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e Slides available on the Web before lectures:

WWW.cs.ubc.ca/ “arnaud/stat535.html

e Textbook: C.P. Robert & G. Casella, Monte Carlo Statistical Methods,
Springer, 2nd Edition.

e Additional lecture notes available on the Web.
e Textbooks which might also be of help:
e A. Gelman, J.B. Carlin, H. Stern and D.B. Rubin, Bayestan Data

Analysis, Chapman&Hall/CRC, 2nd edition.
e C.P. Robert, The Bayesian Choice, Springer, 2nd edition.



2.1— Outline

e Preliminaries,

e The sufficiency principle.

e The likelihood principle.

e The conditionality principle.
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3.1— Preliminaries

e Main objective of statistical theory: Derive from observations of a
random phenomenon an inference about the probability distribution

underlying this phenomenon.

e In this course, we only consider parametric modelling.
The observations 2 are the realization of a random variable X of

probability density function f (x|6#) where

e 0 is unknown and belongs to a space © of finite dimension.

e the functional form f (x|0) is known.
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3.1— Preliminaries

e The function f (x|#) considered as a function of 6 for a fixed realization

of the observation X = xz is called the likelihood function.

e Dependent on the authors one writes

[(0]z) = f(z|0)

or even

[(0) = f(x[0)

to emphasize that the observations are fixed. The second notation should

be avoided in a Bayesian context.
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3.1— Preliminaries

e Example: Consider a radioactive material with unknown half-life
0 = H. For a given atom, the time before desintegration is an
exponential distribution of parameter log2/H.

e Most of the time, statistical modelling only approximates the reality
thus losing part of its richness but gaining in efficiency.

e Example: Price and salary variations are closely related.
We can assume the following model

AP = a+bAS + ¢ with e ~ N (0,07)

where the data are (AP, AS) and 6 = (a,b,0?) .

e The reductive effect can be sought as it partly removes
unimportant perturbations of the phenomenon.
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3.1— Preliminaries

e Example: Consider the problem of forest fires. Determining the
probability p of fire as a function of ecological and meteorological
factors could be useful. It could be model through say

_exp(Bih + Bot + f3x)
P=1y exp (B1h + Bat + B3)

where 0 = (61,62,53) and
h is the humidity rate

t the average temperature

x the degree of management

e Data modelled as Bernoulli r.v.s. of parameter p.
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3.1— Preliminaries

e An alternative approach consists of incorporating as much as possible
the complexity of a phenomenon, and thus aims at estimating the distribution
underlying the phenomenon under minimal assumptions, generally using

functional estimation (density, regression function, etc.).

e The parametric approach is (in my opinion!) more pragmatic. It takes
into account that a finite number of observations can efficiently estimate only

a finite number of parameters.

e In any case, model checking/assessment or model choice should

be considered.
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4.1— Sufficiency principle

e When X ~ f(z]#), a function T of X (also called a statistic) is said
to be sufficient if the distribution of X conditional upon T (X) is
independent of 6.

e Example: Let X = (Xq,..., X,,) i.i.d. from N (,LL,O'2) with 0 = (,LL,O'2) then

f(x]0) = H \/%J eXp <_ (xi2;2’u) )
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4.1— Sufficiency principle

e In this case,

UPR S » S 05 > SR

(\/ 27ra)n
f (x| 6) only depends on x through (>0, 2, >0 x;)soT (z) = (X, 23, > 0y Ti)
is a set of sufficient statistics.
e Note that T =+ " | x;, s
statistics because

Z:L (s — x)2 is also a set of sufficient

E x = 5% — nT?
SO We can rewrite

F(2]6) = — )nexp<—(8 Zﬂ—ﬂbf—W)

(\/ﬂg 20 o

and f (z|6) only depends on z through T and s2.
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4.1— Sufficiency principle

e Consider the independent binomial rvs X; ~ B (n1,p), Xo ~ B(ns,p),

X3 ~ B(ns,p) where ny, no and n3 are known. Then

o (o N ()

ni no ns
f(£131,$2,x3|p>= p

\ o) e ) o

Tr1+xo+x3 (1 . p>n1+n2+n3—$1—9§2—$3

and the statistics

Tr1 + T2 + X3
n1+n2+n3

Tl (331,332,333) = I + i) + I3 or T2 (33173327333) e

are sufficients because f (x1,x2,23|p) only depend on (1, x2,x3) through
Ty (x1,2,23) or Th (x1, T2, x3) but 7‘% + i_z + i’i—i is not sufficient.
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4.1— Sufficiency principle

o Let X = (Xy,...,X,,) i.i.d. from U (0,0) of density f(x;|60) =601 g (;).
Then

- 1
l(@‘ﬂ?) — f(xla 7xn| 9) — Hf(xz‘ 9) — Q_n]-[max{xi},oo) (9> .

1=1

= The statistic T'(X) = max {X;} is sufficient.

e Let X = (Xq,...,X,,) ii.d. from P (0) of distribution f (x;|0) = e—ei_"’;.
Then

n —no

(0| z) = | 0) = 10) = —  _pXisiw
(01) = f (sl ) = [T (2:10) =

= The statistics T (X) = >, X; is sufficient.
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4.1— Sufficiency principle

e Sufficiency principle: Two observations x and y such
that T (x) = T (y) must lead to the same inference on 6.

e Consider the model X; ~ N (u, 1) and we want to estimate p based on

n data. In this case the sufficient statistic is T (z1.n,) = D, T

e Consider the estimate 17 = %T (21.n), then this estimate satisfies the
sufficiency principle because if I have another dataset z/., such that
T (21.,) =T (2}.,,) then I obtain fio = 27 (2}.,) = 2T (z1.,) = fi1.

n

e The estimate 111 = x1 does not satisfies the sufficiency principle for
n > 1 because even if I have another dataset z., such that

T (x1.,) =T (x}.,), then o = x| # uyp if 1 # x4.
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4.1— Sufficiency principle

e The Sufficiently principle is generally accepted by most statisticians

because of the Rao-Blackwell theorem.

e Rao-Blackwell theorem. Let § (X) be an unbiased estimate of 6 and
drp (X)=E[§(X)|T (X)] then drp (X) is unbiased and

var [0rp (X)] < var [6 (X)]

Proof: var [0 (X)] = E [var [§ (X)|T (X)]] + var [E[6 (
= E [var [§ (X)| T (X)]] + var [0rs (
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4.2— Variance Decomposition Identity

If (X,Y) are two scalar random variables then we have

var (X) = E(var (X|Y)) +var (E(X]Y)).

Proof:

var (X)

||
=
g
|
=

s

— E(E(X’|Y)) - (E(E(X|Y)))

— 2 (B(xY)) - B((E(x]V)?)

+B ((B(X|Y)?) = (B(B(X]Y)))’

= FE(var(X|Y))+var(E(X|Y)).
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5.1— The Likelihood Principle

e Likelihood Principle. The information brought by an observation x about
6 is entirely contained in the likelihood function [ (6| x) = f (x| 6). Moreover,
two likelihood functions contain the same information about 6 if they are
proportional to each other; i.e.

I (0] x) =c(z)l2 (0] )

e The maximum likelihood procedure does satisfy the likelihood principle
because

arg max 1 (0| x) = arg max lo (0] )

if l1 (0| x) =c(x)l2(0|x).

e Classical approaches do not necessarily satisfy the likelihood principle.
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5.1— The Likelihood Principle

e Testing Fairness. Suppose we want to test 6, the unknown probability

of heads for possibly biased coin. Suppose

1

H0:9=§ V.S.

H19>§

1

e Scenario 1: Number of flips n = 12 predetermined and number of
heads X ~ B (n,0); that is if we collect x = 9 heads

()

o (X =x)=f(z]0) =

\ )

6% (1 — )" "

(1)

\ 0/

9° (1 — 6)° = 220.6° (1 —6)°.

For a frequentist, the p-value of the test is Py (X > 9| Hy) = 0.073 and
Hj is not rejected at level a = 0.05.

— The Likelihood Principle

Page 17



5.1— The Likelihood Principle

e Scenario 2: Number of tails o = 3 is predetermined, i.e. the flipping
is continued until 3 tails are observed. Then X ~ NB (3,1 —#) and
assuming we collected x = 9 heads then

(a+x—1\
Py(X =2)=f(z]0) = (1-60)"[1—(1-0)]"=55.6(1-0)".
\ e
For a frequentist, the p-value of the test is Py (X > 9| Hy) = 0.0327 and
Hy is rejected at level a = 0.05.

e The likelihood principle is here violated because in both cases

F(z|0) x 6 (1—6)°.
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5.2— Stopping rule Principle

e A direct implication of the likelihood principle is the
stopping rule principe in sequential analysis.

e Consider a sequence of experiments that leads at time ¢ to the
observation X; ~ f (z;|0) and we stops collecting data if at time n
we have (X1,...,X,) € Ap;eg A, =1{X1,..., Xn : X,y > B}.

In this case

n

(8] @1, veesn) o [ f (20l 6) 1, (21, s 0)

1=1

e Stopping rule principle: If a sequence of experiments is directed by
a stopping rule which indicates when the experiments should stop,
inference about 6 must depend on the stopping rule only through the
sample.
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5.3— More p-values

e Consider the case where X; ~ N (6, 1) and the hypothesis to be
tested 1s Hy : 0 = 0.

e The classical Neyman-Pearson test procedure at level 5% is to
reject the hypothesis if L Y% | 2] > % on the basis that

(g ) (] ) o

e That is the decision is based on the event ‘% >y Xz-‘ > 1.96 rather
than on the observations themselves (conditioning by this value is impossible

1.96 196

Vi ZX

ZX—@

using frequentist theory).

e The frequency argument is that in 5% of the cases when Hj is
true, it rejects wrongly the null hypothesis.
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5.3— More p-values

e The stopping rule principle is definitely incompatible with
frequentist modelling.

e Consider X; ~ N (6,1) and the hypothesis to be
tested is Hy : § = 0 and we stop collecting data at the first
time n such that

_ 196
v

1
n

n
@
i=1

e The resulting sample will always reject Hy : 0 = 0 at the
level 5%.
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5.3— More p-values

e Consider X, X5 i.i.d. N (0,1). The likelihood function is

1+ ’
L(0] 21, 2) = f (21, 22| 0) o< exp (—( 12 2—9) )

Now consider the alternative distribution

1 T1TI2 2
g0 P (_ (757 —0) )
1+ (21 — $2)2

x (0| x1,22).

g(x1,22|0) =

e If computing p-values, then one will obtain different
results for f (x1,x3|6) and g (x1,x2|0) because of
they have different tails and the likelihood principle
will be violated.

e The likelihood principle does not bother about data you have not observed!
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6.1— The Conditionality Principle

e Consider estimating € in the model on basis of 2 observations, X; and X5.

Py(X=6—-1)=Py(X =6+1)

e The procedure suggested is

XX - if X £ X
0 (X) = 4

X1—1 it X1 =X

\

e For a frequentist, this procedure has confidence of 75%;
ie. P(6(X)=0)=0.75.

e The conditionalist would report 100% confidence if observed data are different
or 50% if the observations coincide.
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6.1— The Conditionality Principle

e The conditional perspective concerns reporting data specific measures of

accuracy.

e In contrast to the frequentist, performance of statistical procedures are

judged looking at the observed data.
e Conditionality Principle. If two experiments on 6 are available and if
one of these experiments is selected with proba. p, independently of 6, then

the resulting inference should only depend on the selected experiment.

e Theorem (Birnbaum, 1962): The likelihood principle is equivalent to
the conjunction of the Sufficiency and the Conditionality Principles.
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