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• Suggested Projects:
www.cs.ubc.ca/~arnaud/projects.html

• First assignement on the web this afternoon: capture/recapture.

• Additional articles have been posted.
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2.1– Outline

• Bayesian model selection.

• Bayesian linear model and variable selection.

• Extensions.
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3.1– Summary of Last Lecture

• Ones wants to compare two hypothesis: H0 : θ ∼ π0

versus H1 : θ ∼ π1 then the prior is

π (θ) = π (H0) π0 (θ) + π (H1) π1 (θ)

where π (H0) + π (H1) = 1.

• One can have in a coin example: π0 (θ) = U [1
2 , 1
]
, π1 (θ) = U [0, 1

2

)
or π0 (θ) = δθ0 (θ) and π1 (θ) = U [0, 1

2

)
or π0 (θ) = Be (α0, β0) and

π1 (θ) = Be (α1, β1) .

• To compare H0 versus H1, we typically compute the Bayes factor
which partially eliminated the influence of the prior modelling (i.e. π (Hi))

Bπ
10 =

π (x|H1)
π (x|H0)

=
∫

f (x| θ)π1 (θ) dθ∫
f (x| θ)π0 (θ) dθ
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3.1– Summary of Last Lecture

• You can also compute the posterior probabilities of H0 and H1

π (H0|x) =
π (x|H0) π (H0)

π (x)

=
π (x|H0) π (H0)

π (x|H0) π (H0) + π (x|H1)π (H1)
.

• The posterior probabilities satisfy

π (H1|x)
π (H0|x)

=
π (x|H1)
π (x|H0)

π (H1)
π (H0)

= Bπ
10

π (H1)
π (H0)

.

– Bayesian Model Selection Page 5



3.1– Summary of Last Lecture

• Testing hypothesis in a Bayesian way is attractive.... but be careful
to vague priors!!!

• Assume you have X | (μ, σ2
) ∼ N (

μ, σ2
)

where σ2 is assumed known but
μ (the parameter θ) is unknown. We want to test H0 : μ = 0
vs H1 : μ ∼ N (

ξ, τ2
)

then

Bπ
10 (x) =

π (x|H1)
π (x|H0)

=

∫ N (
x; μ, σ2

)N (
μ; ξ, τ2

)
dμ

f (x| 0)

=
σ√

σ2 + τ2
exp

(
τ2x2

2σ2 (σ2 + τ2)

)
→

τ2→∞
0
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3.2– Bayesian Polynomial Regression Example

• In practice, you might have more than 2 potential models/hypothesis
for your data.

• Consider the following polynomial regression problem where
D = {xi, yi}n

i=1 where (xi, yi) ∈ R × R.

Y =
M∑
i=0

βiX
i + σV where V ∼ N (0, 1)

= βT
0:MfM (X) + σV

• Here the problem is that if M is too large then there will be overfitting.
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3.2– Bayesian Polynomial Regression Example

As M increases, the model overfits.
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3.2– Bayesian Polynomial Regression Example

• Candidate Bayesian models HM for M ∈ {0, ..., Mmax}.

• For the model HM , we take the prior πM

(
β0:M , σ2

)
πM

(
β0:M , σ2

)
= πM

(
β0:M |σ2

)
πM

(
σ2
)

= N (
β0:M ; 0, δ2σ2IM+1

) IG (σ2;
ν0

2
,
γ0

2

)
.

• We have the following Gaussian likelihood

f
(
D|β0:M , σ2

)
=

n∏
i=1

N (
yi; βT

0:MfM (xi) , σ2
)
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3.2– Bayesian Polynomial Regression Example

• Standard calculations yield

πM

(
β0:M , σ2

∣∣D) = N (
β0:M ; μM , σ2ΣM

)
×IG

(
σ2;

ν0 + n

2
,
γ0 +

∑n
i=1 y2

i − μT
MΣ−1

M μM

2

)
where

μM = ΣM

(
n∑

i=1

yifM (xi)

)
, Σ−1

M = δ−2IM+1 +
n∑

i=1

fM (xi) fT
M (xi)

knowing that

IG (σ2; α, β
)

=
βα

Γ (β)
1

(σ2)α+1 exp
(
− β

σ2

)
.
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3.2– Bayesian Polynomial Regression Example

• The marginal likelihood/evidence is given by

π (D|HM ) =
∫

f
(
D|β0:M , σ2

)
πM

(
β0:M , σ2

)
dβ0:Mdσ2

= Γ
(

ν0+n
2 + 1

)
δ−(M+1) |ΣM |1/2

(
γ0+

∑n
i=1 y2

i −μT
MΣ−1

M μM

2

)−( ν0+n
2 +1)

• We can also compute

π (HM |D) =
π (D|HM ) π (HM )∑Mmax
i=0 π (D|Hi) π (Hi)
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3.2– Bayesian Polynomial Regression Example
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3.2– Bayesian Polynomial Regression Example

• We have assumed here that δ2 was fixed and set to δ2 = 1.

• As δ2 → ∞, the prior on β0:M is getting vague but then

lim
δ2→∞

π (H0|D) = 1

as for M ≥ 1

π (D|H0)
π (D|HM )

=
δ−1 |Σ0|1/2

(
γ0+

∑n
i=1 y2

i −μT
0 Σ−1

0 μ0

2

)−( ν0+n
2 +1)

δ−(M+1) |ΣM |1/2
(

γ0+
∑n

i=1 y2
i −μT

MΣ−1
M μM

2

)−( ν0+n
2 +1)

→
δ2→∞

∞

• Do not use vague priors for model selection!!!

• For a robust model, select a random δ2 and estimate it from the data.
However, numerical methods are then necessary.
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3.3– Bayesian Model Choice: Example

• In practice, you might have models of different natures
for your data x = (x1, ..., xT ) .

• M1 : Gaussian white noise Xn
iid∼ N (

0, σ2
WN

)
.

•M2 : An AR process of order kAR, kAR being fixed, excited by white Gaussian
noise Vn

iid∼ N (
0, σ2

AR

)
,

Xn =
kAR∑
i=1

aiXn−i + Vn.

• M3 : ksin sinusoids, ksin being fixed, embedded in a white Gaussian noise
sequence Vn

iid∼ N (
0, σ2

sin

)
,

Xn =
ksin∑
j=1

(
acj cos [ωjn] + asj sin [ωjn]

)
+ Vn.

– Bayesian Model Selection Page 14



3.4– Bayesian Model for Model Choice

• Generally speaking you have a countable collection of models {Mi} .

• For each model Mi, you have a prior πi (θi) on Θi and a likelihood
function fi (x| θi) .

• You attribute a prior probability π (i) to each model Mi.

• The parameter space is Θ = ∪
i
{i} × Θi and the prior on Θ is

π (i, θi) = π (i) πi (θi) .
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3.4– Bayesian Model for Model Choice

• In the polynomial regression example

Θ = ∪Mmax
i=0 {i}︸︷︷︸

model indicator

× R
i+1︸ ︷︷ ︸

regression parameters β0:i

× R
+︸︷︷︸

noise variance

.

• Remark: In all models, you have a noise variance to estimate. This parameter
has a different interpretation for each model.
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3.4– Bayesian Model for Model Choice

• In the non-nested example Θ = {1} × Θ1 ∪ {2} × Θ2 ∪ {3} × Θ3 where

θ1 = σ2
W N

and Θ1 = R
+,

θ2 =
(
a1, ..., akAR , σ2

AR

)
and Θ2 = R

kAR × R
+,

θ3 =
(
ac1 , as1 , ω1, . . . , acksin

, asksin
, ωksin , σ

2
WN

)
, Θ3 = R

2ksin × [0, π]ksin × R
+.

• Remark: In all models, you have a noise variance to estimate. This parameter
has a different interpretation for each model.

• Be careful, we don’t select here Θ = {1, 2, 3} × Θ1 × Θ2 × Θ3.
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3.4– Bayesian Model for Model Choice

• The posterior is given by Bayes’ rule

π (k, θk|x) =
π (k) πk (θk) fk (x| θk)∑

k π (k)
∫
Θk

πk (θk) fk (x| θk) dθk
.

• We can obtain the posterior model probabilities through

π (k|x) =
∫

Θk

π (k, θk|x) dθk.

• Once more, it is conceptually simple but it requires the calculation
of many/an infinite number of integrals.
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3.5– Bayesian Model Averaging

• Assume you’re doing some prediction of say Y ∼ g (y| θ). Then
in light of x, we have

g (y|x) =
∫

g (y| θ) π (θ|x) dθ

=
∑

k

∫
Θk

gk (y| θk) π (k, θk|x) dθk

=
∑

k

π (k|x)︸ ︷︷ ︸
posterior proba of model k

∫
Θk

gk (y| θk) π (θk|x, k) dθk︸ ︷︷ ︸
Prediction from model k

• This is called Bayesian model averaging. All the models are taken
into account to perform the prediction.
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3.5– Bayesian Model Averaging

• An alternative way to make prediction consists of selecting
the best “model”; say the model which has the highest posterior proba.

• The prediction is performed according to

∫
Θkbest

gkbest (y| θkbest) π (θkbest |x, kbest) dθkbest

• This is computationally much simpler and cheaper. This can also be
very misleading.
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3.6– Example

• Consider the previous example: 100 simulated data from a sum of three
sinusoids with a very large additive noise.

• Priors were selected for the three models: Inverse-Gamma for σ2, normal
inverse-Gamma for AR and normal-inverse Gamma plus uniform for sinusoids.
We set π (H1) = π (H2) = π (H3) = 1

3 .

• We obtain

π (H1|x) = 0.02, π (H2|x) = 0.12 and π (H3|x) = 0.86.

• If we start using very vague priors....

π (H1|x) → 1.

– Bayesian Model Selection Page 21



3.7– Bayesian Variable Selection Example

• Consider the standard linear regression problem

Y =
p∑

i=1

βiXi + σV where V ∼ N (0, 1)

• Often you might have too many predictors, so this model will be inefficient.

• A standard Bayesian treatment of this problem consists of selecting
only a subset of explanatory variables.

• This is nothing but a model selection problem with 2p possible models.
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3.8– Bayesian Variable Selection Example

• A standard way to write the model is

Y =
p∑

i=1

γiβiXi + σV where V ∼ N (0, 1)

where γi = 1 if Xi is included or γi = 0 otherwise. However this suggests that
βi is defined even when γi = 0.

• A neater way to write such models is to write
Y =

∑
{i:γi=1}

βiXi + σV = βT
γ Xγ + σV

where, for a vector γ = (γ1, ..., γp), βγ = {βi : γi = 1} , Xγ = {Xi : γi = 1}
and nγ =

∑p
i=1 γi.

• Prior distributions

πγ

(
βγ , σ2

)
= N (

βγ ; 0, δ2σ2Inγ

) IG (σ2;
ν0

2
,
γ0

2

)
and π (γ) =

∏p
i=1 π (γi) = 2−p.
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3.8– Bayesian Variable Selection Example

• An alternative way to think of it is to write

Y = βTX + σV

but the prior follows

π (β1, ..., βp) =
p∏

i=1

π (βi)

with

βi|σ2 ∼ 1
2
δ0 +

1
2
N (

0, δ2σ2
)
.

• The regression coefficients follow a mixture model with a degenerate
component.
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3.9– Bayesian Variable Selection Example

• For a fixed model γ and n observations D = {xi, yi}n
i=1 then we can determine

the marginal likelihood and the posterior analytically

πγ

(
D|βγ , σ2

)
= Γ

(
ν0 + n

2
+ 1
)

δ−nγ |Σγ |1/2

(
γ0 +

∑n
i=1 y2

i − μT
γ Σ−1

γ μγ

2

)−( ν0+n
2 +1)

and

πγ

(
βγ , σ2

∣∣D) = N (
βγ ; μγ , σ2Σγ

)
×IG

(
σ2;

ν0 + n

2
,
γ0 +

∑n
i=1 y2

i − μT
γ Σ−1

γ μγ

2

)

where
μγ = Σγ

(
n∑

i=1

yixγ,i

)
, Σ−1

γ = δ−2Inγ +
n∑

i=1

xγ,ix
T
γ,i.
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3.10– Conclusion

• Bayesian model selection is a simple and principled way
to do model selection.

• Bayesian model selection appears in numerous applications.

• Vague/Improper priors have to be banned in the model
selection context!!!!

• Bayesian model selection only allows us to “compare” models.
It does not tell you if any of the candidate models makes sense.

• Except for simple problems, it is impossible to perform
calculations in closed-form.
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