Stat 535 C - CPSC 540

Statistical Computing & Monte Carlo Methods

Lecture 2 - Revised version

Arnaud Doucet

Email: arnaud@cs.ubc.ca
• Slides available on the Web before lectures:
 www.cs.ubc.ca/~arnaud/stat535.html

• Additional lecture notes available on the Web.

• Textbooks which might also be of help:

2.1– Outline

• Preliminaries,

• The sufficiency principle.

• The likelihood principle.

• The conditionality principle.
3.1– Preliminaries

• Main objective of statistical theory: Derive from observations of a random phenomenon an inference about the probability distribution underlying this phenomenon.

• In this course, we only consider parametric modelling. The observations x are the realization of a random variable X of probability density function $f(x|\theta)$ where

 • θ is unknown and belongs to a space Θ of finite dimension.

 • the functional form $f(x|\theta)$ is known.
3.1– Preliminaries

- The function $f(x|\theta)$ considered as a function of θ for a fixed realization of the observation $X = x$ is called the likelihood function.

- Dependent on the authors one writes

 $$l(\theta|x) = f(x|\theta)$$

 or even

 $$l(\theta) = f(x|\theta)$$

to emphasize that the observations are fixed. The second notation should be avoided in a Bayesian context.
3.1– Preliminaries

• **Example:** Consider a radioactive material with unknown half-life \(\theta = H \). For a given atom, the time before desintegration is an exponential distribution of parameter \(\log 2/H \).

• Most of the time, statistical modelling only approximates the reality thus losing part of its richness but gaining in efficiency.

• **Example:** Price and salary variations are closely related. We can assume the following model

\[
\Delta P = a + b \Delta S + \varepsilon \text{ with } \varepsilon \sim \mathcal{N}(0, \sigma^2)
\]

where the data are \((\Delta P, \Delta S)\) and \(\theta = (a, b, \sigma^2)\).

• The reductive effect can be sought as it partly removes unimportant perturbations of the phenomenon.
• **Example**: Consider the problem of forest fires. Determining the probability p of fire as a function of ecological and meteorological factors could be useful. It could be model through say

$$p = \frac{\exp(\beta_1 h + \beta_2 t + \beta_3 x)}{1 + \exp(\beta_1 h + \beta_2 t + \beta_3 x)}$$

where $\theta = (\beta_1, \beta_2, \beta_3)$ and

- h is the humidity rate
- t the average temperature
- x the degree of management

• Data modelled as Bernoulli r.v.s. of parameter p.

3.1– Preliminaries
3.1– Preliminaries

- An alternative approach consists of incorporating as much as possible the complexity of a phenomenon, and thus aims at estimating the distribution underlying the phenomenon under minimal assumptions, generally using functional estimation (density, regression function, etc.).

- The parametric approach is (in my opinion!) more pragmatic. It takes into account that a finite number of observations can efficiently estimate only a finite number of parameters.

- In any case, model checking/assessment or model choice should be considered.
4.1– Sufficiency principle

• When $X \sim f(x|\theta)$, a function T of X (also called a statistic) is said to be sufficient if the distribution of X conditional upon $T(X)$ is independent of θ.

• Example: Let $X = (X_1, \ldots, X_n)$ i.i.d. from $\mathcal{N} (\mu, \sigma^2)$ with $\theta = (\mu, \sigma^2)$ then

$$f(x|\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(x_i - \mu)^2}{2\sigma^2} \right)$$
4.1– Sufficiency principle

• In this case,

\[
f(x|\theta) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp \left(-\frac{\sum_{i=1}^{n} x_i^2}{2\sigma^2} - \frac{\mu \sum_{i=1}^{n} x_i}{\sigma^2} - \frac{n\mu^2}{2\sigma^2} \right)
\]

\(f(x|\theta)\) only depends on \(x\) through \((\sum_{i=1}^{n} x_i^2, \sum_{i=1}^{n} x_i)\) so \(T(x) = (\sum_{i=1}^{n} x_i^2, \sum_{i=1}^{n} x_i)\) is a set of sufficient statistics.

• Note that \(\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i\), \(s^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2\) is also a set of sufficient statistics because

\[
\sum_{i=1}^{n} x_i^2 = s^2 - n\bar{x}^2
\]

so we can rewrite

\[
f(x|\theta) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp \left(-\frac{(s^2 - n\bar{x}^2)}{2\sigma^2} - \frac{\mu \bar{x}}{\sigma^2} - \frac{n\mu^2}{2\sigma^2} \right)
\]

and \(f(x|\theta)\) only depends on \(x\) through \(\bar{x}\) and \(s^2\).
4.1– Sufficiency principle

- Consider the independent binomial rvs $X_1 \sim B(n_1, p)$, $X_2 \sim B(n_2, p)$, $X_3 \sim B(n_3, p)$ where n_1, n_2 and n_3 are known. Then

$$f (x_1, x_2, x_3 | p) = \begin{pmatrix} n_1 \\ x_1 \end{pmatrix} \begin{pmatrix} n_2 \\ x_2 \end{pmatrix} \begin{pmatrix} n_3 \\ x_3 \end{pmatrix} p^{x_1+x_2+x_3} (1 - p)^{n_1+n_2+n_3-x_1-x_2-x_3}$$

and the statistics

$$T_1 (x_1, x_2, x_3) = x_1 + x_2 + x_3 \text{ or } T_2 (x_1, x_2, x_3) = \frac{x_1 + x_2 + x_3}{n_1 + n_2 + n_3}$$

are sufficients because $f (x_1, x_2, x_3 | p)$ only depend on (x_1, x_2, x_3) through $T_1 (x_1, x_2, x_3)$ or $T_2 (x_1, x_2, x_3)$ but $\frac{x_1}{n_1} + \frac{x_2}{n_2} + \frac{x_3}{n_3}$ is not sufficient.
4.1– SUFFICIENCY PRINCIPLE

• Let $X = (X_1, ..., X_n)$ i.i.d. from $\mathcal{U}(0, \theta)$ of density $f(x_i | \theta) = \theta^{-1} 1_{[0, \theta]}(x_i)$. Then

$$l(\theta | x) = f(x_1, ..., x_n | \theta) = \prod_{i=1}^{n} f(x_i | \theta) = \frac{1}{\theta^n} 1_{[\max\{x_i\}, \infty)}(\theta).$$

⇒ The statistic $T(X) = \max \{X_i\}$ is sufficient.

• Let $X = (X_1, ..., X_n)$ i.i.d. from $\mathcal{P}(\theta)$ of distribution $f(x_i | \theta) = e^{-\theta} \frac{\theta^x}{x!}$. Then

$$l(\theta | x) = f(x_1, ..., x_n | \theta) = \prod_{i=1}^{n} f(x_i | \theta) = \frac{e^{-n\theta}}{\prod_{i=1}^{n} x_i!} \theta^{\sum_{i=1}^{n} x_i}.$$

⇒ The statistics $T(X) = \sum_{i=1}^{n} X_i$ is sufficient.
4.1– Sufficiency principle

- **Sufficiency principle**: Two observations x and y such that $T(x) = T(y)$ must lead to the same inference on θ.

- Consider the model $X_i \sim \mathcal{N}(\mu, 1)$ and we want to estimate μ based on n data. In this case the sufficient statistic is $T(x_{1:n}) = \sum_{i=1}^{n} x_i$.

- Consider the estimate $\hat{\mu}_1 = \frac{1}{n} T(x_{1:n})$, then this estimate satisfies the sufficiency principle because if I have another dataset $x'_{1:n}$ such that $T(x_{1:n}) = T(x'_{1:n})$ then I obtain $\hat{\mu}_2 = \frac{1}{n} T(x'_{1:n}) = \frac{1}{n} T(x_{1:n}) = \hat{\mu}_1$.

- The estimate $\hat{\mu}_1 = x_1$ does not satisfies the sufficiency principle for $n > 1$ because even if I have another dataset $x'_{1:n}$ such that $T(x_{1:n}) = T(x'_{1:n})$, then $\hat{\mu}_2 = x'_1 \neq \hat{\mu}_1$ if $x_1 \neq x_2$.
4.1– Sufficiency principle

• The Sufficiently principle is generally accepted by most statisticians because of the Rao-Blackwell theorem.

• Rao-Blackwell theorem. Let $\delta(X)$ be an unbiased estimate of θ and $\delta_{RB}(X) = \mathbb{E}[\delta(X)|T(X)]$ then $\delta_{RB}(X)$ is unbiased and

$$
\text{var} [\delta_{RB}(X)] \leq \text{var} [\delta(X)]
$$

Proof: $\text{var} [\delta(X)] = \mathbb{E}[\text{var} [\delta(X)|T(X)]] + \text{var} [\mathbb{E}[\delta(X)|T(X)]]$

$$
= \mathbb{E}[\text{var} [\delta(X)|T(X)]] + \text{var} [\delta_{RB}(X)].
$$
If \((X, Y)\) are two scalar random variables then we have

\[
\text{var}(X) = E(\text{var}(X|Y)) + \text{var}(E(X|Y)).
\]

Proof:

\[
\text{var}(X) = E(X^2) - E(X)^2
\]

\[
= E(E(X^2|Y)) - (E(E(X|Y)))^2
\]

\[
= E(E(X^2|Y)) - E((E(X|Y))^2)
\]

\[
+ E((E(X|Y))^2) - (E(E(X|Y)))^2
\]

\[
= E(\text{var}(X|Y)) + \text{var}(E(X|Y)).
\]
5.1– The Likelihood Principle

- **Likelihood Principle.** The information brought by an observation x about θ is entirely contained in the likelihood function $l(\theta|x) = f(x|\theta)$. Moreover, two likelihood functions contain the same information about θ if they are proportional to each other; i.e.

$$l_1(\theta|x) = c(x) l_2(\theta|x)$$

- The maximum likelihood procedure does satisfy the likelihood principle because

$$\arg\max_{\theta} l_1(\theta|x) = \arg\max_{\theta} l_2(\theta|x)$$

if $l_1(\theta|x) = c(x) l_2(\theta|x)$.

- Classical approaches do not necessarily satisfy the likelihood principle.
5.1– The Likelihood Principle

- **Testing Fairness.** Suppose we want to test θ, the unknown probability of heads for possibly biased coin. Suppose

 \[H_0 : \theta = \frac{1}{2} \text{ v.s. } H_1 : \theta > \frac{1}{2}. \]

- **Scenario 1:** Number of flips $n = 12$ predetermined and number of heads $X \sim B(n, \theta)$; that is if we collect $x = 9$ heads

\[
P_{\theta} (X = x) = f(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x} = \binom{12}{9} \theta^9 (1-\theta)^3 = \frac{220 \theta^9 (1-\theta)^3}{220}.
\]

For a frequentist, the p-value of the test is $P_{\theta} (X \geq 9|H_0) = 0.073$ and H_0 is not rejected at level $\alpha = 0.05$.
5.1– The Likelihood Principle

- **Scenario 2**: Number of tails $\alpha = 3$ is predetermined, i.e. the flipping is continued until 3 tails are observed. Then $X \sim NB (3, 1 - \theta)$ and assuming we collected $x = 9$ heads then

$$P_\theta (X = x) = f (x|\theta) = \frac{\alpha + x - 1}{\alpha - 1} (1 - \theta)^\alpha [1 - (1 - \theta)]^x = 55.\theta^9 (1 - \theta)^3.$$

For a frequentist, the p-value of the test is $P_\theta (X \geq 9|H_0) = 0.0327$ and H_0 is rejected at level $\alpha = 0.05$.

- The likelihood principle is here violated because in both cases

$$f (x|\theta) \propto \theta^9 (1 - \theta)^3.$$
5.2– Stopping rule Principle

- A direct implication of the likelihood principle is the stopping rule principle in sequential analysis.

- Consider a sequence of experiments that leads at time i to the observation $X_i \sim f (x_i | \theta)$ and we stops collecting data if at time n we have $(X_1, ..., X_n) \in A_n$; e.g. $A_n = \{X_1, ..., X_n : X_n > B\}$. In this case

$$l (\theta | x_1, ..., x_n) \propto \prod_{i=1}^{n} f (x_i | \theta) 1_{A_n} (x_1, ..., x_n).$$

- **Stopping rule principle**: If a sequence of experiments is directed by a stopping rule which indicates when the experiments should stop, inference about θ must depend on the stopping rule only through the sample.
5.3– More p-values

• Consider the case where $X_i \sim \mathcal{N}(\theta, 1)$ and the hypothesis to be tested is $H_0 : \theta = 0$.

• The classical Neyman-Pearson test procedure at level 5% is to reject the hypothesis if
\[
\frac{1}{n} \left| \sum_{i=1}^{n} x_i \right| > \frac{1.96}{\sqrt{n}}
\]
on the basis that
\[
\Pr \left(\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \theta \right| \geq \frac{1.96}{\sqrt{n}} \mid H_0 \right) = \Pr \left(\left| \frac{1}{n} \sum_{i=1}^{n} X_i \right| \geq \frac{1.96}{\sqrt{n}} \mid H_0 \right) = 0.05
\]

• That is the decision is based on the event $\left| \frac{1}{n} \sum_{i=1}^{n} X_i \right| \geq 1.96$ rather than on the observations themselves (conditioning by this value is impossible using frequentist theory).

• The frequency argument is that in 5% of the cases when H_0 is true, it rejects wrongly the null hypothesis.
5.3– More p-values

- The stopping rule principle is definitely incompatible with frequentist modelling.

- Consider $X_i \sim \mathcal{N}(\theta, 1)$ and the hypothesis to be tested is $H_0 : \theta = 0$ and we stop collecting data at the first time n such that

$$\frac{1}{n} \left| \sum_{i=1}^{n} x_i \right| > \frac{1.96}{\sqrt{n}}.$$

- The resulting sample will always reject $H_0 : \theta = 0$ at the level 5%.
5.3– More p-values

- Consider X_1, X_2 i.i.d. $\mathcal{N}(\theta, 1)$. The likelihood function is

$$l(\theta|x_1, x_2) = f(x_1, x_2|\theta) \propto \exp\left(-\left(\frac{x_1 + x_2}{2} - \theta\right)^2\right).$$

Now consider the alternative distribution

$$g(x_1, x_2|\theta) = \pi^{-3/2} \frac{\exp\left(-\left(\frac{x_1 + x_2}{2} - \theta\right)^2\right)}{1 + (x_1 - x_2)^2} \propto l(\theta|x_1, x_2).$$

- If computing p-values, then one will obtain different results for $f(x_1, x_2|\theta)$ and $g(x_1, x_2|\theta)$ because of they have different tails and the likelihood principle will be violated.

- The likelihood principle does not bother about data you have not observed!
6.1– The Conditionality Principle

- Consider estimating θ in the model on basis of 2 observations, X_1 and X_2.

\[P_\theta (X = \theta - 1) = P_\theta (X = \theta + 1) \]

- The procedure suggested is

\[\delta (X) = \begin{cases}
\frac{X_1 + X_2}{2}, & \text{if } X_1 \neq X_2 \\
X_1 - 1, & \text{if } X_1 = X_2
\end{cases} \]

- For a frequentist, this procedure has confidence of 75%; i.e. $P(\delta (X) = \theta) = 0.75$.

- The conditionalist would report 100% confidence if observed data are different or 50% if the observations coincide.
6.1– The Conditionality Principle

• The conditional perspective concerns reporting data specific measures of accuracy.

• In contrast to the frequentist, performance of statistical procedures are judged looking at the observed data.

• **Conditionality Principle.** If two experiments on θ are available and if one of these experiments is selected with proba. p, independently of θ, then the resulting inference should only depend on the selected experiment.

• **Theorem** (Birnbaum, 1962): The likelihood principle is equivalent to the conjunction of the Sufficiency and the Conditionality Principles.