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1.1– Outline

• Motivation.

• Introduction to Monte Carlo.
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2.1– Summary of Previous Lectures

• Bayesian model: Prior π (θ) and likelihood f (x| θ)

π (θ|x) =
π (θ) f (x| θ)∫

Θ
π (θ) f (x| θ) dθ

• Except for simple cases -conjugate priors-, there is no closed form expression
for the posterior.

• Bayes rule requires being able to compute the potentially high dimensional
integral ∫

Θ

π (θ) f (x| θ) dθ.
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2.2– Implementations problems for Bayesian inference

• In practice, point estimates are computed

E [θ|x] =
∫

θπ (θ|x) dθ

V ar [θ|x] =
∫

θ2π (θ|x) dθ − E2 [θ|x] .

and/or marginal distributions; e.g. if θ = (θ1, θ2) and θ2 are so-called
nuisance parameters then

π (θ1|x) =
∫

π (θ1, θ2|x) dθ2.

• We might also be interested in

θMMAP
1 = arg max π (θ1|x)
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2.2– Implementations problems for Bayesian inference

• If you want to predict Y ∼ g (y| θ) given x then

g (y|x) =
∫

g (y| θ)π (θ|x) dθ

and

E [Y |x] =
∫ ∫

yg (y| θ)π (θ|x) dθ.

• For model selection with a infinitely countable number of models

π (k, θk|x) =
π (k) πk (θk) f (x| k, θk)∑∞

k=1 π (k)
∫

πk (θk) f (x| k, θk) dθk
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2.2– Implementations problems for Bayesian inference

• Bayesian inference is conceptually simple (once the model is set)
but how do you perform Bayesian inference for complex models???
It requires computing high dimensional integrals.

• In practice, Bayesian inference is not only used to determine whether coins
are biased and for Gaussian models.

• Monte Carlo methods have appeared in the 90’s in statistics and
have truly revolutionized the whole field.
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3.1– Introduction to Monte Carlo: A simple example

Consider the 2 × 2 square, say S ⊂ R
2, with inscribed disc D of radius 1.
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3.1– Introduction to Monte Carlo: A simple example

• An “idealised” rain falls uniformly on the square S, i.e. the probability
for a drop to fall in a region A is proportional to the area of A.

• Let D be the random variable defined on Θ = S representing
the location of a drop and A a region of the square, then

P(D ∈ A) =

∫
A dxdy∫
S dxdy

.

where x and y are the Cartesian coordinates.

• Assume we observe N such independent drops, say {Di, i = 1, . . . , N}.
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3.1– Introduction to Monte Carlo: A simple example
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3.1– Introduction to Monte Carlo: A simple example

• Intuitively, imagining that you have never followed any statistics course,
a sensible technique to estimate the probability P(D ∈ A) of falling in
a given region A ⊂ S (and think for example of A = D) would consist
of using

P(d ∈ A) � number of drops that fell in A
N

.

• We want a statistical justification to it.
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3.2– Probability of this event as an expectation

• Let us denote the indicator function of a set A as follows,

IA(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if point d = (x, y) ∈ A,

0 otherwise.

• We have

P(D ∈ A) =

∫
S IA(x, y)dxdy∫

S dxdy
=

∫
S IA(x, y)dxdy

4
=
∫
S

IA(x, y)
1
4
dxdy.

since ∫
S=A∪S\A

IA(x, y)dxdy =
∫
A

IA(x, y)dxdy +
∫
S\A

IA(x, y)dxdy

=
∫
A

1dxdy +
∫
S\A

0dxdy.
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3.2– Probability of this event as an expectation

• 1/4 is the probability density associated to P, i.e. the density
of the uniform distribution on S denoted US .

• Let us define the r.v. V (D) := IA(D) := IA(X, Y ), where X, Y are
the rvs representing the Cartesian coordinates of a uniformly distributed
point on S, denoted US (D ∼ US), where a drop falls.
With this notation, we understand that

P(d ∈ A) =
∫
S

IA(x, y)
1
4
dxdy = EUS (V ).
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3.3– Law of large numbers

• Introduce {Vi := V (Di), i = 1, . . . , N} the r.v.s associated to
the drops {Di, i = 1, . . . , N} and consider the sum

SN =
∑N

i=1 Vi

N
=

number of drops that fell in A
N

• This expression shows that our suggested approximation of P(D ∈ A)
is the empirical average of i.i.d. r.v.s {Vi, i = 1, . . . , N}.

• Assuming that the rain lasts forever (i.e. N → +∞) then
the law of large numbers (since EUS (|V |) < +∞ here) yields

lim
N→+∞

SN = EUS (V ), (almost surely),

where we have already proved that P(D ∈ A) = EUS (V ).

• When N is sufficiently large, this mathematically justifies our intuitive method.
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3.4– Approximating pi

• As we have
P(d ∈ D) =

∫
D

1
4
dxdy =

π

4
then SN is an (unbiased) estimator of π/4.

• It is a r.v., i.e. SN = π/4 + EN where EN is an error term.

• To characterise the precision of our estimator, we can use

var(EN ) = var(SN ) =
1

N2

N∑
i=1

var(Vi) =
1
N

var(V1)

as the {Vi, i = 1, . . . , N} are independent.
• This means that√

var(SN ) =
√

E [(SN − E(SN ))2] =
√

E [(SN − P(D ∈ D))2],

which implies that the mean square error between SN and P(d ∈ D) decreases
as 1/

√
N .
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3.5– Properties of the estimator

• One can invoke an asymptotic result, the central limit theorem
(which can be applied here as var(V ) < +∞). As N → +∞,

√
NSN →d N (π/4, var(V ))

which implies that for N large enough the probability of the error
being larger than 2

√
var(V )/N (here 2

√
var(V ) = 0.8211) is

P

(
|SN − π/4| > 2

√
var(V )/N

)
� 0.05.

• We are sampling here from a Bernoulli distribution so we can establish
a non-asymptotic result. Using a Bernstein type inequality, one can prove
that for any integer N ≥ 1 and ε > 0,

P (|SN − π/4| > ε) ≤ 2 exp
(−2Nε2

)
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3.5– Properties of the estimator

• For any α ∈ (0, 1], P (|SN − π/4| > ε) < α is guarenteed for

N ≥
[
log (2/α)

2ε2

]
,

Alternatively, it tells us that for any N ≥ 1,

P

(
|SN − π/4| >

√
log (40)

2N

)
≤ 0.05

• Both results tell us that in some sense the approximation error is inversely
proportional to

√
N .
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3.6– Simulations

Convergence of SN − π
4 as a function of N , 1 realisation.
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3.6– Simulations

Convergence of SN − π
4 for 100 realisations.
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3.6– Simulations

Square root empirical mean square error SN − π
4 accross 100 realisations as

a function of N (dashed) and ±√var (V ) /N (dotted).
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3.7– Generalization

• Consider the case where Θ = R
nθ for any nθ, and in particular nθ >> 1.

Replace the S and D above with a hypercube Snx and an inscribed
hyperball Dnθ in Θ.

• If we could observe a hyperrain, the same estimator could be built;
the onyly thing we need to calculate IDnθ (D) pointwise.
Arguments that lead earlier to the formal validation of the Monte Carlo
approach remain identical here.
• In particular the rate of convergence of the estimator in the mean square
sense is again in 1/

√
N and independent of the dimension nx.

• This would not be the case using a deterministic method on a grid of
regularly spaced points where the CV rate is typically of the form
1/Nr/nθ where r is related to the smoothness of the contours of A.

⇒ Monte Carlo methods are thus extremely attractive when nx is large.
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3.7– Generalization

• Now we generalise this idea to tackle the generic problem of estimating

Eπ(f(θ)) �
∫

Θ

f(θ)π(θ)dθ,

where f : Θ → R
nf and π is a probability distribution on Θ ⊂ R

nx .

• We will assume that Eπ(|f(θ)|) < +∞ but that it is difficult to obtain
an analytical expression for Eπ(f(θ)).

• Here π is any probability distribution and not necessary the prior.
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3.7– Generalization

• Assume N >> 1 i.i.d. samples θ(i) ∼ π (i = 1, . . . , N) are available
to us (since it is unlikely that rain can generate samples from any
distribution π, we will address the problem of sample generation later).

• Now consider any set A ⊂ Θ and assume that we are interested in
π(A) = P(θ ∈ A) for θ ∼ π. We naturally choose the following estimator

π(A) � number of samples in A
total number of samples

,

which by the law of large numbers is a consistent estimator of π(A) since

lim
N→+∞

1
N

N∑
i=1

IA(θ(i)) = Eπ(IA(θ)) = π(A).
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3.7– Generalization

• A way of generalising this in order to evaluate Eπ(f(θ)) consists of considering
the unbiased estimator

SN (f) =
1
N

N∑
i=1

f(θ(i)),

• From the law of large numbers SN (f) will converge and

lim
N→+∞

1
N

N∑
i=1

f(θ(i)) = Eπ(f(θ)) a.s.

• A good measure of the approximation is the variance of SN (f),

varπ [SN (f)] = varπ

[
1
N

N∑
i=1

f(θ(i))

]
=

varπ [f(θ)]
N

.

Now the central limit theorem applies if varπ [f(θ)] < ∞ and tells us that√
N (SN (f) − Eπ(f(θ)) N→+∞→ d N (0, varπ [f(θ)]) ,
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3.7– Generalization

The conclusions drawn in the rain example are still valid here

• The rate of convergence is immune to the dimension of Θ.

•It is easy to take complex integration domains into account.

•It is easily implementable and general. The requirements are

to be able to evaluate f(θ) for any θ ∈ Θ,

to be able to produce samples distributed according to π.
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3.8– From the algebraic to the sample representation

• Let us introduce the delta-Dirac function δθ0 for θ0 ∈ Θ defined
for any f : Θ → R

nf .as follows∫
Θ

f(θ)δθ0(θ)dθ = f(θ0).

• Note that this implies in particular that for A ⊂ Θ,∫
Θ

IA(θ)δθ0(θ)dθ =
∫
A

δθ0(θ)dθ = IA(θ0).

• Now, for θ(i) ∼ π for i = 1, . . . , N , we can introduce the following mixture
of delta-Dirac functions

π̂N (θ) :=
1
N

N∑
i=1

δθ(i) (θ) ,

which is the empirical measure, and consider for any A ⊂ Θ

π̂N (A) �
∫
A

π̂N (θ) dθ =
N∑

i=1

∫
A

1
N

δθ(i) (θ) =
1
N

N∑
i=1

IA(θ) = SN (A)
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3.8– From the algebraic to the sample representation

• The concentration of points in a given region of the space
represents π.

• This approach is in contrast with what is usually done in parametric statistics,
i.e. start with samples and then introduce a distribution with an algebraic
representation for the underlying population.

• Note that here each sample θ(i) has a weight of 1/N , but that it is also
possible to consider weighted sample representations of π.
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3.8– From the algebraic to the sample representation
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3.8– From the algebraic to the sample representation

Deterministic Integration
.

..

Monte Carlo Integration
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3.8– From the algebraic to the sample representation

• Now consider the problem of estimating Eπ(f). We simply
replace π with its sample representation π̂N and obtain

Eπ(f) �
∫

Θ

f (θ)
N∑

i=1

1
N

δθ(i) (θ) dθ =
N∑

i=1

1
N

∫
Θ

f (θ) δθ(i) (θ) dθ =
1
N

N∑
i=1

f(θ(i)),

which is precisely SN (f), the Monte Carlo estimator suggested earlier.

• Clearly based on π̂N , we can easily estimate Eπ(f) for any f.

• For example

varπ(f) = Eπ(f2) − E
2
π(f) � 1

N

N∑
i=1

f2(θ(i)) −
(

1
N

N∑
i=1

f(θ(i))

)2

.
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3.8– From the algebraic to the sample representation

• Similarly, if we have

π̂N (θ1, θ2) =
1
N

N∑
i=1

δ
θ
(i)
1 ,θ

(i)
2

(θ1, θ2)

so the marginal distribution is simply given by

π̂N (θ1) =
1
N

N∑
i=1

δ
θ
(i)
1

(θ1)

• If we want to estimate arg max π (θ) and π (θ) is known up to a normalizing

constant then

arg max
{θ(i)}

π
(
θ(i)
)

is a reasonable estimate.
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3.9– Summary

• If you could sample easily from an arbitrary probability distribution,

then you could easily estimate all the quantities you are interested in.

• Problem: How do you sample from an arbitrary probability distribution???
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