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1.1– Outline

• Review of Sequential Monte Carlo.

• Sequential Monte Carlo for Static Problems.

• Limitations.
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2.1– Review of SMC Methods

• The SMC approach can be used to sample from any sequence of target dis-

tributions

πn (x1:n) =
γn (x1:n)

Zn
.

• Standard application:

πn (x1:n) ∝ μ (x1)
n∏

k=2

f (xk|xk−1)
n∏

k=1

g (yk|xk) .

• Rao-blackwellisation examples:

πn (x1:n) ∝ μ (x1)
n∏

k=2

f (xk|xk−1)
n∏

k=1

p (yk| y1:k−1, xk) .
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2.1– Review of SMC Methods

• We use the IS identities

πn (x1:n) =
wn (x1:n) qn (x1:n)

Zn
,

Zn =
∫

wn (x1:n) qn (x1:n) dx1:n

where

wn (x1:n) =
γn (x1:n)
qn (x1:n)

∝ πn (x1:n)
qn (x1:n)

• If X
(i)
1:n ∼ qn (x1:n) then

qN
n (x1:n) =

1
N

N∑
i=1

δ
X

(i)
1:n

(x1:n)
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2.1– Review of SMC Methods

• By plugging qN
n (x1:n) in place of qn (x1:n)

πN
n (x1:n) =

N∑
i=1

W (i)
n δ

X
(i)
1:n

(x1:n)

where

W (i)
n ∝ wn

(
X

(i)
1:n

)
,

N∑
i=1

W (i)
n = 1

and

ZN
n =

1
N

N∑
i=1

wn

(
X

(i)
1:n

)
.
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2.1– Review of SMC Methods

• We use

qn (x1:n) = q1 (x1)
n∏

k=2

qk (xk|x1:k−1) ,

wn (x1:n) = wn (x1:n−1)
γn (x1:n)

γn−1 (x1:n−1) qn (xn|x1:n−1)
.

• The variance of
{
wn

(
X

(i)
1:n

)}
tends to increase so when the ESS is too low

we resample the particle approximation
{

W
(i)
n , X

(i)
1:n

}
to obtain

{
1/N, X

(i)
1:n

}
.

– Review of Sequential Monte Carlo Page 6



2.1– Review of SMC Methods

At time n − 1,
{

W
(i)
n−1, X

(i)
1:n−1

}
• Sampling Step. For i = 1, ..., N , sample X

(i)
n ∼ qn

(
·|X(i)

1:n−1

)

W (i)
n ∝ W

(i)
n−1

γn

(
X

(i)
1:n

)
γn−1

(
X

(i)
1:n−1

)
qn

(
xn|X(i)

1:n−1

)

• Resampling Step. If variance of weights
{
W

(i)
n

}
high, resample

{
W

(i)
n , X

(i)
1:n

}
to obtain

{
N−1, X

(i)
1:n

}
.
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2.1– Review of SMC Methods

• An approximation of πn is given by

πN
n (x1:n) =

N∑
i=1

W (i)
n δ

X
(i)
1:n

(x1:n)

• An approximation of

Zn

Zn−1
=

∫
γn (x1:n) dx1:n∫

γn−1 (x1:n−1) dx1:n−1

is given by

Ẑn

Zn−1
=

N∑
i=1

W
(i)
n−1

γn

(
X

(i)
1:n

)
γn−1

(
X

(i)
1:n−1

)
qn

(
xn|X(i)

1:n−1

)
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2.2– Limitations

• One cannot hope to estimate with a fixed precision a target distribution
of increasing dimension.

• Aat best, we can expect results of the following form

E

[(∫
ϕ (xn−L+1:n)

(
πN

n (dxn−L+1:n) − πn (dxn−L+1:n)
))2

]
≤ CL ‖ϕ‖

N

IF the model has nice forgetting/mixing properties, i.e.

‖πn (xn|x1) − πn (xn|x′
1)‖ ≤ Dλn−1

with 0 ≤ λ < 1.

• Under such assumptions, there is no accumulation of errors over time.
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2.2– Limitations

• SMC are very useful for dynamic models and more generally to
estimate any sequence of distributions whose dimension increases over time.

• Unfortunately, many important problems do NOT fit into this framework.
How do you estimate a fixed target distribution π (x) using SMC??

• We need to develop more elaborate methods for such problems.
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3.1– Objectives

• Let {πn}n≥1 be a sequence of probability distributions defined on E such that
πn (dx) = πn (x) dx and each πn (x) is known up to a normalizing constant, i.e.

πn (x) = Z−1
n︸︷︷︸

unknown

.γn (x)︸ ︷︷ ︸ .

known

• Estimate expectations
∫

ϕ (x) πn (dx) and/or normalizing constants Zn

sequentially; i.e. first π1 then π2 and so on.

• Objectives: Obtain SMC (sampling/resampling population-based) algorithms
to solve this problem.

• Standard SMC methods do not apply.
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3.2– Examples

• Sequential Bayesian Inference: πn (x) = p (x| y1:n) .

• Global optimization: πn (x) ∝ [π (x)]ηn with {ηn} increasing sequence such

that ηn → ∞.

• Sampling from a fixed target π : πn (x) ∝ [μ1 (x)]ηn [π (x)]1−ηn where μ1 easy

to sample and η1 = 1, ηn < ηn−1 and ηP = 0.

• Rare event simulation π (A) � 1: πn (x) ∝ π (x) 1En (x) with Z1 known,

E1 = E, En ⊂ En−1 and EP = A then ZP = π (A) .
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3.3– Brief Review of Standard Importance Sampling

• Let the target distribution be πk (x) = Z−1
k γk (x) and μk be a so-called

importance distribution then

πk (x) =
wk (x) μk (x)∫
wk (x) μk (x) dx

where wk (x) =
γk (x)
μk (x)

,

Zk =
∫

wk (x) μk (x) dx

• By sampling N i.i.d. particles X
(i)
k ∼ μk then μ̂k (dx) = 1

N

∑N
i=1 δ

X
(i)
k

(dx)
and

π̂k (dx) =
N∑

i=1

W
(i)
k δ

X
(i)
k

(dx) where W
(i)
k ∝ wk

(
X

(i)
k

)
,

N∑
i=1

W
(i)
k = 1,

Ẑk =
1
N

N∑
i=1

wk

(
X

(i)
k

)
.
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3.4– Problems associated to Importance Sampling

• Importance Sampling (IS) is a straightforward method to use if μk is easy
to sample.

• Under weak assumptions, we can obtain asymptotically consistent
estimates of

∫
ϕ (x) π̂k (dx) and Ẑk.

.... so why do people use MCMC in 99.99% of cases???

• For the estimates to have reasonable variances (if they exist!), one needs to
select very carefully the importance distribution.

• To compute
∫

ϕ (x) πk (dx) by IS, the optimal distribution depends on ϕ but
in statistics we often simply want μk as “close” to πk as possible.

• For problems routinely addressed in statistics, this is very difficult.
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3.5– What we propose to do

• “Philosophy”: Start by doing simple things before trying to do complex things;
same idea used in simulated annealing, simulated tempering etc.

• Develop a sequential/iterative IS strategy where we start by approximating
a simple target distribution π1. Then targets evolve over time and
we build the importance distribution sequentially.

• At time n, we use μn−1 to build μn.

• This approach makes sense if the sequence {πn} is not arbitrary; i.e.
πn−1 somewhat close to πn.
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3.6– Initialization via Standard Importance Sampling

• At time 1, sample N (N 
 1) particles X
(i)
1 ∼ μ1 to obtain the following IS

estimates

π̂1 (dx) =
N∑

i=1

W
(i)
1 δ

X
(i)
1

(dx) where W
(i)
1 ∝ w1

(
X

(i)
1

)
,

N∑
i=1

W
(i)
1 = 1,

Ẑ1 =
1
N

N∑
i=1

w1

(
X

(i)
1

)
• Remark: Estimates have reasonable variance only if discrepancy between π1

and μ1 small; hence the need to start with easy to sample or approximate π1.
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3.7– Moving Forward

• At time n − 1, one has N particles
{

X
(i)
n−1, W

(i)
n−1

}

X
(i)
n−1 ∼ μn−1 and W

(i)
n−1 ∝

πn−1

(
X

(i)
n−1

)
μn−1

(
X

(i)
n−1

) .

• Move the particles according to transition kernel

X(i)
n ∼ Kn

(
X

(i)
n−1, ·

)
⇒ μn (x′) =

∫
μn−1 (x) Kn (x, x′) dx

• Optimal transition kernel Kn (x, x′) = πn (x′) cannot be used so we need
alternatives.

– SMC Samplers Page 17



3.8– Transition kernels

• Kn (x, x′) = Kn (x′) with
- simple parametric form (e.g. Gaussian, multinomial etc.);
- semi-parametric based on μ̂n−1 (dx) (e.g. West, 1993; Titterington, 2001)
complexity O

(
N2

)
.

• Kn (x, x′) MCMC kernel of invariant distribution πn.

- burn-in correction by importance sampling.
- scaling of proposal can depend on

{
X

(i)
n−1

}
(Crisan & D., 2000

Chopin, 2002)

• Kn (x, x′) approximation of a Gibbs sampler of invariant distribution πn.
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3.9– Sequential Importance Sampling

nitialization; n = 1.
For i = 1, ..., N , sample X

(i)
1 ∼ μ1 (·) and set

w1

(
X

(i)
1

)
=

γ1

(
X

(i)
1

)
μn

(
X

(i)
1

) , W
(i)
1 ∝ w1

(
X

(i)
1

)
.

At time n; n ≥ 1.

For i = 1, ..., N , sample X
(i)
n ∼ Kn

(
X

(i)
n−1, ·

)
and set

wn

(
X(i)

n

)
=

γn

(
X

(i)
n

)
μn

(
X

(i)
n

) , W (i)
n ∝ wn

(
X(i)

n

)

where μn (xn) =
∫

μn−1 (dxn−1) Kn (xn−1, xn) .
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3.10– Limitations of this approach

• In most cases, we cannot compute the marginal importance distribution

μn (xn) =
∫

μn−1 (xn−1) Kn (xn−1, xn) dxn−1

=
∫

μ1 (x1)
n∏

k=2

Kk (xk−1, xk) dx1:n−1.

⇒ Hence we cannot use Importance Sampling.
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3.10– Limitations of this approach

• Monte Carlo approximation

μ̂n (xn) =
∫

μ̂n−1 (dxn−1) Kn (xn−1, xn) =
1
N

N∑
i=1

Kn

(
X

(i)
n−1, xn

)
.

� Computationally intensive O
(
N2

)
.

� Impossible if Kn (x, x′) cannot be evaluated pointwise;
e.g. Metropolis-Hastings kernel where

Kn (x, dx′) = α (x, x′) q (x, dx′) +
(

1 −
∫

α (x, u) q (x, du)
)

︸ ︷︷ ︸
unknown

δx (dx′)
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3.11– How to use local moves

• Problem summary: It is impossible to compute pointwise μn (xn) hence
γn (xn) /μn (xn) except when n = 1.

• Solution: Perform importance sampling on extended space.
• At time 2,

π2 (x2)
μ2 (x2)

=
π2 (x2)∫

μ1 (dx1) K2 (x1, x2)
cannot be evaluated

but alternative weights can be defined

new joint target distribution
joint importance distribution

=
π2 (x2) L1 (x2, x1)
μ1 (x1) K2 (x1, x2)

where L1 (x2, x1) is an arbitrary (backward) Markov kernel.

• “Proof” of validity:∫
π2 (x2) L1 (x2, x1) dx1 = π2 (x2)

∫
L1 (x2, x1) dx1︸ ︷︷ ︸ = π2 (x2)

=1! whatever being L1
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3.11– How to use local moves

• Similarly at time n,

Z−1
n wn (xn) =

πn (xn)
μn (xn)

IMPOSSIBLE so USE Z−1
n wn (x1:n) =

π̃n (x1:n)
μn (x1:n)

where {π̃n} is defined using an sequence of arbitrary backwards Markov kernels
{Ln}

Artificial joint target : π̃n (x1:n) = πn (xn)
n−1∏
k=1

Lk (xk+1, xk) ,

Joint importance distribution : μn (x1:n) = μ1 (x1)
n∏

k=2

Kk (xk−1, xk) .

• “Proof” of validity∫
π̃n (x1:n) dx1:n−1 = πn (xn)

∫ n−1∏
k=1

Lk (xk+1, xk) dx1:n−1︸ ︷︷ ︸
=1! whatever being {Lk}

= πn (xn) .
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3.12– How to select the backward Markov kernels

• No free lunch: By extending the integration space, the variance of the
importance weights can only increase.

• The optimal kernel {Ln−1} is the one bringing us back to the case where
there is no space extension; i.e.

Lopt
n−1 (xn, xn−1) =

μn−1 (xn−1) Kn (xn−1, xn)
μn (xn)

• The result follows straightforwardly from the forward-backward formula for
Markov processes

μn (x1:n) = μ1 (x1)
n∏

k=2

Kk (xk−1, xk) = μn (xn)
n∏

k=2

Lopt
k−1 (xk, xk−1)

• Lopt
n−1 cannot typically be computed (though there are important exceptions)

but can be properly approximated in numerous cases (see later). Even if an
approximation is used, the estimates are still asymptotically consistent.
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3.13– Connections to standard SMC methods

• We are back to “standard” SMC methods where one is interested in sampling
from a sequence of (artificial) distributions {π̃n} whose dimension is increasing
over time.

• Key difference: Given {Kn}, {π̃n} has been constructed in a “clever” way
such that ∫

π̃n (x1:n) dx1:n−1 = πn (xn)

whereas usually the sequence of targets {π̃n} is fixed
and {Kn} is designed accordingly.

• Because we cannot use {Lopt
n } at each time step, the variance of

the weights typically increases over time and it is necessary to resample.
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3.14– SMC Sampler

Initialization; n = 1.
For i = 1, ..., N , sample X

(i)
1 ∼ μ1 (·) and set

W
(i)
1 ∝

π1

(
X

(i)
1

)
μ1

(
X

(i)
1

) .

Resample
{

W
(i)
1 , X

(i)
1

}
to obtain N new particles

{
N−1, X

(i)
1

}
.

At time n; n > 1.

For i = 1, ..., N , sample X
(i)
n ∼ Kn

(
X

(i)
n−1, ·

)
and set

W (i)
n ∝

π̃n

(
X

(i)
1:n

)
μn

(
X

(i)
1:n

) ∝ W
(i)
n−1

πn

(
X

(i)
n

)
Ln−1

(
X

(i)
n , X

(i)
n−1

)
πn−1

(
X

(i)
n−1

)
Kn

(
X

(i)
n−1, X

(i)
n

) .

Resample
{

W
(i)
n , X

(i)
n

}
to obtain N new particles

{
N−1, X

(i)
n

}
.
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3.15– SMC Sampler Estimates

• Monte Carlo approximation

π̂n (dx) =
N∑

i=1

W (i)
n δ

X
(i)
n

(dx) .

• Ratio of normalizing constants

Zn

Zn−1
=

∫
γn (xn) dxn∫

γn−1 (xn−1) dxn−1

=
∫

γn (xn) Ln−1 (xn, xn−1)
γn−1 (xn−1) Kn (xn−1, xn)

πn−1 (dxn−1) Kn (xn−1, dxn)

⇒ Ẑn

Zn−1
=

N∑
i=1

W
(i)
n−1

γn

(
X

(i)
n

)
Ln−1

(
X

(i)
n , X

(i)
n−1

)
γn−1

(
X

(i)
n−1

)
Kn

(
X

(i)
n−1, X

(i)
n

) .
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3.16– Extensions

• Like in MCMC, in practice one typically wants to use a mixture of moves

Kn (x, x′) =
M∑

m=1

αn,m (x) Kn,m (x, x′)

where αn,m (x) > 0,
∑M

m=1 αn,m (x) = 1 and {Kn,m} is a collection of transition
kernels.

• Importance weight can be computed using standard formula but can be too
computationally intensive if M is large.

• Lopt
n−1 can be difficult to approximate if M is large.
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3.16– Extensions

• Alternative importance sampling on joint space (e.g. Auxiliary Particle Filters
by Pitt & Shephard) by introducing explicitly a discrete latent variable Mn

Pr (Mn = m) = αn,m (x)

and performing importance sampling on the extended space.

• The resulting incremental importance weight becomes
πn (x′) βn−1,m (x′) Ln−1,m (x′, x)

πn−1 (x) αn,m (x) Kn,m (x, x′)
instead of

πn (x′) Ln−1 (x′, x)
πn−1 (x) Kn (x, x′)

where Ln−1 (x′, x) is the artificial backward Markov kernel

Ln−1 (x′, x) =
M∑

m=1

βn−1,m (x′) Ln−1,m (x′, x)

• Optimal choice for {βn−1,m, Ln−1,m} follows straightforwardly.
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3.17– Convergence Results - Central Limit Theorem

• Convergence results follow from general results on Feynman-Kac formula (see
Del Moral, 2004).
• When no resampling is performed, one has

√
N (Eπ̂n

[ϕ] − Eπn [ϕ]) ⇒ N
(
0,

∫ π̃2
n(x1:n)

μn(x1:n) (ϕ (xn) − Eπn (ϕ))2 dx1:n

)
When multinomial resampling is used at each iteration, one has

√
N (Eπ̂n

[ϕ] − Eπn [ϕ]) ⇒ N (
0, σ2

SMC,n (ϕ)
)
,

σ2
SMC,n (ϕ) =

∫ π̃2
n(x1)

μ1(x1)

(∫
ϕ (xn) π̃n (xn|x1) dxn − Eπn (ϕ)

)2
dx1

+
∑n−1

k=2

∫ (π̃n(xk)Lk−1(xk,xk−1))2

πk−1(xk−1)Kk(xk−1,xk)

(∫
ϕ (xn) π̃n (xn|xk) dxn − Eπn (ϕ)

)2
dxk−1:k

+
∫ (πn(xn)Ln−1(xn,xn−1))

2

πn−1(xn−1)Kn(xn−1,xn) (ϕ (xn) − Eπn (ϕ))2 dxn−1:n.

• Under mixing assumptions, σSMC,n (ϕ) upper bounded over time.
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3.18– Convergence Results - Asymptotic Bias

• When no resampling is performed, one has

N (Eπ̂n
[ϕ] − Eπn [ϕ]) → − ∫ π2

n(x1:n)
μn(x1:n) (ϕ (xn) − Eπn (ϕ)) dx1:n

•When multinomial resampling is used at each
iteration (Del Moral, D. & Peters, 2004), one has

N (Eπ̂n
[ϕ] − Eπn [ϕ]) → bSMC,n (ϕ) ,

where with multinomial resampling

bSMC,n (ϕ) = − ∫ π̃2
n(x1)

μ1(x1)

(∫
ϕ (xn) π̃n (xn|x1) dxn − Eπn

(ϕ)
)
dx1

−∑n−1
k=2

∫ (π̃n(xk)Lk−1(xk,xk−1))2

πk−1(xk−1)Kk(xk−1,xk)

(∫
ϕ (xn) π̃n (xn|xk) dxn − Eπn (ϕ)

)
dxk−1:k

− ∫ (πn(xn)Ln−1(xn,xn−1))
2

πn−1(xn−1)Kn(xn−1,xn) (ϕ (xn) − Eπn (ϕ)) dxn−1:n.

• Under mixing assumptions, |bSMC,n (ϕ)| upper bounded over time.
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4.1– How to design an SMC method for sampling from fixed target

• First step: Build a sequence of distributions {πn} going from π1 easy to
sample/approximate to πP = π; e.g. π (x) ∝ [μ1 (x)]ηn [π (x)]1−ηn where
μ1 easy to sample and η1 = 1, ηn < ηn−1 with ηP = 0.

• Second step: Introduce a sequence of transition kernels {Kn}; e.g.
Kn MCMC sampler of invariant distribution πn.

• Third step: Introduce a sequence of backward kernels {Ln}
equal/approximating Lopt

n ; e.g.

Ln−1 (xn, xn−1) =
πn−1 (xn−1) Kn (xn−1, xn)∫

πn−1 (xn−1) Kn (xn−1, xn) dxn−1

⇒ αn (xn−1, xn) =
πn (xn)∫

πn−1 (xn−1) Kn (xn−1, xn) dxn−1

Ln−1 (xn, xn−1) =
πn (xn−1) Kn (xn−1, xn)

πn (xn)
⇒ αn (xn−1, xn) =

πn (xn−1)
πn−1 (xn−1)
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4.2– Bayesian Analysis of Finite Mixture of Gaussians

• Model

Yi|Xi ∼ N (
μXi , σ

2
Xi

)
,

Pr (Xi = k) = πk where k = 1, ..., M

• Standard conjugate priors on θ =
(
πk, μk, σ2

k

)
, no identifiability constraint,

posterior is a mixture of M ! components.

• Simulations with M = 4, components “far” from each other.

• Gibbs sampler to sample from p (θ, x1:T | y1:T ) get stuck in one mode.
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4.3– Algorithm Settings

• To sample p (θ, x1:T | y1:T ), set πn (θ, x1:T ) ∝ p (θ, x1:T ) p (y1:T | θ, x1:T )ηn

where n ∈ {1, . . . , P} , N = 1000.

• For moderate P , SMC discovers the 4! modes and provide
good estimates of E [μi|Y1:T ].

• Generally, resampling helps when number of intermediate
distributions P is low, otherwise no significant difference.

• Use SMC as exploratory techniques?
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5.1– Sequential Bayesian Trans-dimensional Estimation

• At time t, time occurrences assumed to follow an inhomogeneous Poisson
process of intensity λ : R+ → R+

pt

(
y1:lt | {λ (u)}u≤t

)
= exp

(
−

∫ t

0

λ (u) du

) lt∏
l=1

λ (yl) .

• We want to estimate unknown intensity λ (t) sequentially in time.
• Simple piecewise constant model for λ (t)

λ (t) =
k∑

m=1

λm1[τm−1,τm) (t)

• The number of steps k, their amplitudes λ1:k+1 and the knot points τ1:k are
assumed unknown ⇒ Set following time-dependent prior distribution

pt (k, λ1:k+1, τ1:k) = pt (k) p (λ1:k+1| k) pt (τ1:k| k)

where pt (k) Poisson λqt, pt (τ1:k| k) uniform order statistics on [0, t] and
λ1 ∼ G (α, β) and λl|λl−1 ∼ G (

λ2
l−1/χ; λl−1/χ

)
.
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5.1– Sequential Bayesian Trans-dimensional Estimation

• Sequential estimation of posterior distributions over times nΔT

πn (k, λ1:k+1, τ1:k) = pnΔT (k, λ1:k+1, τ1:k| y1:lnΔT )

where ΔT is a time interval defined by the user.

• These distributions are defined on E = ∪∞
k=0 {k} × ϑk where

ϑk =
{

τ1:k ∈ (R+)k ; 0 < τ1 < . . . < τk

}
× (R+)k+1, the support of

πn being reduced to
{

τ1:k ∈ (R+)k ; 0 < τ1 < . . . < τk < nΔT
}
× (R+)k+1.

• Combinations of birth/death and extend steps.
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5.2– Coal mining data

year
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