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e Suggested Projects:

WWW.cs.ubc.ca/“arnaud/projects.html
e First assignement on the web this afternoon: capture/recapture.

e Additional articles have been posted.



2.1— Outline

e Bayesian model selection.

e Bayesian linear model and variable selection.

e FExtensions.
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3.1- Summary of Last Lecture

e Ones wants to compare two hypothesis: Hy : 6 ~ mg

versus Hq : 6 ~ m; then the prior is

w(0) =7 (Hy) 7 (0) + 7 (Hy) w1 (0)
where 7w (Hg) + 7 (Hy) = 1.

e One can have in a coin example: m (0) =U [3,1], m (8) =U [0, 3)
or o (0) = b, (0) and w1 (f) =U [0, 3) or m (8) = Be (o, Bo) and

? 2
71 (9) = Be (041,61) .

e To compare H, versus Hy, we typically compute the Bayes factor
which partially eliminated the influence of the prior modelling (i.e. 7 (H;))

m (e H) _ [ f(x]6)m (6)do

Blo = (e Hy) ~ [ f (2l 6)mo (6) d6
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3.1- Summary of Last Lecture

e You can also compute the posterior probabilities of Hy and H;

m (x| Ho) m (Ho)

v (Ho| z) e

7 (x| Ho) 7 (Hp)
m (x| Ho) m (Ho) + 7 (x| Hi) 7 (Hy)

e The posterior probabilities satisfy

m(Hy|z) _ w(z|Hy)m(Hy) _ g 7 (H)
w(Holxz) 7w (x| Hy) w(Hp) 07 '
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3.1- Summary of Last Lecture

e Testing hypothesis in a Bayesian way is attractive.... but be careful

to vague priors!!!

e Assume you have X| (,u, 02> ~N (,u, 02) where o2 is assumed known but
i (the parameter 6) is unknown. We want to test Hy : =0
vs Hy : p~ N (&,7%) then

m(x|Hy) [N (w50,0°) N (156, 72) dp

o) = ) 7(2]0)

o) 7'2332 O
e€x —
Vo172 P \202(02 1 72) ) r2mec
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3.2— Bayesian Polynomial Regression Example

e In practice, you might have more than 2 potential models/hypothesis

for your data.

e Consider the following polynomial regression problem where
D = {xz;,y;},_, where (z;,y;) € R x R.

M
Y = ZﬁiXi + oV where V ~ N (0,1)
i=0

= Bofur (X) +oV

e Here the problem is that if M is too large then there will be overfitting.
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3.2— Bayesian Polynomial Regression Example

As M increases, the model overfits.

M =0 M = 1 M =2 M =3
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3.2— Bayesian Polynomial Regression Example

e Candidate Bayesian models Hy; for M € {0, ..., Miax }-

e For the model H,;, we take the prior my, (ﬁO;M, 02)

M (50:M,02> = TM (50:M\ 02) ™M (02>

— N (ﬁOMa 07 520_2[M—|—1) Ig (02; %7 %) .

e We have the following Gaussian likelihood

n

£ (Dl Boar, 0%) = [ [N (wss Boas fur (), 02)

1=1

— Bayesian Model Selection Page 9



3.2— Bayesian Polynomial Regression Example

e Standard calculations yield

mm (Boa, 02| D) = N (Boss piar, 0°Sar)

g (% i, 1wt B v uasz)
2 2

where

Py =Yy (Z yifu (flfi)) S =0 I + ) far (w0) fag ()

knowing that

0 e ()
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3.2— Bayesian Polynomial Regression Example

e The marginal likelihood /evidence is given by

m(D|Hy) = [ f (D] Bo:as0%) mar (Bo:nmas 0%) dBo:ardo?

_(rotm
=T (S 4 1) - D) 5| /2 (i vl iy By i (5+1)

2

e We can also compute

7T(HM|D) E— Moy
2 i=o ™ (D| Hy) m (H;)
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3.2— Bayesian Polynomial Regression Example

Model Evidence

0.8

0.2(]
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3.2— Bayesian Polynomial Regression Example

e We have assumed here that 6% was fixed and set to §2 = 1.

o As §2 — oo, the prior on fy.as is getting vague but then

d2—00
as for M > 1
vo+n
_ 1/2 o+ ™ y2—pTx=? —(*37+1)
7T(D|H0> 5 1‘EO|/ (’Yo Zz_1y2 Mg 2q ,Lbo)
= 00
m (D] Hy)

§—(M+1) |ZM\1/2 (WO+Z N YISy

) _( VO;TL +1) 92 —00
2

e Do not use vague priors for model selection!!!

e For a robust model, select a random 62 and estimate it from the data.
However, numerical methods are then necessary.
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3.3— Bayesian Model Choice: Example

e In practice, you might have models of different natures
for your data = = (x1, ..., x7) .

e M, : Gaussian white noise X,, YN (O, 0"2/[/N>.

o M, : Ap AR process of order kg, kar being fixed, excited by white Gaussian
noise V,, g (O, aiR),
kar

Xn = Z a,an_i + Vn
1=1

o Mjs: ki sinusoids, ksin being fixed, embedded in a white Gaussian noise
sequence V,, N (0,02,)

"
X, = Z (ac,; cos [wjn] + as, sin [wjn]) + Vi,.

j=1
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3.4— Bayesian Model for Model Choice

e Generally speaking you have a countable collection of models {M;} .

e For each model M, you have a prior m; (6;) on ©; and a likelihood
function f; (z]#6;).

e You attribute a prior probability 7 (i) to each model M.

e The parameter space is © = U{i} x ©; and the prior on O is
(]
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3.4— Bayesian Model for Model Choice

e In the polynomial regression example

O = U o {4} X R+ x R

model indicator regression parameters (g.; noise variance

e Remark: In all models, you have a noise variance to estimate. This parameter
has a different interpretation for each model.
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3.4— Bayesian Model for Model Choice

e In the non-nested example © = {1} x ©; U {2} x O3 U {3} x O3 where

__ 2 _ Tt
(91 = O'WN and @1 =R ,
L 2 L ka +
92 = (a,l,...,akAR,JAR) and @2 = R"AE x R ,
0; = (acl,asl,wl, e ,acksm,asksin,wksin,aWN) , 03 =R x [0, 7] x RT.

e Remark: In all models, you have a noise variance to estimate. This parameter
has a different interpretation for each model.

e Be careful, we don’t select here © = {1,2,3} x ©; x O3 X Os.
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3.4— Bayesian Model for Model Choice

e The posterior is given by Bayes’ rule

7 (k) mx (O) fr (2| Ok)
> (k) Jo, ™ (Ok) fr (2| 0k) dOx

7 (k, Qk‘ ZIZ)
e We can obtain the posterior model probabilities through
m(k|lx) = / w(k,Ok| x)dy.
O

e Once more, it is conceptually simple but it requires the calculation

of many/an infinite number of integrals.
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3.5— Bayesian Model Averaging

e Assume you’re doing some prediction of say Y ~ g (y|#). Then

in light of x, we have
s(sle) = [ 9(sl6)m(8]2)do

= Zk:/@kgk(ywwﬂ(k,ﬁk\x)dﬁk

D DR O NPT EICAEN O
N—— O
posterior proba of model k™ ~ /

Prediction from model k

e This is called Bayesian model averaging. All the models are taken

into account to perform the prediction.
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3.5— Bayesian Model Averaging

e An alternative way to make prediction consists of selecting
the best “model”; say the model which has the highest posterior proba.

e The prediction is performed according to

gkbest (y‘ ekbest) n (ekbest ZC, kbeSt) dekbest

Gkbest

e This is computationally much simpler and cheaper. This can also be

very misleading.
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3.6— Example

e Consider the previous example: 100 simulated data from a sum of three
sinusoids with a very large additive noise.

2

e Priors were selected for the three models: Inverse-Gamma for o, normal

inverse-Gamma for AR and normal-inverse Gamma plus uniform for sinusoids.
We set W(Hl) = 7T(H2> = 7T(H3) = %

e We obtain
m(Hi|z) =0.02, 7 (Hz|x) =0.12 and 7w ( H3| =) = 0.86.

e If we start using very vague priors....

7 (Hy|z) — 1.
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3.7— Bayesian Variable Selection Example

e Consider the standard linear regression problem

p
Y =) BiX;+0V where V ~N(0,1)

1=1

e Often you might have too many predictors, so this model will be inefficient.

e A standard Bayesian treatment of this problem consists of selecting

only a subset of explanatory variables.

e This is nothing but a model selection problem with 2P possible models.
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3.8— Bayesian Variable Selection Example

e A standard way to write the model is

p
Y =) 7ifBiX;+ 0oV where V ~ N (0,1)
i=1
where v; = 1 if X is included or v; = 0 otherwise. However this suggests that
B; is defined even when ~y; = 0.

e A neater way to write such models is to write
Y= ) BXi+oV=0 X +0V
{iryi=1}
where, for a vector v = (v1,...,%), By ={Bi:vi =1}, X, ={X; : v, =1}
and n, = >0 .

e Prior distributions

Ty (5%02) =N (675 0752021’”’7) 19 (02; %’ %>

_ p

and 7 (y) = [ [i=y ™ (:) = 277,
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3.8— Bayesian Variable Selection Example

e An alternative way to think of it is to write

Y=8"'X+oV
but the prior follows
p
T (81, Bp) = [ [ 7 (8)
i=1

with

Bilo? ~ Sho+ SN (0.6%07).

e The regression coefficients follow a mixture model with a degenerate

component.
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3.9— Bayesian Variable Selection Example

e For a fixed model v and n observations D = {z;,y;},_, then we can determine
the marginal likelihood and the posterior analytically

n . _(Vo;n_l_l)
Ty (D|ﬁ%02) —T ( 02 n 1) 5~ ‘27‘1/2 ( 0+ i foy 50 ey

2
and
Ty (57702“)) — N(ﬁ’ﬁ:u’yanE’v)
no 9 Ty—1
«IG 02;V0+H,W0+Ziz1yi — by 235y
2 2
where

mn mn
fhry = 2 (Z yzxw> : E;l — 5_21n,y — mex,%
i=1

1=1
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3.10— Conclusion

e Bayesian model selection is a simple and principled way
to do model selection.

e Bayesian model selection appears in numerous applications.

e Vague/Improper priors have to be banned in the model

selection context!!!!

e Bayesian model selection only allows us to “compare” models.

It does not tell you if any of the candidate models makes sense.

e Except for simple problems, it is impossible to perform

calculations in closed-form.
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