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1.1— Outline

e Motivation.

e Introduction to Monte Carlo.
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2.1— Summary of Previous Lectures

e Bayesian model: Prior 7 (#) and likelihood f (x| @)

e Except for simple cases -conjugate priors-, there is no closed form expression

for the posterior.

e Bayes rule requires being able to compute the potentially high dimensional

integral

/7r(6’)f(x|6’)d9.
©
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2.2— Implementations problems for Bayesian inference

e In practice, point estimates are computed
E|0lx] = /9%(9|x) db
Var|0|z] = /«927T(¢9\x)d6’—E2[9|x].

and /or marginal distributions; e.g. if 8 = (01, 60>) and 65 are so-called
nuisance parameters then

7'('(91‘113) — /7’(’(91,92‘33) d@g

e We might also be interested in

PMMAP — argmax 7 (61| )
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2.2— Implementations problems for Bayesian inference

e If you want to predict Y ~ g (y|0) given x then
9(sl) = [ 9(s] )7 (6] ) as

and

me]://ygwwr(em)de.

e For model selection with a infinitely countable number of models

B m (k) 7 (Ok) f (2] K, Or)
m(k, 0| x) = 22117('1{7)[7”? (0k) f (x| k,0k) dOy,
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2.2— Implementations problems for Bayesian inference

e Bayesian inference is conceptually simple (once the model is set)
but how do you perform Bayesian inference for complex models???

It requires computing high dimensional integrals.

e In practice, Bayesian inference is not only used to determine whether coins

are biased and for Gaussian models.

e Monte Carlo methods have appeared in the 90’s in statistics and

have truly revolutionized the whole field.
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3.1— Introduction to Monte Carlo: A simple example

Consider the 2 x 2 square, say S C R?, with inscribed disc D of radius 1.
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3.1— Introduction to Monte Carlo: A simple example

e An “idealised” rain falls uniformly on the square S, i.e. the probability

for a drop to fall in a region A is proportional to the area of A.

e Let D be the random variable defined on ©® = S representing
the location of a drop and A a region of the square, then

J 4 dady
| dxdy

where z and y are the Cartesian coordinates.

P(DeA) =

e Assume we observe N such independent drops, say {D;,i=1,... ,N}.
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3.1— Introduction to Monte Carlo: A simple example
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3.1— Introduction to Monte Carlo: A simple example

e Intuitively, imagining that you have never followed any statistics course,
a sensible technique to estimate the probability P(D € A) of falling in
a given region A C S (and think for example of A = D) would consist

of using

number of drops that fell in A
~ .

P(de A) ~

e We want a statistical justification to it.
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3.2— Probability of this event as an expectation

e Let us denote the indicator function of a set A as follows,
(

1 if point d = (z,y) € A,
]IA(:Cay) = 9

0 otherwise.

\

e We have

JsTLa(z,y)dxdy fs I 4(x,y)dzdy 1
= [ I —dxdy.

/ [ A(x,y)dxdy —/ (x,y dwdy+/ [ a(x,y)dxdy
S=AUS\ A S\A

/1dxdy—|—/ Odxdy.
S\ A

P(D e A) =

since
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3.2— Probability of this event as an expectation

e 1/4 is the probability density associated to P, i.e. the density
of the uniform distribution on S denoted Us.

e Let us define the r.v. V(D) :=14(D) :=14(X,Y), where X,Y are
the rvs representing the Cartesian coordinates of a uniformly distributed
point on S, denoted Us (D ~ Us), where a drop falls.

With this notation, we understand that

P(de A) = /SI[A(:IJ,y)%dxdy = Eys (V).
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3.3— Law of large numbers

e Introduce {V; :=V(D;),i=1,..., N} the r.v.s associated to
the drops {D;,i=1,..., N} and consider the sum
S Z,fil Vi:  number of drops that fell in A
N = =

N N

e This expression shows that our suggested approximation of P(D € A)
is the empirical average of i.i.d. r.v.s {V;,i=1,... ,N}.

e Assuming that the rain lasts forever (i.e. N — +00) then
the law of large numbers (since Ey (|V|) < 400 here) yields

Nmﬂ Sy = Eys(V), (almost surely),

where we have already proved that P(D € A) = Ey (V).
e When N is sufficiently large, this mathematically justifies our intuitive method.
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3.4— Approximating pi

e As we have

1 T
P(dED)zf —dxdy = —
4 4

then Sy is an (unbiased) estimator of 7/4.
e ltisar.wv., i.e. Sy =n/4+ En where Ey is an error term.

e To characterise the precision of our estimator we can use

1
var(En) = var(Sy) = Nz ZUW = ﬁvar(vl)

as the {V;;i=1,... N} are 1ndependent.
e This means that

\/’UG/I“(SN \/E SN E(SN \/E SN P(DGD))]

which implies that the mean square error between Sy and P(d € D) decreases

as 1/v/N.
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3.5— Properties of the estimator

e One can invoke an asymptotic result, the central limit theorem
(which can be applied here as var(V) < +00). As N — +o0,

VNSN —q N(1/4,var(V))

which implies that for N large enough the probability of the error
being larger than 2\/fvar )/N (here 2\/var(V) = 0.8211) is

(\SN — 7 /4] > 2\/var(V /N) ~ 0.05.

e We are sampling here from a Bernoulli distribution so we can establish
a non-asymptotic result. Using a Bernstein type inequality, one can prove
that for any integer N > 1 and € > 0,

P(|Sy — /4] > €) < 2exp (—2Ne?)
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3.5— Properties of the estimator

e For any a € (0,1], P(|Sy — 7/4| > ¢) < « is guarenteed for

N llog 2(22/a)] |

Alternatively, it tells us that for any N > 1,

P <SN /4] > \/loiff‘ov < 0.05

e Both results tell us that in some sense the approximation error is inversely
proportional to v/ V.
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3.6— Simulations

Convergence of Sy — & as a function of N, 1 realisation.
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3.6— Simulations

Convergence of Sy — & for 100 realisations.
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3.6— Simulations

T

Square root empirical mean square error Sy — 7 accross 100 realisations as

a function of N (dashed) and ++/var (V) /N (dotted).
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3.7— Generalization

e Consider the case where ©® = R"¢ for any ng, and in particular ng >> 1.
Replace the S and D above with a hypercube 8™+ and an inscribed
hyperball D™ in ©.

e If we could observe a hyperrain, the same estimator could be built;

the onyly thing we need to calculate Ipne (D) pointwise.

Arguments that lead earlier to the formal validation of the Monte Carlo
approach remain identical here.

e In particular the rate of convergence of the estimator in the mean square
sense is again in 1/ V' N and independent of the dimension n..

e This would not be the case using a deterministic method on a grid of
regularly spaced points where the CV rate is typically of the form
1/N7/m0 where r is related to the smoothness of the contours of A.

= Monte Carlo methods are thus extremely attractive when n, is large.
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3.7— Generalization

e Now we generalise this idea to tackle the generic problem of estimating

R / £(0)7(0)do
e

where f : ©® — R"/ and 7 is a probability distribution on ® C R"=,

e We will assume that E,(|f(6)|) < +oo but that it is difficult to obtain
an analytical expression for E(f(6)).

e Here 7 is any probability distribution and not necessary the prior.
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3.7— Generalization

e Assume N >> 1 i.i.d. samples ) ~ 7 (¢=1,...,N) are available
to us (since it is unlikely that rain can generate samples from any

distribution 7, we will address the problem of sample generation later).

e Now consider any set A C © and assume that we are interested in
m(A) =P(0 € A) for § ~ 7. We naturally choose the following estimator

number of samples in A

T(A) >~

~ total number of samples’

which by the law of large numbers is a consistent estimator of w(.A) since

N
hm 53 TA0) = Ex(L0) = 7(A)
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3.7— Generalization

e A way of generalising this in order to evaluate E( f(6)) consists of considering

1 & .
i=1

the unbiased estimator

e From the law of large numbers S ~(f) will converge and

lim Zf (00)) (f(0)) a.s.

N ——+o0 N

e A good measure of the approximation is the variance of Sy (f),

iy | vary [f(0)]
vary [Sn (f)] vam[ Zf 9( ] N .

Now the central limit theorem applies 1f vary [ f(0)] < oo and tells us that

VN (S (f) = Ex(£(8)) " =24 N (0,var, [f()]),
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3.7— Generalization

The conclusions drawn in the rain example are still valid here
e The rate of convergence is immune to the dimension of ©O.
o]t is easy to take complex integration domains into account.
o]t is easily implementable and general. The requirements are
to be able to evaluate f(0) for any 6 € O,

to be able to produce samples distributed according to .
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3.8— From the algebraic to the sample representation

e Let us introduce the delta-Dirac function dg, for 6y € © defined
for any f: © — R"/.as follows

/ 1(8)06,(6)d0 = F(By).

e
e Note that this implies in particular that for A C O,

La(6)60, (6)d0 = [ 62,(6)d6 = La(60)
Q] A

e Now, for 0 ~ 7 for i = 1,..., N, we can introduce the following mixture

S Z Og(i) ()

which is the empirical measure, and Con81der for any A
1

C 6
N
7n(A) é/ 7N ( dH—Z/ — gy (0 NZHA(H) = Sn (A)

of delta-Dirac functions
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3.8— From the algebraic to the sample representation

e The concentration of points in a given region of the space

represents .

e This approach is in contrast with what is usually done in parametric statistics,
1.e. start with samples and then introduce a distribution with an algebraic

representation for the underlying population.

e Note that here each sample 8(Y) has a weight of 1/N, but that it is also

possible to consider weighted sample representations of .
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3.8— From the algebraic to the sample representation
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3.8— From the algebraic to the sample representation

Deterministic Integration

— Introduction to Monte Carlo

Monte Carlo Integration
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3.8— From the algebraic to the sample representation

e Now consider the problem of estimating E,(f). We simply
replace m with its sample representation 7 and obtain

N 1 N

iy 1 B 0
Bn(f) 2 [ 10)3 500 0)d0 =305 [ 10000 0)a0 = 537 7(0),

which is precisely Sy (f), the Monte Carlo estimator suggested earlier.
e Clearly based on 7y, we can easily estimate E,(f) for any f.

e For example
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3.8— From the algebraic to the sample representation

e Similarly, if we have
N (01,02) = Z O gt (01,02)

so the marginal distribution is simply given by

|
= — E 0, (01)
91
N —

e If we want to estimate arg max 7 (6) and 7 () is known up to a normalizing

constant then

alige(rr};?x s (H(i))

1s a reasonable estimate.
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3.9— Summary

e If you could sample easily from an arbitrary probability distribution,

then you could easily estimate all the quantities you are interested in.

e Problem: How do you sample from an arbitrary probability distribution???
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