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e CS students: don’t forget to re-register in CS-535D.

e Even if you just audit this course, please do register.



2.1— Outline

e Bayesian Statistics.

e Testing Hypotheses: The Bayesian way.

e Bayesian Model Selection.
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3.1— Ingredients of Bayesian Inference

e Given the prior 7 (f) and the likelihood [ (6| x) = f (x| ) then

Bayes’s formula yields

C f a0y ®)
m01%) = T 52l 0y = (0) db

= It represents all the information on # than can be extracted from x.
e It satisfies sufficiency and likelihood principles.

e On average (with respect to X), reduce the uncertainty about 6; i.e.

E [var 0| X]] = var [0] —var [E 0| X]] < var[0].
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3.2— Variance Decomposition Identity

If (6, X) are two scalar random variables then we have

var (0) = E (var (0| X)) + var (E (0| X)) .

Proof:

var () = E(0°)—FE (6)”

= E(E(6°

= E(E(6°

X)) - (E(E(8]X)))°

X)) - B ((B(8]x))°)

+E (B8] X)) = (B(E (9] X))’

= FE(var (0| X)) +wvar (E (0| X)).



3.3— Be careful

e Such results appear attractive but one should be careful.

e Here there is an underlying assumption that the observations
are indeed distributed according to w (z) = [ 7 (0) f (| 6) d6.
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3.4— Simple Binomial example

e (Bayes, 1764): A billiard ball W is rolled on a line of length one,
with a uniform probability of stopping anywhere. It stops at 6.
A second ball O is then rolled n times under the same assumptions

and X denotes the number of times the ball O stopped on the left of W.
Given X, what inference can we make on 67

e We X |0 ~ B(n,0) binomial distribution and select 8 ~ U [0, 1] and

()

Pr(X =x|0)= f(x|0) = 0 (1—-0)""" =7 (0|z) =

\ 7 )

0 (1—0)""" 1j0.1] (0)
6= (1—0)"""dd
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3.4— Simple Binomial example

e We have

1
7T(:13)=/P1‘(X=513|9)7T(9)d9= ! for x =0,...,n
0

n-+1

e It follows that 7 (0| z) = Be(x +1,n+ 1 — x).

e Prediction. Given X = z, you roll the ball once more and
Pr(Y =1|6) = 0 then

Pr(Y =1|z) = /Pr(Y:1|6’,x)7r(9|x)d9
x+1
_ /97?(0|51:)d9:E[9\a:]:n+2.
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3.4— Simple Binomial example

o Application. Laplace developed independently such a model.
From 1745 to 1770, 241,945 girls and 251,527 boys were born
in Paris. Let 6 be the probability that any birth is female, then
n = 251,527 + 241,945

Pr (6 > 0.5|x = 241,945) ~ 1.15 x 10~ 2.

e Remark: This is completely different from a p-value. We do

not integrate over observations we have never seen.

— Bayesian Statistics Page 9



3.5— A Simple Gaussian example

e Consider X0 ~ N (9,02) and 0 ~ N ("77/0708)
(z1 — 9)2 (6 — m0>2>

m(0lw1) o f(x1|0)m(0) xexp | — 202 202
02 /1 1 1y m
X eXP<_2 (02+08)+9(02+02)>

, 1 1 1 o (e
with — = —+4+ 5= a% = 1
o2 o2 o2 g2 + g2’
1 0 0
mp = O - Y
1\ 52 0(2)
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3.5— A Simple Gaussian example

e To predict the distribution of a new observation X |6 ~ N (0, c?) in light
of x1 we use the predictive distribution

f(z|z) = /f(x|6’)7r(6’\x1)d6’

We can do direct calculations or alternatively use the fact that

f (x| z1) is Gaussian so characterized by its mean and variance

E|X|zi] = FE[04+V]|x]=FE|[0|x1] =maq,

var [X|z] = war[04+ V|x1] = var[0] z] + var [V] = 0% + o°.
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3.5— A Simple Gaussian example

e Now assume that you observe a realization xo of X560 ~ N (9, 02).
Then you are interested now in

T (0w, m2) o< f(x2]0) f(21]|0) 7 (0)
< f(x2]0)m(0]x1)

x  f(x1|0)7 (0] x2).

e Updating the prior one observation at a time, or all observations

together, does not matter.

e The sequential approach can be useful for massive dataset.

In this case at time n

7 (0] 21, o 0) o f (0] 0) 7 (0] 21, oo 1)
i.e. ‘the prior at time n is the posterior at time n — 1’.
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3.6— Simple Gaussian example: Bayes vs ML

e ML estimate of 6 at time n is Simply

9ML—8IgSUPHf ;| 0) = sz

1=1

e Posterior of @ at time n is

0| 21, ey Ty ~ N (1, ai)

where
1 1 n oto? o?
o 00 o2 nao + 0% n—oo n
n n
o 2im®m > i1 Ti
m, = o,|=5—+—=5 )| ~ ==—.

e Asymptotically in n the prior is washed out by the data and
E [9‘ X1, ,CL‘n] =My ~ QML-
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3.7— Bayes vs ML

e However, keep in mind that information provided by a Bayesian
approach is much richer.

e You can compute for example posterior probabilities

Pr(6 € Alzq,...,xy,) or var (0| zy,...,T,)

or compute the distributions of future observations

flzx|xy,...,xn).

e ML can be reassuring because of consistency and efficiency.
For finite sample sizes, do you really care?
For time series models for example, there is no such thing.
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3.8— A Simple Poisson Model

: : ii.d. :
e Assume you have some couting observations X; '~ P (0); i.e.

L4
00

Sz 0) =e”

e Assume we adopt a Gamma prior for 0; i.e. 0 ~ Ga (a, )

m(0) =Ga(0;a,8) = %ea—le—w.

e We have

7 (0|x1,...,x,) = Ga (9;@+in,ﬁ+n> :

1=1
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4.1— Testing hypotheses in a Bayesian framework

e Consider the problem where we have 7 () = U [0, 1] and
Y

Pr(X =z|0) = 0 (1—60)"""thenw(0|z) =Be(z+1,n+1—1).
\ 7 )

o If we want to test Hy: 60 > % vs Hy : 0 < % then, in a Bayesian approach,

you can simply compute
1

7T(Ho|x):1—7T(H1\:U):/ 7 (0] z) do.

1/2

e Golden rule of Bayesians: Thou shalt not integrate with respect to
observations (except for design...)
= Contrary to frequentists, your test is never based on observations you

don’t observe.
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4.2— Bayes Factors

e More generally,ones wants to compare two hypothesis: Hy : 0 ~ mg
versus Hy : 0 ~ m; then the prior is

7w (0) =x (Hy) o (0) + 7 (Hy) 71 (0)
where W(Ho) —|—7T(H1) = 1.

e In the previous example, m (6) = U [%, 1] and m (0) = U [07 %)
and W(Ho) = W(Hl) = %

e To compare Hy versus Hy, we typically compute the Bayes factor

which partially eliminated the influence of the prior modelling (i.e. 7 (H;))
B m(z|Hy) [ f(x|0)m(0)do
10

w (x| Ho) [ f(x|6)mo(6)d6

7 (Hy|z) 7 (Ho)
7w (Ho|x) w(Hy)
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4.3— Towards Bayes Model Selection

e Bayes factors are not limited to the comparison of models with the

same parameter space.

e Assume you have some data and two statistical models.

Under Hy, 0y € Oy, the prior is my (6y) and the likelihood is fo (x| 6g) ,
under Hy, 61 € ©1, the prior is w1 (61) and the likelihood is f1 (x| 6;)
then

BT — m (x| Hy) _ [ fi(«]61)m (61)dbs
O 1 (2| Ho) [ fo(x]02)mo (6p) dbo

e One can have Oy = R and ©; = R0,
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4.3— Towards Bayes Model Selection

e Jeflreys’ scale of evidence says that

if logyo (B],) varies between 0 and 0.5, the evidence against H is poor,

if it is between 0.5 and 1, it is substantial,

if it is between 1 and 2, it is strong, and

if it is above 2, it is decisive.

e Bayes factor tell you where one should prefer Hy to H;: it does NOT
tell you whether model H; any of these models are sensible!
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4.3— Towards Bayes Model Selection

e Bayes procedures can be directly used to test point null hypothesis; i.e.
Hy : 0 =6y (that is mg () = dg, (0)) versus H; : 8 ~ m; where the prior
is then defined as

7 (0) = 7 (Ho) dg, (0) + 7 (H1) 71 (0)

e The associated Bayes factor is simply

v (o) = ") _ S (26)m (8)d
0 m (| Hy) f ([ 6)
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4.4— Example: The celebrated coin example

e Assume you have a coin, you toss it 10 times and gets = 10 heads.
Is it biased?

e Let 6 be the proba of having an head then we can test Hy : 0 = %
e The p-value Pr (X > 10| Hy) = 279 and the hypothesis is rejected.

: 1} using

e In a Bayesian framework, we test Hy versus Hy : 0 ~ U (%

st 0)"Tde g [y 6M0ds .
10 = x 10—z 10 — 2Y
(3)" (1-3) (2)
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4.5— Testing the mean of a Gaussian

2

e Assume you have X|(p,0%) ~ N (p,0?) where o is assumed known but

1 (the parameter 6) is unknown.
e We want to test Hy: p =0 vs Hy : NN(£,7'2) then

m (x| Hy) _ [N (25,02 ) N (13 €, 72) dpe
m (x| Ho) f(x|0)

By (x)

e Alternatively if w (Hyg) = p =1— n (H;) then

r(Hylz) =7 (3= 0| z) = [1+1_ppBiTo(a:)]1

— Testing Hypotheses Page 22



4.5— Testing the mean of a Gaussian

e The Bayes factor depends heavily on 72. As 72 — oo, the prior becomes
uniformative but then BJ, (z) — 0 whatever being z and 7 ( Hy| z) — 1.

e We will see that next week but using vague priors for model selection

is a very very bad idea... (Lindley’s paradox).
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