validity:

Pr (X ≤ x) = Pr
(
F−1

X (U) ≤ x
)

= Pr (U ≤ FX (x)) since FX is non decreasing

=
∫ 1

0

I (u ≤ FX (x)) du since U ∼ U [0, 1]

= FX (x)

• The cdf of X produced by the algorithm above is precisely the cdf of π!
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3.4– Inverse Method: Example

• Consider the exponential of parameter 1 then

π (x) = exp (−x) I[0,∞)

thus the cdf of X is

FX (x) =
∫ x

−∞
π (u) du =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x ≤ 0

1 − exp (−x) if x > 0

• Thus the inverse cdf is

1 − exp (−x) = u ⇔ x = − log (1 − u) = F−1
X (u) .

• Inverse method: U ∼ U [0, 1] then X = − log (1 − U) ∼ π

and X = − log (U) ∼ π.
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3.4– Inverse Method: Example

• Simple method to sample univariate distributions.

• This method is only limited to simple cases where the inverse cdf admits
a closed form or can be tabulated.

• In practice, it is really very limited.
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3.5– General Transformation Methods

• ‘Idea’: Using the fact that π is related to other distributions easier to sample.

• This is very specific!

• If Xi ∼ Exp (1) then

Y = 2
ν∑

j=1

Xj ∼ χ2
2ν ,

Y = β
α∑

j=1

Xj ∼ G (α, β) ,

Y =

∑α
j=1 Xj∑α+β
j=1 Xj

∼ Be (α, β) .
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3.6– Box Muller Algorithm to sample Gaussian random variables

• Consider X1 ∼ N (0, 1) and X2 ∼ N (0, 1) then its polar coordinates (R, θ)
are independent and distributed according to

R2 = X2
1 + X2

2 ∼ Exp (1/2) ,

θ ∼ U [0, 2π] .

• It is simple to simulate R =
√−2 log (U1) and θ = 2πU2 where

U1, U2 ∼ U [0, 1] then

X1 = R cos θ =
√
−2 log (U1) cos (2πU2) ,

X2 = R sin θ =
√
−2 log (U1) sin (2πU2) .

• By construction X1 and X2 are two independent N (0, 1) rvs.
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3.7– Simulation by Composition

• Assume we have

π (x) =
∫

π (x, y) dy

where it is easy to sample from π (x, y) but difficult/impossible
to compute π (x) .

• In this case, it is sufficient to sample (X, Y ) ∼ π ⇒ X ∼ π.

• One can sample from π (x, y) = π (y) π (x| y) by

Y ∼ π then X |Y ∼ π ( ·|Y ) .
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3.8– Simulation by Composition for Mixture

• Assume one wants to sample from

π (x) =
p∑

i=1

πi × πi (x)

where πi > 0,
∑p

i=1 πi = 1 and πi (x) ≥ 0,
∫

πi (x) dx = 1.

• We can introduce Y ∈ {1, ..., p} and introduce

π (x, y) = πy × πy (x) ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

π (x, y) dy = π (x)

∫
π (x, y) dx = π (y) = πy

• To sample from π (x), then sample Y ∼ π (discrete distribution such
that Pr (Y = k) = πk) then

X |Y ∼ π ( ·|Y ) = πY .
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3.9– Simulation by Composition: Scale Mixture of Gaussians

• A very useful application of the composition method is for scale mixture of

Gaussians; i.e.
π (x) =

∫
N (x; 0, 1/y) π (y) dy.

• For various choices of the mixing distributions π (y), we obtain
distributions π (x) which are t-student, α−stable, Laplace, logistic.

• Example: If
Y ∼ χ2

ν and X |Y ∼ N (0, ν/y)

then X is marginally distributed according to a t-Student with ν degrees
of freedom.

• Conditional upon Y , X is Gaussian: This structure will be used to develop
later efficient MCMC algorithm.
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3.10– Accept Reject - The first generic method

• The rejection method allows one to sample according to a distribution π

defined on X only known up to a proportionality constant, say π ∝ π∗.

• It relies on samples generated from a proposal distribution q on X.
q might as well be known only up to a normalising constant, say q ∝ q∗.

• We need q to ‘dominate’ π; i.e.

C = sup
x∈X

π∗ (x)
q∗ (x)

< +∞

• This implies π∗(x) > 0 ⇒ q∗(x) > 0 but also that the tails of q∗(x)
must be thicker than the tails of π∗(x).
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3.11– Accept Reject - Illustration

Consider C′ ≥ C. Then the accept/reject procedure proceeds as follows:

Accept/Reject procedure

1. Sample Y ∼q and U ∼ U (0, 1).

2. If U < π∗(Y )
C′q∗(Y ) then return Y ; otherwise return to step 1.
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3.11– Accept Reject - Illustration

The idea behind the rejection method for π (x) = π∗ (x) = Be (x; 1.5, 5),

q (x) = q∗ (x) = U[0,1] (x), C′ = C.
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3.12– Accept Reject - Proof of Validity

• We now prove that Pr (Y ≤ x|Y accepted) = Pr (X ≤ x) .

• We have for any x ∈ X

Pr (Y ≤ x and Y accepted) =
∫ 1

0

∫ x

−∞
I

(
u ≤ π∗ (y)

C′q∗ (y)

)
q (y) × 1dydu

=
∫ x

−∞

π∗ (y)
C′q∗ (y)

q (y) dy

=

∫ x

−∞ π∗ (y) dy

C′ ∫
X

q∗ (y) dy
.

• The probability of being accepted is the marginal of Pr (Y ≤ x and Y accepted)

Pr (Y accepted) =

∫
X

π∗ (y) dy

C′ ∫
X

q∗ (y) dy
.
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3.12– Accept Reject - Proof of Validity

• Thus

Pr (Y ≤ x|Y accepted) =
Pr (Y ≤ x and Y accepted)

Pr (Y accepted)

=

∫ x

−∞ π∗ (y) dy∫
X

π∗ (y) dy
=
∫ x

−∞
π (y) dy.

• Example: We want to sample from Be (x; α, β) ∝ xα−1 (1 − x)β−1 using U[0,1].

One can find

sup
x∈[0,1]

xα−1 (1 − x)β−1

1

analytically for α, β > 1! We do not need the normalizing constant of Be.
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3.13– Accept Reject - Efficiency

• The acceptance probability Pr (Y accepted) is a measure of efficiency.

• The expected number of trials before accepting a candidate is

1
Pr (Y accepted)

.

• The number of trials before success is thus an unbiased estimate of

1
Pr (Y accepted)

.

• This is important to better understand Metropolis-Hastings.
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3.14– Accept Reject as a Sampling through composition

• Almost unknown result (Peterson & Kronmal, 1982): One can rewrite

π (x) =
∞∑

i=1

piπ (x)

where pi = p (1 − p)i−1 and

p = Pr
(

U ≤ π∗ (X)
Cq∗ (X)

)
.

• Instead of simulating from Geo(p) directly which is impossible, one simulate
an element which admits this probability distribution.
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3.15– Alternative Formulation of Accept Reject

• In the standard Rejection algorithm, the candidate is sampled before U .
This is not necessary.

• Proposition (Beskos et al., 2005): Let (Yn, In)n≥1 be a sequence of i.i.d.
rvs taking values in X×{0, 1} such that Y1 ∼ q and

Pr (I1 = 1|Y1 = y) =
π∗ (y)
Cq∗ (y)

Define τ = min {i ≥ 1 : Ii = 1}, then Yτ ∼ π.

• This result is useful if there are ways of constructing condition for the
acceptance or rejection of the current proposed element Y from
minimal information about it.
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3.16– Accept Reject - Example

• The target π is given by

π (x) ∝ π∗ (x) = exp
(
−x2

2

)
m (x)

where m (x) ≤ M for any x ∈ X.

• If we use q (x) = q∗ (x) = (2π)−1/2 exp
(
−x2

2

)
, then we have

π∗ (x)
q∗ (x)

≤ C1 = (2π)1/2
M and Pr (Y accepted) =

∫
X

π∗ (y) dy

C1
.

• If we use q∗ (x) = exp
(
−x2

2

)
, then we have

π∗ (x)
q∗ (x)

≤ C2 = M and Pr (Y accepted) =

∫
X

π∗ (y) dy

C2 (2π)1/2
=

∫
X

π∗ (y) dy

C1

• You don’t lose anything by not knowing the normalizing constant of q∗.
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3.17– Accept Reject - Application to Bayesian Estimation

• Consider a Bayesian model: prior π (θ) and likelihood f (x| θ) .

• The posterior distribution is given by

π (θ|x) =
π (θ) f (x| θ)∫

Θ
π (θ) f (x| θ) dθ

∝ π∗ (θ|x) where π∗ (θ|x) = π (θ) f (x| θ) .

• We can use the prior distribution as a candidate distribution
q (θ) = q∗ (θ) = π (θ) as long as

sup
θ∈Θ

π∗ (θ|x)
q∗ (θ)

= sup
θ∈Θ

f (x| θ) ≤ C.

• In many applications, the likelihood is bounded so one can use the rejection
procedure and it is accepted with proba

∫
Θ

π (θ) f (x| θ) dθ/C. End of the course???
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3.18– The Rejection method does not work well in high-dimension

• Consider the case where X = R
n

π (θ) =
1

(2π)n/2
exp

(
−
∑n

i=1 θ2
i

2

)
and

qσ (θ) =
1

(2πσ2)n/2
exp

(
−
∑n

i=1 θ2
i

2σ2

)

• We have for any σ > 1

π (θ)
qσ (θ)

= σn exp

(
−

n∑
i=1

θ2
i

(
1 − 1

2σ2

))
≤ σn for any θ

and
Pr (Y accepted) =

1
σn

• Despites having a very good proposal then the acceptance probability
decreases exponentially fast with the dimension of the problem.
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3.19– Advantages and Drawbacks of the Rejection method

Advantages.

• Rather universal, and compared to the inverse cdf method requires less alge-

braic properties.

• Neither normalisation constant of π nor that of q are needed.

Drawbacks.

• How to construct the proposal q (x) automatically?

• Typically the performance of the method decrease exponentially
with the dimension of the problem.
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3.20– Envelope Rejection method

• Squeeze principle: Assume we have

q∗L (x) ≤ π∗ (x) ≤ Cq∗ (x)

then we can modify the algorithm as follows.

Envelope Accept/Reject procedure

1. Sample Y ∼q and U ∼ U (0, 1).

2. If U ≤ q∗
L(Y )

C′q∗(Y ) then return Y ;

3. Otherwise, accept X if U < π∗(Y )
C′q∗(Y ) , otherwise return to step 1.
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3.21– Adaptive Rejection Sampling

• Consider the class of univariate log-concave densities; i.e. we have

∂2 log π (x)
∂x2

< 0.

• The idea is to construct automatically an piecewise linear upper (and lower)
bound for the target.
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3.21– Adaptive Rejection Sampling

Here a nice graph should appear but it does not for whatever reason.

See Fig. 2.5, page 57 in Monte Carlo Statistical Methods.
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3.21– Adaptive Rejection Sampling

• Initialize n = 0 and S0

At iteration n ≥ 1

1. Generate Y ∼ qn.

2. If U ≤ π(Y )
C′qn(Y ) then return Y ; otherwise set Sn+1 = Sn ∪ {Y }.
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3.22– Adaptive Rejection Sampling: Example

• Consider n data (xi, Yi)

Yi|xi ∼ Poisson (a + bxi) .

and we set the prior

π (a, b) = N (
a; 0, σ2

)N (
b; 0, τ2

)
• We have

log π (a|x1:n, y1:n, b) = a
∑

yi − ea
∑

exib − a2/2σ2

⇒ ∂2 log π (a|x1:n, y1:n, b)
∂a2

= −ea
∑

exib − σ−2 < 0.

• Thus π (a|x1:n, y1:n, b) is log-concave, similarly π (b|x1:n, y1:n, a) is log-concave.
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3.23– Summary

• There exists standard techniques to sample from classical distributions.

• Rejection is useful for small non-standard distributions
but collapses for most “interesting” problems.

• These algorithms will be building blocks of more complex
Monte Carlo algorithms.
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