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e Slides available on the Web before lectures:

WWW.cs.ubc.ca/ “arnaud/stat535.html

e Textbook: C.P. Robert & G. Casella, Monte Carlo Statistical Methods,
Springer, 2nd Edition.

e Additional lecture notes available on the Web.
e Textbooks which might also be of help:
e A. Gelman, J.B. Carlin, H. Stern and D.B. Rubin, Bayestan Data

Analysis, Chapman&Hall/CRC, 2nd edition.
e C.P. Robert, The Bayesian Choice, Springer, 2nd edition.



2.1— Outline

e Summary of Previous Lecture.

e Maximum Likelihood.

e Bayesian Statistics.
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3.1— Likelihood function

e Parametric modelling: The observations x are the realization of a random
variable X of probability density function f (x|#8).

e The function f (x|#) considered as a function of 6 for a fixed realization

of the observation X = xz is called the likelihood function.

e The likelihood function is

L(0]x) = f(z|0)

to emphasize that the observations are fized.
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3.2— Sufficient statistics

e When X ~ f(z]#), a function T of X (also called a statistic) is said
to be sufficient if the distribution of X conditional upon T (X) is

independent of 6; i.e.

f(z]0) =h(z)g (T (x)]0).

e Let X = (Xq,...,X,) iid. from P (0) of distribution f (z;|0) = e™* ?j,
Then

- 1 —nb n Tq
F1 e wal0) = [T £ (1] 6) = 02 i1 ¥

i=1 < Z g(T(x)]6)

= The statistics T (x) = >, 2; is sufficient.
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3.3— Sufficiency principle

e Sufficiency principle: Two observations z and y such
that T (x) = T (y) must lead to the same inference on 6.

e Another way to think of it is that the inference on 6 is
only based on T (x) and not on x: T (x) is sufficient.

e Note that the sufficiency principle is also useful in practice.

It is cheaper to store T (z) rather than x.
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3.4— Likelihood Principle

e Likelihood Principle. The information brought by an observation x about
6 is entirely contained in the likelihood function [ (6| x) = f (x| 6). Moreover,
two likelihood functions contain the same information about # if they are
proportional to each other; i.e. if

l1(0lx)=c(x)l2(0|x).

e A simpler (7) way to think of it: You can have two different probabilistic
models for the data. However, if [ (0] ) o< l2 (0| x) then this should lead
to the same inference.

e Some standard classical statistics procedures do not satisfy this principle
because they rely on quantity such as Pr(X > «) = [ f (z|6) dz whereas
the likelihood principle does not bother about data you have not observed!
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4.1— Maximum Likelihood Estimation

e The likelihood principle is fairly vague since it does not lead
to the selection of a particular procedure.

e Maximum likelihood estimation is one way to implement
the sufficiency and likelihood principles

f = arg sup [ (0] )
0
e Proof:

argesup [(0]z) = argesup h(x)g (T (x)0)= argesup g (T (x)]0).

l1(0lx) =c(x)l2(0|x) = arg sup I (0| x) = arg sup ls (0] x)
f f
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4.2— Maximum Likelihood Estimation

e Be careful: Maximum likelihood estimation is just one way

to implement the likelihood principle.

e Maximization can be difficult or several equivalent global
maxima. However, consistent and efficient in most cases.

(asymptotic properties).

e ML estimates can vary widely for small variations of
the observations (for small sample sizes).
Example: If X; ~ 01 g (z;) then for n data

n 1 R
l<9| .CIJ) — Hf (xz| 9) — H_n]-[max{aci},oo) (9) = 0 = max {Xz}

1=1

e Tests require frequentists justifications.

— Maximum Likelihood Estimation Page 9



5.1— Alternative Approaches

e Many approaches have been proposed: penalized likelihood

(e.g. Akaike Information Criterion) or stochastic complexity theory.

e Many of these approaches have a Bayesian flavor.
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5.2— Bayesian Statistics

e A Bayesian model is made of a parametric statistical model (X, f (x| @))

and a prior distribution on the parameters (O, (0)).
e The unknown parameters are now considered RANDOM.

e Many statisticians do not like this although they accept the
probabilistic modeling on the observations.

e Example: Assume you want to measure the speed of light given
some observations. Why should I put a prior on this physical constant?
Because of the limited accuracy of the measurement, this constant

will never be known exactly and thus it is justified to put say a

(uniform) prior on this parameter reflecting this uncertainty.
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5.2— Bayesian Statistics

e In the Bayesian approach, probability describes degrees of belief.

e In the frequentist interpretation, you should repeat an infinite
number of times an experiment and the probabilities corresponds to

the limiting frequencies.

e Problem. How do you attribute a probability to the following
event “There will be a major earthquake in Tokyo on
the 27th April 2013”7

e The selection of a prior has an obvious impact on the inference
results! However, Bayesian statisticians are honest about it.
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5.2— Bayesian Statistics

e Based on a Bayesian model, we can define

e The joint distribution of (6, X)
m(0,x) =m(0)f(x]0).

e The marginal distribution of X

W(fﬂ)z/ﬂ(@)f(azw)dﬁ

For a realization X = x, 7 () is called marginal likelihood

or evidence.
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5.3— Ingredients of Bayesian Inference

e Given the prior 7 (f) and the likelihood [ (6| x) = f (x| @) then

Bayes’s formula yields

o)
[ £ (216)7 (6) do

= It represents all the information on # than can be extracted from x.

(6] )

e Note the integral appearing at the denominator of the Bayes’ rule!

e The predictive distribution of Y when Y ~ g (y|0,x)

g(y\w)Z/g(yIH,x)w(em)de.

This is to distinguish from prediction based on g <y| 5, x) :
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5.3— Ingredients of Bayesian Inference

e In case where 6 = (01, ...,6,) and one is only interested
in the parameter 6. Then 6_; = (61,...,0k_1,0k11,...,0,) are
so-called nuisance parameters.

e Bayesian inference tells us that all the information on 6 that
can be extracted from x is the marginal posterior distribution.

W(9k|az):/---/7r(9\az)d9_k.

e Once more, computing 7 (6| x) requires computing a (possibly high
dimensional) integral.

e Nuisance parameters are often handled using profile likelihood
technique in a maximum likelihood framework.
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5.3— Ingredients of Bayesian Inference

e Bayesian statistics do satistfy automatically the sufficiency principle,
and the likelihood principle.
e Sufficiency principle: If f(x|0) = h(x)g (T (x)|6) then

h(z)g (T (x)]6) 7 (0) (T (2)[0) 7 (6)

7(0)z) = S
hz) [g(T(x)|0)7(0)d0  [g(T (z)|0)m(0)do

= 7w(0|T (x)).

e Likelihood principle: Assume we have f1 (x|0) = c(x) fz (x| 0) then

fi(z[)m(®) _  c(z)fo(z]0)7(0)
[fi(z|0)m(0)dd  [c(z)f2(x]0)m(0)dI

fa (] 0)m (6)
J f2(x[0) 7 (0)d6

m (6] )
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5.4— Simple Examples

e For events A and B, the Bayes rule is

P(B|A) P(A) _ P(B[A)P(A)

PR = i@+ (B A P@) - PB)

e Be careful to subtle exchanging of P ( A| B) for P (B| A).

e Prosecutor’s Fallacy. A zealous prosecutor has collected an evidence and
has an expert testify that the probability of finding this evidence if the accused
were innocent is one-in-a-million. The prosecutor concludes that the probability
of the accused being innocent is one-in-a-million. This is WRONG.
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5.4— Simple Examples

e Assume no other evidence is available and the population is of

10 million people.

e Defining A = "The accused is guilty” then P (A) = 107".

e Defining B ="Finding this evidence” then P (B|A) =1 & P (B|A) =107°.

e Bayes formula yields

P(B|A)P(A) 107
P(B|A)P(A)+ P (B|A)P(4) 10-7 + 1076 x (1 —10-7)

0.1.

Q

e Real-life Example: Sally Clark was condemned in UK (The RSS pointed out
the mistake). Her convinction was eventually quashed (on other grounds).
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5.4— Simple Examples

e Coming back from a trip, you feel sick and your GP thinks
you might have contracted a rare disease (0.01% of the

population has the disease).

e A test is available but not perfect.
If a tested patient has the disease, 100% of the time the test
will be positive.
If a tested patient does not have the diseases, 95% of the
the time the test will be negative (5% false positive).

e Your test is positive, should you really care?
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5.4— Simple Examples

e Let A be the event that the patient has the disease and
B be the event that the test returns a positive result

B 1 x 0.0001
1 x0.0001 4+ 0.05 x 0.9999

P (A|B) ~ 0.002

e Such a test would be a complete waste of money for you or the National
Health System.

e A similar question was asked to 60 students and staff at Harvard Medical

School: 18% got the right answer, the modal response was 95%!
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5.5— What do we gain from information?

e Bayesian inference involves passing from a prior 7 (6) to

a posterior m (0| ) .We might expect that because the posterior
incorporates the information from the data, it will be less variable
than the prior.

e We have the following identities
El] = E[E[0|X]],

var 0] = FE|var|0| X]] +var |[E 60| X]].

e It means that, on average (over the realizations of the data X )
we expect the conditional expectation E [6| X] to be equal to E [0]
and the posterior vartance to be on average smaller than the prior
variance by an amount that depend on the variations in posterior
means over the distribution of possible data.
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5.6— Variance Decomposition Identity

If (6, X) are two scalar random variables then we have

var (0) = E (var (0| X)) + var (E (0| X)) .

Proof:

var () = E(0°)—FE (6)”

= E(E(6°

= E(E(6°

X)) - (E(E(8]X)))°

X)) - B ((B(8]x))°)

+E (B8] X)) = (B(E (9] X))’

= FE(var (0| X)) +wvar (E (0| X)).
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5.7— Be careful

e Such results appear attractive but one should be careful.

e Here there is an underlying assumption that the observations
are indeed distributed according to w (z) = [ 7 (0) f (| 6) d6.
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