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• Slides available on the Web before lectures:
www.cs.ubc.ca/~arnaud/stat535.html

• Textbook: C.P. Robert & G. Casella, Monte Carlo Statistical Methods,
Springer, 2nd Edition.

• Additional lecture notes available on the Web.

• Textbooks which might also be of help:

• A. Gelman, J.B. Carlin, H. Stern and D.B. Rubin, Bayesian Data
Analysis, Chapman&Hall/CRC, 2nd edition.
• C.P. Robert, The Bayesian Choice, Springer, 2nd edition.
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2.1– Outline

• Preliminaries,

• The sufficiency principle.

• The likelihood principle.

• The conditionality principle.
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3.1– Preliminaries

• Main objective of statistical theory: Derive from observations of a
random phenomenon an inference about the probability distribution
underlying this phenomenon.

• In this course, we only consider parametric modelling.
The observations x are the realization of a random variable X of
probability density function f (x| θ) where

• θ is unknown and belongs to a space Θ of finite dimension.

• the functional form f (x| θ) is known.
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3.1– Preliminaries

• The function f (x| θ) considered as a function of θ for a fixed realization
of the observation X = x is called the likelihood function.

• Dependent on the authors one writes

l (θ|x) = f (x| θ)

or even

l (θ) = f (x| θ)

to emphasize that the observations are fixed. The second notation should
be avoided in a Bayesian context.
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3.1– Preliminaries

• Example: Consider a radioactive material with unknown half-life
θ = H. For a given atom, the time before desintegration is an
exponential distribution of parameter log 2/H.

• Most of the time, statistical modelling only approximates the reality
thus losing part of its richness but gaining in efficiency.

• Example: Price and salary variations are closely related.
We can assume the following model

ΔP = a + bΔS + ε with ε ∼ N (
0, σ2

)
where the data are (ΔP, ΔS) and θ =

(
a, b, σ2

)
.

• The reductive effect can be sought as it partly removes
unimportant perturbations of the phenomenon.
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3.1– Preliminaries

• Example: Consider the problem of forest fires. Determining the
probability p of fire as a function of ecological and meteorological
factors could be useful. It could be model through say

p =
exp (β1h + β2t + β3x)

1 + exp (β1h + β2t + β3x)

where θ = (β1, β2, β3) and
h is the humidity rate
t the average temperature
x the degree of management

• Data modelled as Bernoulli r.v.s. of parameter p.
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3.1– Preliminaries

• An alternative approach consists of incorporating as much as possible
the complexity of a phenomenon, and thus aims at estimating the distribution
underlying the phenomenon under minimal assumptions, generally using
functional estimation (density, regression function, etc.).

• The parametric approach is (in my opinion!) more pragmatic. It takes
into account that a finite number of observations can efficiently estimate only
a finite number of parameters.

• In any case, model checking/assessment or model choice should
be considered.
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4.1– Sufficiency principle

• When X ∼ f (x| θ), a function T of X (also called a statistic) is said
to be sufficient if the distribution of X conditional upon T (X) is
independent of θ.

• Example: Let X = (X1, ..., Xn) i.i.d. from N (
μ, σ2

)
with θ =

(
μ, σ2

)
then

f (x| θ) =
n∏

i=1

1√
2πσ

exp

(
− (xi − μ)2

2σ2

)
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4.1– Sufficiency principle

• In this case,

f (x| θ) =
1(√

2πσ
)n exp

(
−
∑n

i=1 x2
i

2σ2
− μ

∑n
i=1 xi

σ2
− nμ2

2σ2

)
f (x| θ) only depends on x through

(∑n
i=1 x2

i ,
∑n

i=1 xi

)
so T (x) =

(∑n
i=1 x2

i ,
∑n

i=1 xi

)
is a set of sufficient statistics.
• Note that x = 1

n

∑n
i=1 xi, s2 =

∑n
i=1 (xi − x)2 is also a set of sufficient

statistics because
n∑

i=1

x2
i = s2 − nx2

so we can rewrite

f (x| θ) =
1(√

2πσ
)n exp

(
−
(
s2 − nx2

)
2σ2

− μx

σ2
− nμ2

2σ2

)
and f (x| θ) only depends on x through x and s2.
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4.1– Sufficiency principle

• Consider the independent binomial rvs X1 ∼ B (n1, p), X2 ∼ B (n2, p) ,

X3 ∼ B (n3, p) where n1, n2 and n3 are known. Then

f (x1, x2, x3| p) =

⎛⎜⎜⎜⎝ n1

x1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ n2

x2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ n3

x3

⎞⎟⎟⎟⎠ px1+x2+x3 (1 − p)n1+n2+n3−x1−x2−x3

and the statistics

T1 (x1, x2, x3) = x1 + x2 + x3 or T2 (x1, x2, x3) =
x1 + x2 + x3

n1 + n2 + n3

are sufficients because f (x1, x2, x3| p) only depend on (x1, x2, x3) through
T1 (x1, x2, x3) or T2 (x1, x2, x3) but x1

n1
+ x2

n2
+ x3

n3
is not sufficient.
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4.1– Sufficiency principle

• Let X = (X1, ..., Xn) i.i.d. from U (0, θ) of density f (xi| θ) = θ−11[0,θ] (xi).
Then

l (θ|x) = f (x1, ..., xn| θ) =
n∏

i=1

f (xi| θ) =
1
θn

1[max{xi},∞) (θ) .

⇒ The statistic T (X) = max {Xi} is sufficient.

• Let X = (X1, ..., Xn) i.i.d. from P (θ) of distribution f (xi| θ) = e−θ θx

x! .

Then

l (θ|x) = f (x1, ..., xn| θ) =
n∏

i=1

f (xi| θ) =
e−nθ∏n
i=1 xi!

θ
∑n

i=1 xi .

⇒ The statistics T (X) =
∑n

i=1 Xi is sufficient.
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4.1– Sufficiency principle

• Sufficiency principle: Two observations x and y such
that T (x) = T (y) must lead to the same inference on θ.

• Consider the model Xi ∼ N (μ, 1) and we want to estimate μ based on
n data. In this case the sufficient statistic is T (x1:n) =

∑n
i=1 xi.

• Consider the estimate μ̂1 = 1
nT (x1:n), then this estimate satisfies the

sufficiency principle because if I have another dataset x′
1:n such that

T (x1:n) = T (x′
1:n) then I obtain μ̂2 = 1

nT (x′
1:n) = 1

nT (x1:n) = μ̂1.

• The estimate μ̂1 = x1 does not satisfies the sufficiency principle for
n > 1 because even if I have another dataset x′

1:n such that
T (x1:n) = T (x′

1:n), then μ̂2 = x′
1 �= μ̂1 if x1 �= x2.
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4.1– Sufficiency principle

• The Sufficiently principle is generally accepted by most statisticians
because of the Rao-Blackwell theorem.

• Rao-Blackwell theorem. Let δ (X) be an unbiased estimate of θ and
δRB (X) = E [δ (X)|T (X)] then δRB (X) is unbiased and

var [δRB (X)] ≤ var [δ (X)]

Proof: var [δ (X)] = E [var [δ (X)|T (X)]] + var [E [δ (X)|T (X)]]
= E [var [δ (X)|T (X)]] + var [δRB (X)] .
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4.2– Variance Decomposition Identity

If (X, Y ) are two scalar random variables then we have

var (X) = E (var (X |Y )) + var (E (X |Y )) .

Proof:

var (X) = E
(
X2
)− E (X)2

= E
(
E
(
X2
∣∣Y ))− (E (E (X |Y )))2

= E
(
E
(
X2
∣∣Y ))− E

(
(E (X |Y ))2

)
+E

(
(E (X |Y ))2

)
− (E (E (X |Y )))2

= E (var (X |Y )) + var (E (X |Y )) .
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5.1– The Likelihood Principle

• Likelihood Principle. The information brought by an observation x about
θ is entirely contained in the likelihood function l (θ|x) = f (x| θ) . Moreover,
two likelihood functions contain the same information about θ if they are
proportional to each other; i.e.

l1 (θ|x) = c (x) l2 (θ|x)

• The maximum likelihood procedure does satisfy the likelihood principle
because

arg max
θ

l1 (θ|x) = arg max
θ

l2 (θ|x)

if l1 (θ|x) = c (x) l2 (θ|x) .

• Classical approaches do not necessarily satisfy the likelihood principle.
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5.1– The Likelihood Principle

• Testing Fairness. Suppose we want to test θ, the unknown probability
of heads for possibly biased coin. Suppose

H0 : θ =
1
2

v.s. H1 : θ >
1
2
.

• Scenario 1: Number of flips n = 12 predetermined and number of
heads X ∼ B (n, θ) ; that is if we collect x = 9 heads

Pθ (X = x) = f (x| θ) =

⎛⎜⎜⎜⎝ n

x

⎞⎟⎟⎟⎠ θx (1 − θ)n−x =

⎛⎜⎜⎜⎝ 12

9

⎞⎟⎟⎟⎠ θ9 (1 − θ)3 = 220.θ9 (1 − θ)3 .

For a frequentist, the p-value of the test is Pθ (X ≥ 9|H0) = 0.073 and
H0 is not rejected at level α = 0.05.
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5.1– The Likelihood Principle

• Scenario 2: Number of tails α = 3 is predetermined, i.e. the flipping
is continued until 3 tails are observed. Then X ∼ NB (3, 1 − θ) and
assuming we collected x = 9 heads then

Pθ (X = x) = f (x| θ) =

⎛⎜⎜⎜⎝ α + x − 1

α − 1

⎞⎟⎟⎟⎠ (1 − θ)α [1 − (1 − θ)]x = 55.θ9 (1 − θ)3 .

For a frequentist, the p-value of the test is Pθ (X ≥ 9|H0) = 0.0327 and
H0 is rejected at level α = 0.05.

• The likelihood principle is here violated because in both cases

f (x| θ) ∝ θ9 (1 − θ)3 .
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5.2– Stopping rule Principle

• A direct implication of the likelihood principle is the
stopping rule principe in sequential analysis.

• Consider a sequence of experiments that leads at time i to the
observation Xi ∼ f (xi| θ) and we stops collecting data if at time n

we have (X1, ..., Xn) ∈ An; e.g. An = {X1, ..., Xn : Xn > B}.
In this case

l (θ|x1, ..., xn) ∝
n∏

i=1

f (xi| θ)1An (x1, ..., xn) .

• Stopping rule principle: If a sequence of experiments is directed by
a stopping rule which indicates when the experiments should stop,
inference about θ must depend on the stopping rule only through the
sample.
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5.3– More p-values

• Consider the case where Xi ∼ N (θ, 1) and the hypothesis to be
tested is H0 : θ = 0.

• The classical Neyman-Pearson test procedure at level 5% is to
reject the hypothesis if 1

n |∑n
i=1 xi| > 1.96√

n
on the basis that

Pr

(∣∣∣∣∣ 1n
n∑

i=1

Xi − θ

∣∣∣∣∣ ≥ 1.96√
n

∣∣∣∣∣H0

)
= Pr

(∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ ≥ 1.96√
n

∣∣∣∣∣H0

)
= 0.05

• That is the decision is based on the event
∣∣ 1
n

∑n
i=1 Xi

∣∣ ≥ 1.96 rather
than on the observations themselves (conditioning by this value is impossible
using frequentist theory).

• The frequency argument is that in 5% of the cases when H0 is
true, it rejects wrongly the null hypothesis.
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5.3– More p-values

• The stopping rule principle is definitely incompatible with
frequentist modelling.

• Consider Xi ∼ N (θ, 1) and the hypothesis to be
tested is H0 : θ = 0 and we stop collecting data at the first
time n such that

1
n

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ > 1.96√
n

.

• The resulting sample will always reject H0 : θ = 0 at the
level 5%.
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5.3– More p-values

• Consider X1, X2 i.i.d. N (θ, 1). The likelihood function is

l (θ|x1, x2) = f (x1, x2| θ) ∝ exp

(
−
(

x1 + x2

2
− θ

)2
)

.

Now consider the alternative distribution

g (x1, x2| θ) = π−3/2
exp

(
− (x1+x2

2 − θ
)2)

1 + (x1 − x2)
2 ∝ l (θ|x1, x2) .

• If computing p-values, then one will obtain different
results for f (x1, x2| θ) and g (x1, x2| θ) because of
they have different tails and the likelihood principle
will be violated.

• The likelihood principle does not bother about data you have not observed!
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6.1– The Conditionality Principle

• Consider estimating θ in the model on basis of 2 observations, X1 and X2.

Pθ (X = θ − 1) = Pθ (X = θ + 1)

• The procedure suggested is

δ (X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X1+X2

2 , if X1 �= X2

X1 − 1 if X1 = X2

.

• For a frequentist, this procedure has confidence of 75%;
i.e. P (δ (X) = θ) = 0.75.

• The conditionalist would report 100% confidence if observed data are different
or 50% if the observations coincide.
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6.1– The Conditionality Principle

• The conditional perspective concerns reporting data specific measures of
accuracy.

• In contrast to the frequentist, performance of statistical procedures are
judged looking at the observed data.

• Conditionality Principle. If two experiments on θ are available and if
one of these experiments is selected with proba. p, independently of θ, then
the resulting inference should only depend on the selected experiment.

• Theorem (Birnbaum, 1962): The likelihood principle is equivalent to
the conjunction of the Sufficiency and the Conditionality Principles.
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