Stat 535 C - Statistical Computing & Monte Carlo Methods

Arnaud Doucet

Email: arnaud@cs.ubc.ca

- Motivation.
- Introduction to Monte Carlo.

• Bayesian model: Prior $\pi(\theta)$ and likelihood $f(x|\theta)$

$$\pi\left(\left.\theta\right|x\right) = \frac{\pi\left(\theta\right)f\left(\left.x\right|\theta\right)}{\int_{\Theta}\pi\left(\theta\right)f\left(\left.x\right|\theta\right)d\theta}$$

• Except for simple cases -conjugate priors-, there is no closed form expression for the posterior.

• Bayes rule requires being able to compute the potentially high dimensional integral

$$\int_{\Theta} \pi\left(\theta\right) f\left(\left.x\right|\theta\right) d\theta.$$

• In practice, point estimates are computed

$$E\left[\theta | x\right] = \int \theta \pi\left(\theta | x\right) d\theta$$
$$Var\left[\theta | x\right] = \int \theta^{2} \pi\left(\theta | x\right) d\theta - E^{2}\left[\theta | x\right].$$

and/or marginal distributions; e.g. if $\theta = (\theta_1, \theta_2)$ and θ_2 are so-called nuisance parameters then

$$\pi\left(\left.\theta_{1}\right|x\right) = \int \pi\left(\left.\theta_{1}, \theta_{2}\right|x\right) d\theta_{2}.$$

• We might also be interested in

$$\theta_1^{\text{MMAP}} = \arg \max \pi \left(\theta_1 | x \right)$$

• If you want to predict $Y \sim g(y|\theta)$ given x then

$$g(y|x) = \int g(y|\theta) \pi(\theta|x) d\theta$$

and

$$E[Y|x] = \int \int yg(y|\theta) \pi(\theta|x) d\theta.$$

• For model selection with a infinitely countable number of models

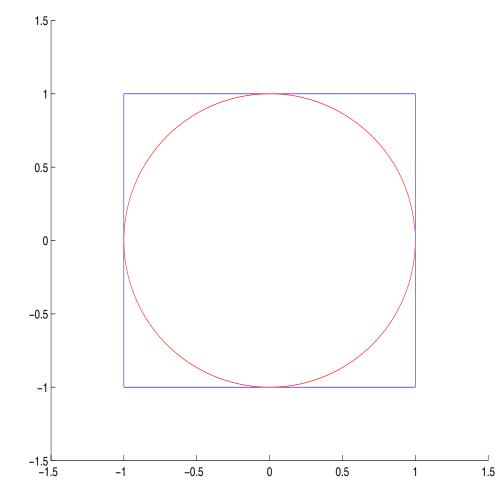
$$\pi\left(k,\theta_{k}\right|x) = \frac{\pi\left(k\right)\pi_{k}\left(\theta_{k}\right)f\left(x\right|k,\theta_{k}\right)}{\sum_{k=1}^{\infty}\pi\left(k\right)\int\pi_{k}\left(\theta_{k}\right)f\left(x\right|k,\theta_{k}\right)d\theta_{k}}$$

• Bayesian inference is conceptually simple (once the model is set) but how do you perform Bayesian inference for complex models??? It requires computing high dimensional integrals.

• In practice, Bayesian inference is not only used to determine whether coins are biased and for Gaussian models.

• Monte Carlo methods have appeared in the 90's in statistics and have truly revolutionized the whole field.

Consider the 2×2 square, say $\mathcal{S} \subset \mathbb{R}^2$, with inscribed disc \mathcal{D} of radius 1.

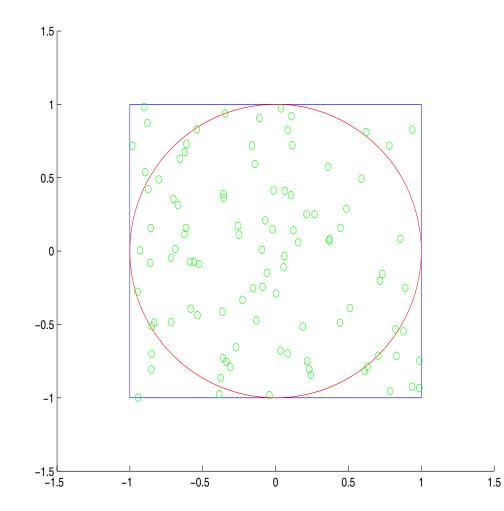


- An "idealised" rain falls uniformly on the square S, *i.e.* the probability for a drop to fall in a region A is proportional to the area of A.
- Let D be the random variable defined on $\Theta = S$ representing the location of a drop and A a region of the square, then

$$\mathbb{P}(D \in \mathcal{A}) = \frac{\int_{\mathcal{A}} dx dy}{\int_{\mathcal{S}} dx dy}.$$

where x and y are the Cartesian coordinates.

• Assume we observe N such *independent* drops, say $\{D_i, i = 1, ..., N\}$.



• Intuitively, imagining that you have never followed any statistics course, a sensible technique to estimate the probability $\mathbb{P}(D \in \mathcal{A})$ of falling in a given region $\mathcal{A} \subset \mathcal{S}$ (and think for example of $\mathcal{A} = \mathcal{D}$) would consist of using

$$\mathbb{P}(d \in \mathcal{A}) \simeq \frac{\text{number of drops that fell in } \mathcal{A}}{N}$$

• We want a statistical justification to it.

 \bullet Let us denote the indicator function of a set $\mathcal A$ as follows,

(

$$\mathbb{I}_{\mathcal{A}}(x,y) = \begin{cases} 1 & \text{if point } d = (x,y) \in \mathcal{A}, \\ 0 & \text{otherwise.} \end{cases}$$

• We have

$$\mathbb{P}(D \in \mathcal{A}) = \frac{\int_{\mathcal{S}} \mathbb{I}_{\mathcal{A}}(x, y) dx dy}{\int_{\mathcal{S}} dx dy} = \frac{\int_{\mathcal{S}} \mathbb{I}_{\mathcal{A}}(x, y) dx dy}{4} = \int_{\mathcal{S}} \mathbb{I}_{\mathcal{A}}(x, y) \frac{1}{4} dx dy.$$
since
$$\int_{\mathcal{S}=\mathcal{A}\cup\mathcal{S}\setminus\mathcal{A}} \mathbb{I}_{\mathcal{A}}(x, y) dx dy = \int_{\mathcal{A}} \mathbb{I}_{\mathcal{A}}(x, y) dx dy + \int_{\mathcal{S}\setminus\mathcal{A}} \mathbb{I}_{\mathcal{A}}(x, y) dx dy$$

$$= \int_{\mathcal{A}} 1 dx dy + \int_{\mathcal{S}\setminus\mathcal{A}} 0 dx dy.$$

- 1/4 is the probability density associated to \mathbb{P} , *i.e.* the density of the uniform distribution on \mathcal{S} denoted $\mathcal{U}_{\mathcal{S}}$.
- Let us define the r.v. $V(D) := \mathbb{I}_{\mathcal{A}}(D) := \mathbb{I}_{\mathcal{A}}(X, Y)$, where X, Y are the rvs representing the Cartesian coordinates of a uniformly distributed point on \mathcal{S} , denoted $\mathcal{U}_{\mathcal{S}}$ $(D \sim \mathcal{U}_{\mathcal{S}})$, where a drop falls. With this notation, we understand that

$$\mathbb{P}(d \in \mathcal{A}) = \int_{\mathcal{S}} \mathbb{I}_{\mathcal{A}}(x, y) \frac{1}{4} dx dy = \mathbb{E}_{\mathcal{U}_{\mathcal{S}}}(V).$$

• Introduce $\{V_i := V(D_i), i = 1, ..., N\}$ the r.v.s associated to the drops $\{D_i, i = 1, ..., N\}$ and consider the sum $S_N = \frac{\sum_{i=1}^N V_i}{N} = \frac{\text{number of drops that fell in } \mathcal{A}}{N}$

• This expression shows that our suggested approximation of $\mathbb{P}(D \in \mathcal{A})$ is the empirical average of i.i.d. r.v.s $\{V_i, i = 1, \ldots, N\}$.

• Assuming that the rain lasts forever (i.e. $N \to +\infty$) then the *law of large numbers* (since $\mathbb{E}_{\mathcal{U}_{\mathcal{S}}}(|V|) < +\infty$ here) yields

 $\lim_{N \to +\infty} S_N = \mathbb{E}_{\mathcal{U}_S}(V), \text{ (almost surely)},$ where we have already proved that $\mathbb{P}(D \in \mathcal{A}) = \mathbb{E}_{\mathcal{U}_S}(V).$

 \bullet When N is sufficiently large, this mathematically justifies our intuitive method.

[–] Introduction to Monte Carlo

• As we have

$$\mathbb{P}(d \in \mathcal{D}) = \int_{\mathcal{D}} \frac{1}{4} dx dy = \frac{\pi}{4}$$

then S_N is an (unbiased) estimator of $\pi/4$.

- It is a r.v., *i.e.* $S_N = \pi/4 + E_N$ where E_N is an error term.
- To characterise the precision of our estimator, we can use

$$var(E_N) = var(S_N) = \frac{1}{N^2} \sum_{i=1}^{N} var(V_i) = \frac{1}{N} var(V_1)$$

as the $\{V_i, i = 1, ..., N\}$ are independent.

• This means that

$$\sqrt{var(S_N)} = \sqrt{\mathbb{E}\left[(S_N - \mathbb{E}(S_N))^2\right]} = \sqrt{\mathbb{E}\left[(S_N - \mathbb{P}(D \in \mathcal{D}))^2\right]},$$

which implies that the mean square error between S_N and $\mathbb{P}(d \in \mathcal{D})$ decreases as $1/\sqrt{N}$.

– Introduction to Monte Carlo

• One can invoke an asymptotic result, the *central limit theorem* (which can be applied here as $var(V) < +\infty$). As $N \to +\infty$,

$$\sqrt{N}S_N \to_d \mathcal{N}(\pi/4, var(V))$$

which implies that for N large enough the probability of the error being larger than $2\sqrt{var(V)/N}$ (here $2\sqrt{var(V)} = 0.8211$) is

$$\mathbb{P}\left(|S_N - \pi/4| > 2\sqrt{var(V)/N}\right) \simeq 0.05.$$

• We are sampling here from a Bernoulli distribution so we can establish a non-asymptotic result. Using a Bernstein type inequality, one can prove that for any integer $N \ge 1$ and $\varepsilon > 0$,

$$\mathbb{P}\left(|S_N - \pi/4| > \varepsilon\right) \le 2\exp\left(-2N\varepsilon^2\right)$$

– Introduction to Monte Carlo

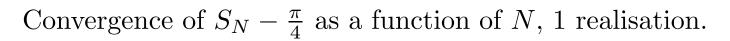
• For any $\alpha \in (0, 1]$, $\mathbb{P}(|S_N - \pi/4| > \varepsilon) < \alpha$ is guarenteed for

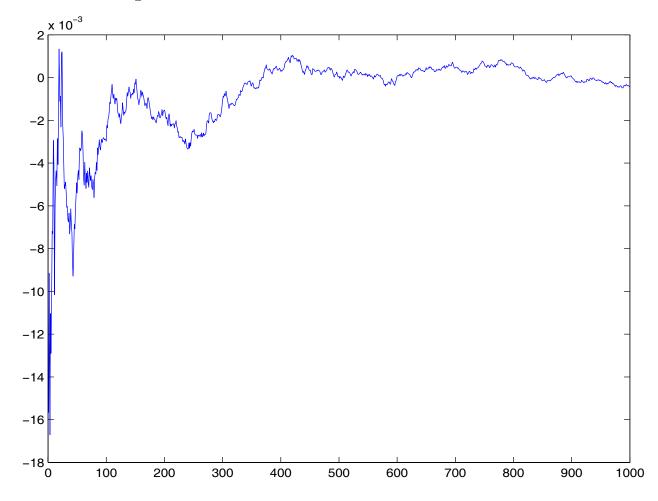
$$N \ge \left[\frac{\log\left(2/\alpha\right)}{2\varepsilon^2}\right],$$

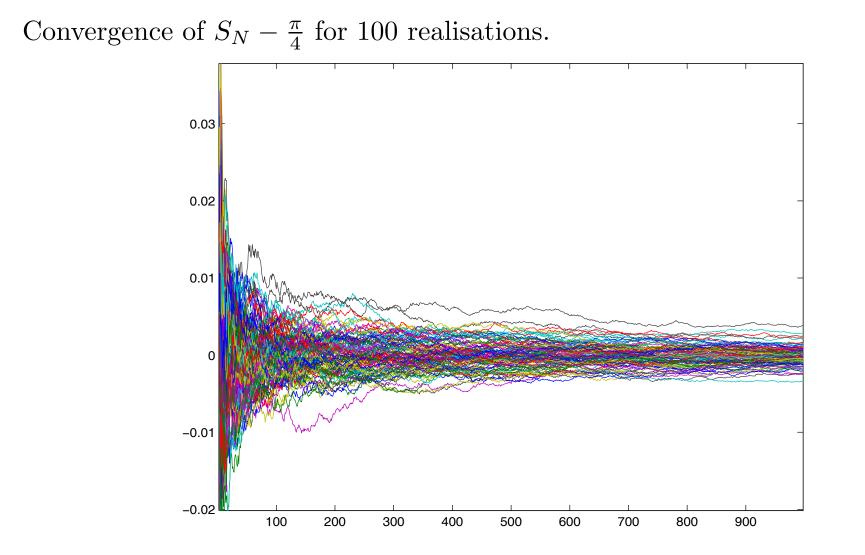
Alternatively, it tells us that for any $N \ge 1$,

$$\mathbb{P}\left(\left|S_N - \pi/4\right| > \sqrt{\frac{\log\left(40\right)}{2N}}\right) \le 0.05$$

• Both results tell us that in some sense the approximation error is inversely proportional to \sqrt{N} .

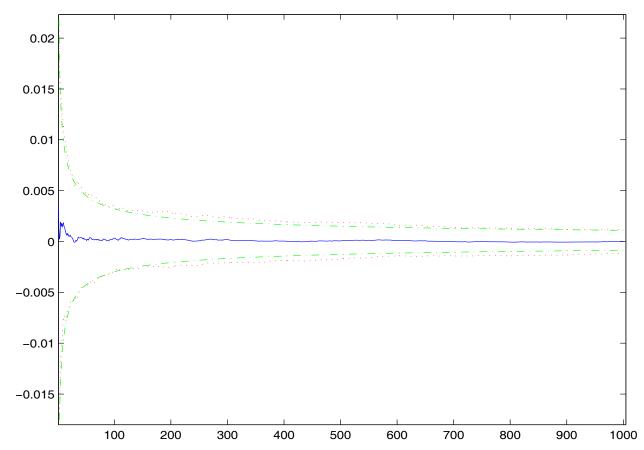






– Introduction to Monte Carlo

Square root empirical mean square error $S_N - \frac{\pi}{4}$ accross 100 realisations as a function of N (dashed) and $\pm \sqrt{var(V)/N}$ (dotted).



• Consider the case where $\Theta = \mathbb{R}^{n_{\theta}}$ for any n_{θ} , and in particular $n_{\theta} >> 1$. Replace the S and D above with a hypercube S^{n_x} and an inscribed hyperball $\mathcal{D}^{n_{\theta}}$ in Θ .

• If we could observe a hyperrain, the same estimator could be built; the onyly thing we need to calculate $\mathbb{I}_{\mathcal{D}^{n_{\theta}}}(D)$ pointwise. Arguments that lead earlier to the formal validation of the Monte Carlo approach remain identical here.

• In particular the rate of convergence of the estimator in the mean square sense is again in $1/\sqrt{N}$ and *independent of the dimension* n_x .

• This would not be the case using a deterministic method on a grid of regularly spaced points where the CV rate is typically of the form $1/N^{r/n_{\theta}}$ where r is related to the smoothness of the contours of \mathcal{A} .

 \Rightarrow Monte Carlo methods are thus extremely attractive when n_x is large.

• Now we generalise this idea to tackle the generic problem of estimating

$$\mathbb{E}_{\pi}(f(\theta)) \triangleq \int_{\Theta} f(\theta) \pi(\theta) d\theta,$$

where $f: \Theta \to \mathbb{R}^{n_f}$ and π is a probability distribution on $\Theta \subset \mathbb{R}^{n_x}$.

- We will assume that $\mathbb{E}_{\pi}(|f(\theta)|) < +\infty$ but that it is difficult to obtain an analytical expression for $\mathbb{E}_{\pi}(f(\theta))$.
- Here π is any probability distribution and not necessary the prior.

• Assume N >> 1 *i.i.d.* samples $\theta^{(i)} \sim \pi$ (i = 1, ..., N) are available to us (since it is unlikely that rain can generate samples from any distribution π , we will address the problem of sample generation later).

• Now consider any set $\mathcal{A} \subset \Theta$ and assume that we are interested in $\pi(\mathcal{A}) = \mathbb{P}(\theta \in \mathcal{A})$ for $\theta \sim \pi$. We naturally choose the following estimator

$$\pi(\mathcal{A}) \simeq \frac{\text{number of samples in } \mathcal{A}}{\text{total number of samples}},$$

which by the law of large numbers is a consistent estimator of $\pi(\mathcal{A})$ since

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{\mathcal{A}}(\theta^{(i)}) = \mathbb{E}_{\pi}(\mathbb{I}_{\mathcal{A}}(\theta)) = \pi(\mathcal{A}).$$

• A way of generalising this in order to evaluate $\mathbb{E}_{\pi}(f(\theta))$ consists of considering the unbiased estimator N

$$S_N(f) = \frac{1}{N} \sum_{i=1}^{N} f(\theta^{(i)}),$$

- From the law of large numbers $S_N(f)$ will converge and $\lim_{N \to +\infty} \frac{1}{N} \sum_{i=1}^N f(\theta^{(i)}) = \mathbb{E}_{\pi}(f(\theta)) \ a.s.$
- A good measure of the approximation is the variance of $S_{N}(f)$,

$$var_{\pi}\left[S_{N}\left(f\right)\right] = var_{\pi}\left[\frac{1}{N}\sum_{i=1}^{N}f(\theta^{(i)})\right] = \frac{var_{\pi}\left[f(\theta)\right]}{N}.$$

Now the central limit theorem applies if $var_{\pi} [f(\theta)] < \infty$ and tells us that $\sqrt{N} \left(S_N(f) - \mathbb{E}_{\pi}(f(\theta)) \stackrel{N \to +\infty}{\to}_d \mathcal{N}(0, var_{\pi} [f(\theta)]) \right),$

The conclusions drawn in the rain example are still valid here

- The rate of convergence is immune to the dimension of Θ .
- •It is easy to take complex integration domains into account.
- •It is easily implementable and general. The requirements are

to be able to evaluate $f(\theta)$ for any $\theta \in \Theta$,

to be able to produce samples distributed according to π .

• Let us introduce the delta-Dirac function δ_{θ_0} for $\theta_0 \in \Theta$ defined for any $f: \Theta \to \mathbb{R}^{n_f}$ as follows $\int_{\Theta} f(\theta) \delta_{\theta_0}(\theta) d\theta = f(\theta_0).$

• Note that this implies in particular that for $\mathcal{A} \subset \Theta$, $\int_{\Theta} \mathbb{I}_{\mathcal{A}}(\theta) \delta_{\theta_0}(\theta) d\theta = \int_{\mathcal{A}} \delta_{\theta_0}(\theta) d\theta = \mathbb{I}_{\mathcal{A}}(\theta_0).$

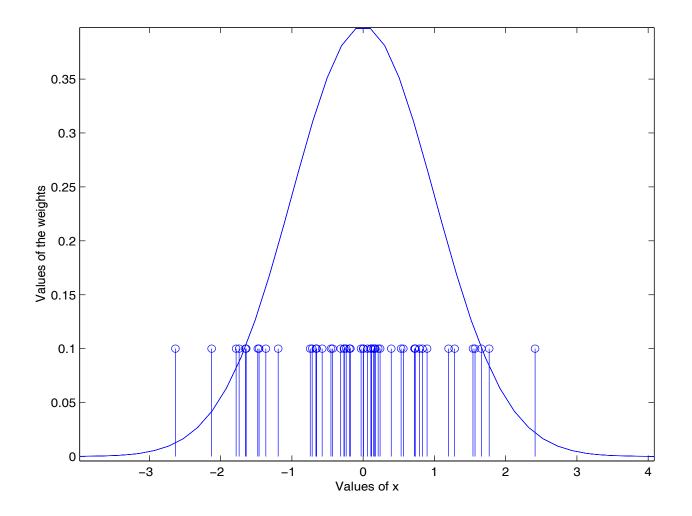
• Now, for $\theta^{(i)} \sim \pi$ for i = 1, ..., N, we can introduce the following mixture of delta-Dirac functions

$$\widehat{\pi}_{N}(\theta) := \frac{1}{N} \sum_{i=1}^{N} \delta_{\theta^{(i)}}(\theta),$$

which is the *empirical measure*, and consider for any $\mathcal{A} \subset \Theta$

$$\widehat{\pi}_{N}(\mathcal{A}) \triangleq \int_{\mathcal{A}} \widehat{\pi}_{N}(\theta) \, d\theta = \sum_{i=1}^{N} \int_{\mathcal{A}} \frac{1}{N} \delta_{\theta^{(i)}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{\mathcal{A}}(\theta) = S_{N}(\mathcal{A})$$

- The concentration of points in a given region of the space represents π .
- This approach is in contrast with what is usually done in parametric statistics, *i.e.* start with samples and then introduce a distribution with an algebraic representation for the underlying population.
- Note that here each sample $\theta^{(i)}$ has a weight of 1/N, but that it is also possible to consider weighted sample representations of π .

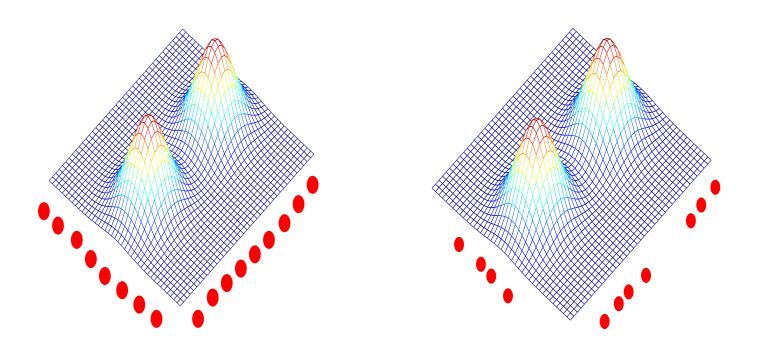


Sample representation of a Gaussian distribution

3.8– From the algebraic to the sample representation

Deterministic Integration

Monte Carlo Integration



• Now consider the problem of estimating $\mathbb{E}_{\pi}(f)$. We simply replace π with its sample representation $\widehat{\pi}_N$ and obtain

$$\mathbb{E}_{\pi}(f) \simeq \int_{\Theta} f(\theta) \sum_{i=1}^{N} \frac{1}{N} \delta_{\theta^{(i)}}(\theta) \, d\theta = \sum_{i=1}^{N} \frac{1}{N} \int_{\Theta} f(\theta) \, \delta_{\theta^{(i)}}(\theta) \, d\theta = \frac{1}{N} \sum_{i=1}^{N} f(\theta^{(i)}),$$

which is precisely $S_{N}(f)$, the Monte Carlo estimator suggested earlier.

- Clearly based on $\widehat{\pi}_N$, we can easily estimate $\mathbb{E}_{\pi}(f)$ for any f.
- For example

$$var_{\pi}(f) = \mathbb{E}_{\pi}(f^2) - \mathbb{E}_{\pi}^2(f) \simeq \frac{1}{N} \sum_{i=1}^N f^2(\theta^{(i)}) - \left(\frac{1}{N} \sum_{i=1}^N f(\theta^{(i)})\right)^2.$$

• Similarly, if we have

$$\widehat{\pi}_{N}(\theta_{1},\theta_{2}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\theta_{1}^{(i)},\theta_{2}^{(i)}}(\theta_{1},\theta_{2})$$

so the marginal distribution is simply given by

$$\widehat{\pi}_{N}\left(\theta_{1}\right) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\theta_{1}^{\left(i\right)}}\left(\theta_{1}\right)$$

• If we want to estimate $\arg \max \pi(\theta)$ and $\pi(\theta)$ is known up to a normalizing

constant then

$$\underset{\left\{\theta^{(i)}\right\}}{\operatorname{arg\,max}} \pi\left(\theta^{(i)}\right)$$

is a reasonable estimate.

– Introduction to Monte Carlo

• If you could sample easily from an arbitrary probability distribution,

then you could easily estimate all the quantities you are interested in.

• **Problem**: How do you sample from an arbitrary probability distribution???