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• Suggested Projects:
www.cs.ubc.ca/~arnaud/projects.html

• First assignement on the web: capture/recapture.

• Additional articles have been posted.
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2.1– Outline

• Prior distributions: conjugate, maxent, Jeffrey’s.

• Bayesian variable selection.
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3.1– How to Select the Prior Distribution?

• Once the prior distribution is specified, inference using Bayes can
be performed almost “mechanically”.

• Omitting computational issues, the most critical and critized point
is the choice of the prior.

• Seldom, the available observation is precise enough to lead to an
exact determination of the prior distribution.
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3.1– How to Select the Prior Distribution?

• Prior includes subjectivity.

• Subjectivity does not mean being nonscientific: vast amount of scientific
information coming from theoretical and physical models is guiding
specification of priors.

• In the last decades, a lot of research has focused on un-informative and
robust priors.

– Prior Distributions Page 5



3.2– Conjugate Priors

• Conjugate priors are the most commonly used priors.

• A family of probability distributions F on Θ is said to be conjugate for a
likelihood function f (x| θ) if, for every π ∈ F , the posterior distribution
π (θ|x) also belongs to F .

• In simpler terms, the posterior remains admits the same functional form
as the prior and only its parameters are changed.
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3.3– Example: Gaussian with unknown mean

• Assume you have observations Xi|μ ∼ N (
μ, σ2

)
and μ ∼ N (

m0, σ
2
0

)
then

μ|x1, ..., xn ∼ N (
mn, σ2

n

)
where

1
σ2

n

=
1
σ2

0

+
n

σ2
⇒ σ2

n =
σ2

0σ2

nσ2
0 + σ2

,

mn = σ2
n

(∑n
i=1 xi

σ2
+

m

σ2
0

)
= σ2

n

(∑n
i=1 xi

σ2
+

m

σ2
0

)
.

• One can think of the prior as n0virtual observations with n0 = σ2

σ2
0

and

mn =
n
∑n

i=1 xi + n0m0

n + n0
.
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3.4– Example: Gaussian with unknown mean and variance

• Assume you have observations Xi|
(
μ, σ2

) ∼ N (
μ, σ2

)
and

π
(
μ, σ2

)
= π

(
σ2
)
π
(
μ|σ2

)
= IG

(
σ2;

ν0

2
,
γ0

2

)
N (

μ; m0, δ
2σ2
)

• We have

μ, σ2
∣∣x1, ..., xn ∼ IG

(
σ2;

ν0 + n

2
,
γ0 +

∑n
i=1 x2

i − (mn/σn)2

2

)

×N (
μ; mn, σ2

n

)
where

mn =
1

δ−2 + n

(
m2

0

δ2
+

n∑
i=1

xi

)
, σ2

n =
σ2

δ−2 + n
,
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3.4– Example: Gaussian with unknown mean and variance

• Assume you have some counting observations Xi
i.i.d.∼ P (θ); i.e.

f (xi| θ) = e−θ θxi

xi!

• Assume we adopt a Gamma prior for θ; i.e. θ ∼ Ga (α, β)

π (θ) = Ga (θ; α, β) =
βα

Γ (α)
θα−1e−βθ.

• We have

π (θ|x1, ..., xn) = Ga

(
θ; α +

n∑
i=1

xi, β + n

)
.

• You can think of the prior as having β virtual observations who
sum to α.
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3.5– Limitations

• Many likelihood do not admit conjugate distributions BUT it is feasible
when the likelihood is in the exponential family

f (x| θ) = h (x) exp
(
θTx − Ψ (θ)

)
and in this case the conjugate distribution is (for the hyperparameters μ, λ)

π (θ) = K (μ, λ) exp
(
θTμ − λΨ (θ)

)
.

It follows that

π (θ|x) = K (μ + x, λ + 1) exp
(
θT (μ + x) − (λ + 1) Ψ (θ)

)
.
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3.5– Limitations

• The conjugate prior can have a strange shape or be difficult to handle.

• Consider

Pr (y = 1| θ, x) =
exp

(
θTx

)
1 + exp (θTx)

then the likelihood for n observations is exponential conditional upon xi’s as

f (y1, ..., yn|x1, ..., xn, θ) = exp

(
θT

n∑
i=1

yixi

)
n∏

i=1

(
1 + exp

(
θTxi

))−1

and

π (θ) ∝ exp
(
θTμ

) n∏
i=1

(
1 + exp

(
θTxi

))−λ
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3.6– Mixture of Conjugate Distributions

• If you have a prior distribution π (θ) which is a mixture of conjugate
distributions, then the posterior is in closed form and is a mixture
of conjugate distributions; i.e. with

π (θ) =
K∑

i=1

wiπi (θ)

then

π (θ|x) =
∑K

i=1 wiπi (θ) f (x| θ)∑K
i=1 wi

∫
πi (θ) f (x| θ) dθ

=
K∑

i=1

w′
iπi (θ|x)

where

w′
i ∝ wi

∫
πi (θ) f (x| θ) dθ,

K∑
i=1

w′
i = 1.

• Theorem (Brown, 1986): It is possible to approximate arbitrary closely
any prior distribution by a mixture of conjugate distributions.
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3.7– Pros and Cons of Conjugate Priors

Pros.

• Very simple to handle, easy to interpret (through imaginary observations).

• Some statisticians argue that they are the least “informative” ones.

Cons.

• Not applicable to all likelihood functions.

• Not flexible at all; what is you have a constraint like μ > 0.

• Approximation by mixtures feasible but very tiedous and almost never
used in practice.
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3.8– Invariant Priors

• If the likelihood is of the form

X | θ ∼ f (x − θ)

then f (·) is translation invariant and θ is a location parameter.

• An invariance requirement is that the prior distribution should be translation

invariant

π (θ) = π (θ − θ0)

for every θ0; i.e. π (θ) = c.

• This “flat” prior is improper but the resulting posterior is proper as long as∫
f (x − θ) dθ < ∞.
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3.8– Invariant Priors

• If the likelihood is of the form

X | θ ∼ 1
θ
f
(x

θ

)
then f (·) is scale invariant and θ is a scale parameter.

• An invariance requirement is that the prior distribution should be scale
invariant; i.e. got any c > 0

π (θ) =
1
c
π

(
θ

c

)
.

• This implies that the resulting prior is improper

π (θ) ∝ 1
θ
.
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3.9– The Jeffreys Prior

• Consider the Fisher information matrix

I (θ) = EX|θ

[
∂ log f (X | θ)

∂θ

∂ log f (X | θ)T

∂θ

]
= −EX|θ

[
∂2 log f (X | θ)

∂θ2

]
.

• The Jeffrey’s prior is defined as

π (θ) ∝ |I (θ)|1/2

• This prior follows from an invariance principle. Let φ = h (θ) and h be
an invertible function with inverse function θ = g (φ) then

π (φ) = π (g (φ))
∣∣∣∣dg (φ)

dφ

∣∣∣∣ = π (θ)
∣∣∣∣ dθ

dφ

∣∣∣∣ ∝ |I (φ)|1/2

as

I (φ) = −EX|φ

[
∂2 log f (X |φ)

∂θ2

]
= −EX|θ

[
∂2 log f (X |φ)

∂θ2
.

∣∣∣∣ dθ

dφ

∣∣∣∣
2
]

= I (θ)
∣∣∣∣ dθ

dφ

∣∣∣∣
2

.
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3.9– The Jeffreys Prior

• Consider X | θ ∼ B (n, θ); i.e.

f (x| θ) =

⎛
⎜⎜⎜⎝

n

x

⎞
⎟⎟⎟⎠ θx (1 − θ)n−x

,

∂2 log f (x| θ)
∂θ2

=
x

θ2
+

n − x

(1 − θ)2
,

I (θ) =
n

θ (1 − θ)
.

• The Jeffreys prior is

π (θ) ∝ [θ (1 − θ)]−1/2 = Be

(
θ;

1
2
,
1
2

)
.
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3.9– The Jeffreys Prior

• Consider Xi| θ ∼ N
(
θ, σ2

)
; i.e.

f (x1:n| θ) ∝ exp
(
− (x − θ)2 /

(
2σ2
))

.

• Since

∂2 log f (x1:n| θ)
∂θ2

= − n

σ2
⇒ π (θ) ∝ 1.

• Consider Xi| θ ∼ N (μ, θ); i.e.

f (x1:n| θ) ∝ θn/2 exp (−s/ (2θ))

where s =
∑n

i=1 (xi − μ)2. Then

∂2 log f (x1:n| θ)
∂θ2

=
n

2θ2
− s

θ3
⇒ π (θ) ∝ 1

θ
.
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3.10– Pros and)Cons of Jeffreys Prior

• It can lead to incoherences; i.e. the Jeffreys’ prior for Gaussian data and
θ = (μ, σ) unknown is π (θ) ∝ σ−2. However if these parameters are
assumed a priori independent then π (θ) ∝ σ−1.

• Automated procedure but cannot incorporate any “physical” information.

• It does NOT satisfy the likelihood principle.
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3.11– The MaxEnt Priors

• If some characteristics of the prior distributions (moments, etc.)
are known and can be written as K prior expectations

Eπ [gk (θ)] = wk,

a way to select a prior π satisfying these constraints is the maximum entropy
method.
• In a finite setting, the entropy is defined by

Ent (π) = −
∑
i=1

π (θi) log (π (θi)) .

• The distribution maximizing the entropy is of the form

π (θi) =
exp

(∑K
k=1 λkgk (θi)

)
∑

j=1 exp
(∑K

k=1 λkgk (θj)
)

where {λk} are Lagrange multipliers.
• However, the constraints might be incompatible; i.e. E

(
θ2
) ≥ E2 (θ) .
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3.12– Example

• Assume Θ = {0, 1, 2, ...}. Suppose that Eπ [θ] = 5, then

π (θ) =
eλ1θ∑∞

θ=0 eλ1θ
=
(
1 − eλ1

)
eλ1θ.

• Maximizing the entropy we find eλ1 = 1/6, thus

π (θ) = Geo (1/6)

• What about the continuous case???
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3.13– The MaxEnt Prior for Continuous Random Variables

• Jaynes argues that the entropy should be defined as the Kullback-Leibler
divergence between π and some invariant noninformative prior for the
problem π0; i.e.

Ent (π) = −
∫

π0 (θ) log
(

π (θ)
π0 (θ)

)
dθ.

• The maxent prior is of the form

π (θ) =
exp

(∑K
k=1 λkgk (θ)

)
π0 (θ)∫

exp
(∑K

k=1 λkgk (θ)
)

π0 (θ) dθ

• Selecting π0 (θ) is not easy!
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3.14– Example

• Consider a real parameter θ and set Eπ [θ] = μ.
We can select π0 (dθ) = dθ; i.e. the Lebesgue measure.

• In this case

π (θ) ∝ eλθ

which is a (bad) improper distribution.

• If additionally V arπ [θ] = σ2, then you can establish that

π (θ) = N (
θ; μ, σ2

)
.
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3.15– Summary

• In most applications, there is “true” prior.

• Although conjugate priors are limited, they remain the most widely
used class of priors for convenience and simple interpretability.

• There is a whole literature on the subject: reference & objective priors.

• Empirical Bayes: the prior is constructed from the data.

• In all cases, you should do a sensitivity analysis!!!

– Prior Distributions Page 24



3.16– Bayesian Variable Selection Example

• Consider the standard linear regression problem

Y =
p∑

i=1

βiXi + σV where V ∼ N (0, 1)

• Often you might have too many predictors, so this model will be inefficient.

• A standard Bayesian treatment of this problem consists of selecting
only a subset of explanatory variables.

• This is nothing but a model selection problem with 2p possible models.
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3.17– Bayesian Variable Selection Example

• A standard way to write the model is

Y =
p∑

i=1

γiβiXi + σV where V ∼ N (0, 1)

where γi = 1 if Xi is included or γi = 0 otherwise. However this suggests that
βi is defined even when γi = 0.

• A neater way to write such models is to write
Y =

∑
{i:γi=1}

βiXi + σV = βT
γ Xγ + σV

where, for a vector γ = (γ1, ..., γp), βγ = {βi : γi = 1} , Xγ = {Xi : γi = 1}
and nγ =

∑p
i=1 γi.

• Prior distributions

πγ

(
βγ , σ2

)
= N (

βγ ; 0, δ2σ2Inγ

) IG (σ2;
ν0

2
,
γ0

2

)
and π (γ) =

∏p
i=1 π (γi) = 2−p.
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3.18– Bayesian Variable Selection Example

• For a fixed model γ and n observations D = {xi, yi}n
i=1 then we can determine

the marginal likelihood and the posterior analytically

πγ

(
D|βγ , σ2

)
= Γ

(
ν0 + n

2
+ 1
)

δ−nγ |Σγ |1/2

(
γ0 +

∑n
i=1 y2

i − μT
γ Σ−1

γ μγ

2

)−( ν0+n

2 +1)

and

πγ

(
βγ , σ2

∣∣D) = N (
βγ ; μγ , σ2Σγ

)

×IG
(

σ2;
ν0 + n

2
,
γ0 +

∑n
i=1 y2

i − μT
γ Σ−1

γ μγ

2

)

where
μγ = Σγ

(
n∑

i=1

yixγ,i

)
, Σ−1

γ = δ−2Inγ +
n∑

i=1

xγ,ix
T
γ,i.
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3.18– Bayesian Variable Selection Example

• Popular alternative Bayesian models include

γi ∼ B (λ) where λ ∼ U [0, 1] ,

γi ∼ B (λi) where λi ∼ Be (α, β) .

• g-prior (Zellner)

βγ |σ2 ∼ N
(
βγ ; 0, δ2σ2

(
XT

γ Xγ

)−1
)

.

• Robust models where additionally one has

δ2 ∼ IG
(

a0

2
,
b0

2

)
.

• Such variations are very important and can modify dramatically
the performance of the Bayesian model.
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3.19– Bayesian Variable Selection Example

• Caterpillar dataset: 1973 study to assess the influence of some forest
settlement characteristics on the development of catepillar colonies.

• The response variable is the log of the average number of nests of
caterpillars per tree on an area of 500 square meters.

• We have n = 33 data and 10 explanatory variables
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3.20– Bayesian Variable Selection Example

• x1 is the altitude (in meters),
• x2 is the slope (in degrees),
• x3 is the number of pines in the square,
• x4 is the height (in meters) of the tree sampled at the center of the square,
• x5 is the diameter of the tree sampled at the center of the square,
• x6 is the index of the settlement density,
• x7 is the orientation of the square (from 1 if southbound to 2 otherwise),
• x8 is the height (in meters) of the dominant tree,
• x9 is the number of vegetation strata,
• x10 is the mix settlement index (from 1 if not mixed to 2 if mixed).
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3.20– Bayesian Variable Selection Example

x1 x2 x3

x4 x5 x6

x7 x8 x9
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3.20– Bayesian Variable Selection Example

• Top five most likely models

π (γ|x) (Ridge δ2 = 10) π (γ|x) (g-p δ2 = 10) π (γ|x) (g-p, δ2 estimated)

0,1,2,4,5/0.1946 0,1,2,4,5/0.2316 0,1,2,4,5/0.0929

0,1,2,4,5,9/0.0321 0,1,2,4,5,9/0.0374 0,1,2,4,5,9/0.0325

0,12,4,5,10/0.0327 0,1,9/0.0344 0,1,2,4,5,10/0.0295

0,1,2,4,5,7/0.0306 0,1,2,4,5,10/0.0328 0,1,2,4,5,7/0.0231

0,1,2,4,5,8/0.0251 0,1,4,5/0.0306 0,1,2,4,5,8/0.0228
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