
Stat 535 C - Statistical Computing & Monte Carlo Methods

Lecture 24 - 6th April 2006

Arnaud Doucet

Email: arnaud@cs.ubc.ca

1

1.1– Outline

• Sequential Monte Carlo for Static Problems.

• Algorithms Settings.

• Applications.

– Overview of the Lecture Page 2

2.1– Objectives

• Let {πn}n≥1 be a sequence of probability distributions defined on E such that
πn (dx) = πn (x) dx and each πn (x) is known up to a normalizing constant, i.e.

πn (x) = Z−1
n︸︷︷︸

unknown

.γn (x)︸ ︷︷ ︸ .

known

• Estimate expectations
∫

ϕ (x) πn (dx) and/or normalizing constants Zn

sequentially; i.e. first π1 then π2 and so on.

• Objectives: Obtain SMC (sampling/resampling population-based) algorithms
to solve this problem.

• Standard SMC methods only apply to πn (x1:n) = Z−1
n γn (x1:n) .

– SMC Samplers Page 3

2.2– Examples

• Sequential Bayesian Inference: πn (x) = p (x| y1:n) .

• Global optimization: πn (x) ∝ [π (x)]ηn with {ηn} increasing sequence such

that ηn → ∞.

• Sampling from a fixed target π : πn (x) ∝ [μ1 (x)]ηn [π (x)]1−ηn where μ1 easy

to sample and η1 = 1, ηn < ηn−1 and ηP = 0.

⇒ In all cases, we select π1 easy to sample and πn−1 � πn.

– SMC Samplers Page 4

2.3– Brief Review of Standard Importance Sampling

• Let the target distribution be πk (x) = Z−1
k γk (x) and μk be a so-called

importance distribution then

πk (x) =
wk (x) μk (x)∫
wk (x) μk (x) dx

where wk (x) =
γk (x)
μk (x)

,

Zk =
∫

wk (x) μk (x) dx

• By sampling N i.i.d. particles X
(i)
k ∼ μk then μ̂k (dx) = 1

N

∑N
i=1 δ

X
(i)
k

(dx)
and

π̂k (dx) =
N∑

i=1

W
(i)
k δ

X
(i)
k

(dx) where W
(i)
k ∝ wk

(
X

(i)
k

)
,

N∑
i=1

W
(i)
k = 1,

Ẑk =
1
N

N∑
i=1

wk

(
X

(i)
k

)
.

– SMC Samplers Page 5

2.4– What we propose to do

• At time n, we use μn−1 to build μn using X
(i)
n ∼ Kn

(
X

(i)
n−1, ·

)
, i.e.

μn (xn) =
∫

μn−1 (xn−1) Kn (xn−1, xn) dxn−1

=
∫

μ1 (x1)
n∏

k=2

Kk (xk−1, xk) dx1:n−1

• A sensible approach consists of selecting Kn an MCMC kernel of invariant

distribution πn or
approximate Gibbs move.

• It is typically impossible to compute μn (x) pointwise, hence the importance

weights.

– SMC Samplers Page 6

2.5– How to use local moves

• Problem summary: It is impossible to compute pointwise μn (xn) hence
γn (xn) /μn (xn) except when n = 1.

• Solution: Perform importance sampling on extended space.
• At time 2,

π2 (x2)
μ2 (x2)

=
π2 (x2)∫

μ1 (dx1) K2 (x1, x2)
cannot be evaluated

but alternative weights can be defined

new joint target distribution
joint importance distribution

=
π2 (x2) L1 (x2, x1)
μ1 (x1) K2 (x1, x2)

where L1 (x2, x1) is an arbitrary (backward) Markov kernel.

• “Proof” of validity:∫
π2 (x2) L1 (x2, x1) dx1 = π2 (x2)

∫
L1 (x2, x1) dx1︸ ︷︷ ︸ = π2 (x2)

=1! whatever being L1

– SMC Samplers Page 7

2.5– How to use local moves

• Similarly at time n,

Z−1
n wn (xn) =

πn (xn)
μn (xn)

IMPOSSIBLE so USE Z−1
n wn (x1:n) =

π̃n (x1:n)
μn (x1:n)

where {π̃n} is defined using an sequence of arbitrary backwards Markov kernels
{Ln}

Artificial joint target : π̃n (x1:n) = πn (xn)
n−1∏
k=1

Lk (xk+1, xk) ,

Joint importance distribution : μn (x1:n) = μ1 (x1)
n∏

k=2

Kk (xk−1, xk) .

• “Proof” of validity∫
π̃n (x1:n) dx1:n−1 = πn (xn)

∫ n−1∏
k=1

Lk (xk+1, xk) dx1:n−1

︸ ︷︷ ︸
=1! whatever being {Lk}

= πn (xn) .

– SMC Samplers Page 8

2.6– Connections to standard SMC methods

• We are back to “standard” SMC methods where one is interested in sampling
from a sequence of (artificial) distributions {π̃n} whose dimension is increasing
over time.

• Key difference: Given {Kn}, {π̃n} has been constructed in a “clever” way
such that ∫

π̃n (x1:n) dx1:n−1 = πn (xn)

whereas usually the sequence of targets {π̃n} is fixed
and {Kn} is designed accordingly.

– SMC Samplers Page 9

2.7– SMC Sampler

Initialization; n = 1.
For i = 1, ..., N , sample X

(i)
1 ∼ μ1 (·) and set

W
(i)
1 ∝

π1

(
X

(i)
1

)
μ1

(
X

(i)
1

) .

Resample
{

W
(i)
1 , X

(i)
1

}
to obtain N new particles

{
N−1, X

(i)
1

}
.

At time n; n > 1.

For i = 1, ..., N , sample X
(i)
n ∼ Kn

(
X

(i)
n−1, ·

)
and set

W (i)
n ∝

π̃n

(
X

(i)
1:n

)
μn

(
X

(i)
1:n

) ∝ W
(i)
n−1

πn

(
X

(i)
n

)
Ln−1

(
X

(i)
n , X

(i)
n−1

)
πn−1

(
X

(i)
n−1

)
Kn

(
X

(i)
n−1, X

(i)
n

) .

Resample
{

W
(i)
n , X

(i)
n

}
to obtain N new particles

{
N−1, X

(i)
n

}
.

– SMC Samplers Page 10

2.8– SMC Sampler Estimates

• Monte Carlo approximation

π̂n (dx) =
N∑

i=1

W (i)
n δ

X
(i)
n

(dx) .

• Ratio of normalizing constants

Zn

Zn−1
=

∫
γn (xn) dxn∫

γn−1 (xn−1) dxn−1

=
∫

γn (xn) Ln−1 (xn, xn−1)
γn−1 (xn−1) Kn (xn−1, xn)

πn−1 (dxn−1) Kn (xn−1, dxn)

⇒ Ẑn

Zn−1
=

N∑
i=1

W
(i)
n−1

γn

(
X

(i)
n

)
Ln−1

(
X

(i)
n , X

(i)
n−1

)
γn−1

(
X

(i)
n−1

)
Kn

(
X

(i)
n−1, X

(i)
n

) .

– SMC Samplers Page 11

3.1– How to select the backward Markov kernels

• No free lunch: By extending the integration space, the variance of the
importance weights can only increase.

• The optimal kernel {Ln−1} is the one bringing us back to the case where
there is no space extension; i.e.

Lopt
n−1 (xn, xn−1) =

μn−1 (xn−1) Kn (xn−1, xn)
μn (xn)

• The result follows straightforwardly from the forward-backward formula for
Markov processes

μn (x1:n) = μ1 (x1)
n∏

k=2

Kk (xk−1, xk) = μn (xn)
n∏

k=2

Lopt
k−1 (xk, xk−1)

• Lopt
n−1 cannot typically be computed (though there are important exceptions)

but can be properly approximated in numerous cases (see later). Even if an
approximation is used, the estimates are still asymptotically consistent.

– Algorithm Settings Page 12

3.2– Approximations to Optimal Backward Kernels

• First approximation

Ln−1 (xn, xn−1) =
πn−1 (xn−1) Kn (xn−1, xn)∫

πn−1 (xn−1) Kn (xn−1, xn) dxn−1

⇒ πn (xn)Ln−1 (xn, xn−1)
πn−1 (xn−1) Kn (xn−1, xn)

=
πn (xn)∫

πn−1 (xn−1) Kn (xn−1, xn) dxn−

• Second approximation: If Kn (xn−1, xn) is πn-invariant

Ln−1 (xn, xn−1) =
πn (xn−1)Kn (xn−1, xn)

πn (xn)

⇒ πn (xn) Ln−1 (xn, xn−1)
πn−1 (xn−1) Kn (xn−1, xn)

=
πn (xn−1)

πn−1 (xn−1)
.

– Algorithm Settings Page 13

3.3– Be careful

• If the supports Sn = {x ∈ E : πn (x) > 0} are nested, i.e. Sn−1 ⊂ Sn, then

you cannot

use Ln−1 (xn, xn−1) = πn (xn−1) Kn (xn−1, xn) /πn (xn) as

Ln−1 (xn, xn−1) =
πn (xn−1) Kn (xn−1, xn)∫

Sn−1
πn (xn−1)Kn (xn−1, xn) dxn−1

but ∫
Sn−1

πn (xn−1) Kn (xn−1, xn) dxn−1
= πn (xn) .

– Algorithm Settings Page 14

4.1– From MCMC to SMC

• First step: Build a sequence of distributions {πn} going from π1 easy to
sample/approximate to πP = π; e.g. π (x) ∝ [μ1 (x)]ηn [π (x)]1−ηn where
μ1 easy to sample and η1 = 1, ηn < ηn−1 with ηP = 0.

• Second step: Introduce a sequence of transition kernels {Kn}; e.g.
Kn MCMC sampler of invariant distribution πn.

• Third step: Introduce a sequence of backward kernels {Ln}
equal/approximating Lopt

n ; e.g.

Ln−1 (xn, xn−1) =
πn−1 (xn−1) Kn (xn−1, xn)∫

πn−1 (xn−1) Kn (xn−1, xn) dxn−1

⇒ αn (xn−1, xn) =
πn (xn)∫

πn−1 (xn−1) Kn (xn−1, xn) dxn−1

Ln−1 (xn, xn−1) =
πn (xn−1) Kn (xn−1, xn)

πn (xn)
⇒ αn (xn−1, xn) =

πn (xn−1)
πn−1 (xn−1)

– Applications Page 15

4.2– Bayesian Analysis of Finite Mixture of Gaussians

• Model

Yi
i.i.d.∼

4∑
i=1

ωiN (μi, λi) .

• Standard conjugate priors on θ = (ω1:4, μ1:4, λ1:4), no identifiability constraint

μi ∼ N (ξ, κ−1), λi ∼ Ga(ν, χ), ω1:4 ∼ D(ρ).

• The posterior is a mixture of 4! components

– Applications Page 16

4.2– Bayesian Analysis of Finite Mixture of Gaussians

• T =100 data with M = 4, with μ = (−3, 0, 3, 6) , λ = (0.55, 0.55, 0.55, 0.55);
components “far” from each other.

• We build the sequence of P distributions

πn(θ) ∝ l(y1:T ; θ)φnf(θ)

where φ1 = 0 < φ2 < ... < φP = 1.

• MCMC sampler to sample from πn

• Update μ1:4 via a MH kernel with additive normal random walk.
• Update λ1:4 via a MH kernel with multiplicative log-normal random walk.
• Update ω1:4 via a MH kernel with additive normal random walk on the
logit scale.

– Applications Page 17

4.2– Bayesian Analysis of Finite Mixture of Gaussians

• KP admits as invariant distribution πP = π. Very long runs of MCMC get
trapped in one of the 4!=24 modes of the distributions.

• We select simply here for Ln−1 (xn, xn−1) the reversal kernel

Ln−1 (xn, xn−1) =
πn (xn−1) Kn (xn−1, xn)

πn (xn)
.

• We ran SMC samplers with MCMC kernels for P =50, 100, 200 and 500
time steps with 1 and 10 MCMC iterations per time step.

– Applications Page 18

4.3– SMC Estimates of conditional expectations of mean
parameters

– Applications Page 19

4.3– SMC Estimates of conditional expectations of mean
parameters

Sampler Details Component

1 2 3 4

SMC (100 steps, 1 iteration) 0.68 0.91 2.02 2.14

SMC (100 steps, 10 iterations) 1.34 1.44 1.44 1.54

SMC (200 steps, 1 iteration) 1.11 1.29 1.39 1.98

SMC (200 steps, 10 iterations) 1.34 1.37 1.53 1.53

SMC (500 steps, 1 iteration) 0.98 1.38 1.54 1.87

SMC (500 steps, 10 iterations) 1.40 1.44 1.42 1.50
– Applications Page 20

4.4– Discussion

• With reasonable number of intermediate distributions and N = 1000,
SMC manage to provide reasonable estimates of conditional expectations.

• For a fixed computational complexity, it outperforms very significantly
MCMC.which gets stuck in a mode.

• Local MCMC kernels can be combined efficiently through SMC to
explore more efficiently the space in a simple way.

– Applications Page 21

4.5– Bayesian Probit Regression

• We observed i.i.d. binary data Y1, . . . , YT , with associated r−dimensional
covariates X1, . . . , Xu

Pr (Yi = 1|β) = Φ(x′
iβ))

where β is a r−dimensional vector and Φ is the standard normal CDF.

• To do Gibbs sampling, we introduce an auxiliary variable Zi

Yi|Zi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if Zi > 0

0 otherwise

, Zi = x′
iβ + εi

εi ∼ N (0, 1).

– Applications Page 22

4.6– Gibbs Sampling for Bayesian Probit Regression

• The Gibbs sampler to sample from π (β, z1:T | y1:T) when π (β) = N (β, 0, diag(100))
proceeds as follows

β| · · · ∼ Nr(B, V), B = V (v−1b + x′z), V = (v−1 + x′x)−1

π(zi| · · ·) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(zi; x′
iβ, 1)I{zi>0}(zi) if yi = 1

φ(zi; x′
iβ, 1)I{zi≤0}(zi) otherwise

– Applications Page 23

4.7– Simulation settings

• We simulate T =200 data points with r = 20 covariates.

• We ran the MCMC sampler for 100000 iterations, thinning the samples to

every 100.

• The CPU time was approximately 421 seconds.

– Applications Page 24

4.8– Simulation Results: Traces of Regression Coefficients

1st row (Gibbs), 2nd row (SMC Reversal kernel), 3rd row (SMC Gibbs)

sample

be
ta_

2

0 200 400 600 800 1000

-40
-20

0

sample

be
ta_

20

0 200 400 600 800 1000

0
10

20
30

sample

be
ta_

2

0 200 400 600 800 1000

-30
-10

10

sample

be
ta_

20

0 200 400 600 800 1000

30
35

40
45

sample

be
ta_

2

0 200 400 600 800 1000

-30
-10

0

sample

be
ta_

20

0 200 400 600 800 1000

25
30

35
40

45

– Applications Page 25

4.9– SMC Samplers Design

• We introduce an artificial sequence of targets through

εi ∼ N (0, ζn)

with 1 < ζ1 > · · · > ζP = 1. This defines the targets πn (β, z1:T) and
πP (β, z1:T) = π (β, z1:T)

• We sample the particles according to Kn which is the Gibbs sampler
associated to πn, i.e. we sample πn(z1:T |β) then πn(β|z1:T).

• Similarly to the mixture model, the MCMC kernels are not mixing very well.

– Applications Page 26

4.9– SMC Samplers Design

• For the auxiliary kernel associated to

Kn((z1:T , β), (z′1:T , β′)) = πn(z′1:T |β)πn(β′|z′1:T)

we can consider either the reversal kernel

Ln−1((z′1:T , β′), (z1:T , β)) =
πn(β, z1:T)πn(z′1:T |β)πn(β′|z′1:T)

πn(β′, z′1:T)

or a better approximation of the optimal kernel

Ln−1((z′1:T , β′), (z1:T , β)) =
πn−1(β, z1:T)πn(z′1:T |β)πn(β′|z′1:T)∫

πn−1(β, z1:T)πn(z′1:T |β)πn(β′|z′1:T)dβdz1:T

=
πn−1(β, z1:T)πn(z′1:T |β)∫

πn−1(β)πn(z′1:T |β)dβ

– Applications Page 27

4.9– SMC Samplers Design

– Applications Page 28

4.9– SMC Samplers Design

Time points 50 100 200

CPU Time 115.33 251.70 681.33

CPU Time 118.93 263.61 677.65

Times Resampled 29 29 28

Times Resampled 7 6 8

Table 1: The first entry is for the reversal (i.e. the first column row entry is the

reversal kernel for 50 time points). The CPU time is in seconds.

– Applications Page 29

4.10– Sequential Bayesian Trans-dimensional Estimation

• We record data y1, . . . , ycn up to some time tn with associated likelihood:

ln(y1:cn |{λ(u)}u≤tn) ∝
[cn∏

j=1

λ(yj)
]

exp
{
−

∫ tn

0

λ(u)du

}
.

• We adopt a piecewise constant function, defined for u ≤ tn:

λ(u) =
k∑

j=0

λjI[τj ,τj+1)(u)

where τ0 = 0, τk+1 = tn and the changepoints (or knots) τ1:k of the
regression function follow a Poisson process of intensity ν whereas
for any k > 0 λ0 ∼ Ga(μ, υ) and λj |λj−1 ∼ Ga(λ2

j−1/χ, λj−1/χ).

– Applications Page 30

4.10– Sequential Bayesian Trans-dimensional Estimation

• At time tn we are estimating λ(u) over [0, tn]. Over this interval the prior
on the number k of changepoints follows a Poisson distribution
of parameter νtn

fn(k) = e−νtn
(νtn)k

k!
and, conditional on k, we have

fn(τ1:k) =
k!

(tn)k
IΘn,k

(τ1, . . . , τk)

where Θn,k = {τ1:k : 0 < τ1 < · · · < τk < tn}. Thus at time tn we have the

density

πn(λ0:k, τ1:k, k) ∝ ln(y1:cn |{λ(u)}u≤tn)f(λ0)
[k∏

j=1

f(λj |λj−1)
]
fn(τ1:k)fn(k).

– Applications Page 31

4.10– Sequential Bayesian Trans-dimensional Estimation

• We consider strictly increasing times {tn} and we have a sequence of
distributions on spaces:

En =
⋃

k∈N0

(
{k} × (R+)k+1 × Θn,k

)
.

• This is a sequence of nested trans-dimensional spaces; i.e. En−1 ⊂ En.

• We use an “extend” move

Kn(x, dx′) = δτ1:k−1,λ0:k,k(d(τ ′
1:k−1, λ

′
0:k, k′))πn(dτ ′

k|τ1:k−1, λ0:k, k)

and a “birth” move: τ ′
k+1 from a uniform distribution on [τk, n)

πn

(
(τ ′

k+1, λk), λ′
k+1

) ∝ (λ′
k+1)

nτ′
k+1:n+λ2

k/χ
exp

{ − λ′
k+1[(n − τ ′

k+1) + λk/χ]
}

and RJMCMC moves.

– Applications Page 32

4.11– Coal mining data

ESS over time

time

ess

0 20 40 60 80 100

20
00

40
00

60
00

80
00

10
00

0

– Applications Page 33

4.11– Coal mining data

Estimate of E [λ (t)| yt] , E [λ (t)| yt+10] and E [λ (t)| yT] .

year

int
en

sit
y

1860 1880 1900 1920 1940 1960

1
2

3
4

– Applications Page 34

4.11– Coal mining data

– Applications Page 35

