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e Suggested Projects:

WWW.cs.ubc.ca/“arnaud/projects.html
e First assignement on the web: capture/recapture.

e Additional articles have been posted.



2.1— Outline

e Prior distributions: conjugate, maxent, Jeflrey’s.

e Bayesian variable selection.
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3.1— How to Select the Prior Distribution?

e Once the prior distribution is specified, inference using Bayes can

be performed almost “mechanically”.

e Omitting computational issues, the most critical and critized point

is the choice of the prior.

e Seldom, the available observation is precise enough to lead to an

exact determination of the prior distribution.
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3.1— How to Select the Prior Distribution?

e Prior includes subjectivity.

e Subjectivity does not mean being nonscientific: vast amount of scientific
information coming from theoretical and physical models is guiding

specification of priors.

e In the last decades, a lot of research has focused on un-informative and

robust priors.
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3.2— Conjugate Priors

e Conjugate priors are the most commonly used priors.

e A family of probability distributions F on © is said to be conjugate for a
likelihood function f (z|6) if, for every m € F, the posterior distribution
7 (0| x) also belongs to F.

e In simpler terms, the posterior remains admits the same functional form

as the prior and only its parameters are changed.
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3.3— Example: Gaussian with unknown mean

e Assume you have observations X;|p ~ N (p,0?) and g~ N (mg,o0F) then

where
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e One can think of the prior as ngvirtual observations with ng = s and
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3.4— Example: Gaussian with unknown mean and variance

e Assume you have observations X;| (u,0?) ~ N (u,0?) and

m(no®) = w(o)m(ulo’)

e We have

where
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3.4— Example: Gaussian with unknown mean and variance

: : iid. :
e Assume you have some counting observations X; '~ P (0); i.e.
T
0

f(ai0) =e

e Assume we adopt a Gamma prior for 0; i.e. 8 ~ Ga («, )

7 (0) =Ga(6;a,5) = Fﬁ(; go—le=P0,

e We have

(0| x1,....z,) = Ga (H;CV—I—Z:UZ-,B—H%) :

1=1

e You can think of the prior as having 3 virtual observations who
sum to «.
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3.5— Limitations

e Many likelihood do not admit conjugate distributions BUT it is feasible
when the likelihood is in the exponential family

f(z|0)=h(z)exp 0"z — ¥ (0))

and in this case the conjugate distribution is (for the hyperparameters u, A)

m(0) = K (u, ) exp (07— AT () .

It follows that

m(0lz) =K (u+z, A+ 1)exp (0" (p+2)— (A+1)T(0)).
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3.5— Limitations

e The conjugate prior can have a strange shape or be difficult to handle.

e Consider

exp (HTx>
14+ exp (0Tx)

Pr(y=1|0,x) =

then the likelihood for n observations is exponential conditional upon x;’s as

F (Y1, oo Ynl 21, oy, 0) = exp (QTZ%%) [T +exp (07:))
=1

1=1

and

m(0) o< exp (0" ) H +exp (0" ;) -
1=1
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3.6— Mixture of Conjugate Distributions

e If you have a prior distribution 7 () which is a mixture of conjugate
distributions, then the posterior is in closed form and is a mixture
of conjugate distributions; i.e. with

K
m(0) = Z w;m; (0)

then

S wimi (0) £ (2]6) N~
T (0|lx) = : — wim; (0| x
O Sicwi [ (0) f (x]0)db ; 0

where

K
w, ocwi/m (0) f (x| 0) de, Zw; = 1.
i=1

e Theorem (Brown, 1986): It is possible to approximate arbitrary closely
any prior distribution by a mixture of conjugate distributions.
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3.7— Pros and Cons of Conjugate Priors

Pros.
e Very simple to handle, easy to interpret (through imaginary observations).
e Some statisticians argue that they are the least “informative” ones.
Cons.

e Not applicable to all likelihood functions.

e Not flexible at all; what is you have a constraint like p > 0.

e Approximation by mixtures feasible but very tiedous and almost never

used in practice.
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3.8— Invariant Priors

e If the likelihood is of the form

X[~ f(z—0)

then f () is translation invariant and 0 is a location parameter.

e An invariance requirement is that the prior distribution should be translation

invariant

m(0) =7 (60 —0p)

for every fy; i.e. ™ (0) = c.
e This “flat” prior is improper but the resulting posterior is proper as long as
/f(x—é’)d9<oo.
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3.8— Invariant Priors

e If the likelihood is of the form

x16~ 5 (5)

then f () is scale invariant and 6 is a scale parameter.

e An invariance requirement is that the prior distribution should be scale
invariant; i.e. got any ¢ > 0
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3.9— The Jeftreys Prior

e Consider the Fisher information matrix

1(0) = By | 21081 (X10) Olog f (X]6) ] By [azlogf(xw)r

00 00 062

e The Jeflrey’s prior is defined as
™ (0) o< |1(6)]'

e This prior follows from an invariance principle. Let ¢ = h () and h be
an invertible function with inverse function 8 = g (¢) then

v =) |22 = 0| %] « 10
e ]y [ 8]
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3.9— The Jeftreys Prior

e Consider X |0 ~ B (n,0); i.e.

fx0) = 6" (1—-0)""",
\
0% log f (x| 6) T n—x
062 02 (1_9)2’
1) = 0(1—0)
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3.9— The Jeftreys Prior

e Consider X;|6 ~ N (0,0?); ie.
[ (1] 0) o exp (= (= 0) / (202))

e Since

e Consider X;|0 ~ N (u,0); i.e.

f(21m]0) x 0™ % exp (—s/ (20))
where s = > | (x; — 1)°. Then
0% log f (x1.n|0) n S

BYE =5 g5 ")

!
-
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3.10— Pros and)Cons of Jeffreys Prior

e It can lead to incoherences; i.e. the Jeffreys’ prior for Gaussian data and

0 = (u, o) unknown is 7 (0) o< 0~ 2. However if these parameters are

assumed a priori independent then 7 (0) oc o~ 1.

e Automated procedure but cannot incorporate any “physical” information.

e It does NOT satisfy the likelihood principle.
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3.11—- The MaxEnt Priors

e If some characteristics of the prior distributions (moments, etc.)
are known and can be written as K prior expectations

J [gk: (9)] — Wk,

a way to select a prior 7 satisfying these constraints is the maximum entropy
method.
e In a finite setting, the entropy is defined by

Ent (m Zﬂ' )log (7 (6;)) .

e The distribution maximizing the entropy is of the form
K
exp (Zkzl Ak Gk (é’z‘))
K
Zj:l CXp (Zk:l Ak Gk (‘93'))

where {\;} are Lagrange multipliers.
e However, the constraints might be incompatible; i.e. F (92> > E%(0).

T (0;) =
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3.12— Example

e Assume © = {0,1,2,...}. Suppose that E, [#] = 5, then

€>\19

— 220:0 o1 0

e Maximizing the entropy we find e = 1/6, thus

7 (6)

= (1 M) Mo,

7w (0) = Geo (1/6)

e What about the continuous case???
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3.13— The MaxEnt Prior for Continuous Random Variables

e Jaynes argues that the entropy should be defined as the Kullback-Leibler
divergence between m and some invariant noninformative prior for the

problem mg; i.e.

Ent (1) = — / 70 (6) log (;((?)) do.

e The maxent prior is of the form

e (X0 Mg (0)) o (0)
 Jep (SH kon (9)) o (6) do

m(6)

e Selecting g (#) is not easy!
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3.14— Example

e Consider a real parameter 6 and set F [0] = pu.
We can select 7 (df) = df; i.e. the Lebesgue measure.

e In this case
7 (0) x e

which is a (bad) improper distribution.

e If additionally Var, [0] = 02, then you can establish that

m(0) =N (0;u,0%).
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3.15— Summary

e In most applications, there is “true” prior.

e Although conjugate priors are limited, they remain the most widely
used class of priors for convenience and simple interpretability.

e There is a whole literature on the subject: reference & objective priors.

e Empirical Bayes: the prior is constructed from the data.

e In all cases, you should do a sensitivity analysis!!!

— Prior Distributions Page 24



3.16— Bayesian Variable Selection Example

e Consider the standard linear regression problem

p
Y =) BiX;+0V where V ~N(0,1)

1=1

e Often you might have too many predictors, so this model will be inefficient.

e A standard Bayesian treatment of this problem consists of selecting

only a subset of explanatory variables.

e This is nothing but a model selection problem with 2P possible models.
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3.17— Bayesian Variable Selection Example

e A standard way to write the model is

p
Y =) 7ifBiX;+ 0oV where V ~ N (0,1)
i=1
where v; = 1 if X is included or v; = 0 otherwise. However this suggests that
B; is defined even when ~y; = 0.

e A neater way to write such models is to write
Y= ) BXi+oV=0 X +0V
{iryi=1}
where, for a vector v = (v1,...,%), By ={Bi:vi =1}, X, ={X; : v, =1}
and n, = >0 .

e Prior distributions

Ty (5%02) =N (675 0752021’”’7) 19 (02; %’ %>

_ p

and 7 (y) = [ [i=y ™ (:) = 277,
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3.18— Bayesian Variable Selection Example

e For a fixed model v and n observations D = {z;,y;},_, then we can determine
the marginal likelihood and the posterior analytically

_ V0+n+1)
+ E :n_ 2 _ Tz—l ( 2
WV(D|5%02) :F<V0+n+1) 5_7”‘27‘1/2 (WO i=1Yi — Hy =y Mv)

2
and
Ty (57702‘1)) = N(ﬁ%/‘w‘fzzv)
no92 Ty —1
<TG 0_2;V0+n,7/0+z@':1yi _Mvzv oy
2 2
where

mn mn
fhry = 2 (Z yzxw> : E;l — 5_21n,y — mex,%
i=1

1=1
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3.18— Bayesian Variable Selection Example

e Popular alternative Bayesian models include

vi ~ B(\) where A\ ~U[0,1],

vi ~ B(\;) where \; ~ Be(a, ().

e g-prior (Zellner)
Byl 0 ~ N (B5:0,6%0% (XTx,) 7).

e Robust models where additionally one has
ao b()
P ~IG —, = ).
9(53)

e Such variations are very important and can modify dramatically
the performance of the Bayesian model.

— Prior Distributions Page 28



3.19— Bayesian Variable Selection Example

#FT

] .. - '..‘.i ".il " 'I ."‘.:Jr'::- - .::r 1o "' " | H
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e Caterpillar dataset: 1973 study to assess the influence of some forest
settlement characteristics on the development of catepillar colonies.

e The response variable is the log of the average number of nests of
caterpillars per tree on an area of 500 square meters.

e We have n = 33 data and 10 explanatory variables
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3.20— Bayesian Variable Selection Example

e 1 is the altitude (in meters),

e 15 is the slope (in degrees),

e 3 is the number of pines in the square,

e 1, is the height (in meters) of the tree sampled at the center of the square,
e 15 is the diameter of the tree sampled at the center of the square,

e ¢ is the index of the settlement density,

e 7 is the orientation of the square (from 1 if southbound to 2 otherwise),

e 13 is the height (in meters) of the dominant tree,

® 9 is the number of vegetation strata,

e r1( is the mix settlement index (from 1 if not mixed to 2 if mixed).
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3.20— Bayesian Variable Selection Example
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3.20— Bayesian Variable Selection Example

e Top five most likely models

7 (v|z) (Ridge 6% = 10)

T (7| z) (g-p 0% = 10)

7 (v x) (g-p, 2 estimated)

0,1,2,4,5/0.1946

0,1,2,4,5/0.2316

0,1,2,4,5/0.0929

0,1,2,4,5,9/0.0321

0,1,2,4,5,9/0.0374

0,1,2,4,5,9/0.0325

0,12,4,5,10/0.0327

0,1,9/0.0344

0,1,2,4,5,10/0.0295

0,1,2,4,5,7/0.0306

0,1,2,4,5,10/0.0328

0,1,2,4,5,7/0.0231

0,1,2,4,5,8/0.0251

0,1,4,5/0.0306

0,1,2,4,5,8/0.0228
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