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1.1– Outline

• Sequential Importance Sampling.

• Sequential Importance Sampling Resampling for Optimal Filtering.

• Limitations and Generalizations.
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2.1– Nonlinear non-Gaussian State-space models

• Nonlinear non-Gaussian state-space model

X1 ∼ μ, Xk| (Xk−1 = xk−1) ∼ f ( ·|xk−1) ,

Yk| (Xk = xk) ∼ g ( ·|xk) .

• We are interested in the sequence of posterior distributions

p (x1:n| y1:n) ∝ p (x1:n) p (y1:n|x1:n)

= μ (x1)
n∏

k=2

f (xk|xk−1)︸ ︷︷ ︸
prior

n∏
k=1

g (yk|xk)︸ ︷︷ ︸
likelihood

.
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2.2– Importance Sampling

• We propose to use IS

p (x1:n| y1:n) =
wn (x1:n, y1:n) qn (x1:n| y1:n)∫

wn (x1:n, y1:n) qn (x1:n| y1:n) dx1:n
,

wn (x1:n, y1:n) =
p (x1:n, y1:n)
qn (x1:n| y1:n)

∝ p (x1:n| y1:n)
qn (x1:n| y1:n)

.

• If X
(i)
1:n ∼ qn (x1:n| y1:n) then q̂N

n (x1:n| y1:n) = 1
N

∑N
i=1 δ

X
(i)
1:n

(x1:n),

p̂N (x1:n| y1:n) =
N∑

i=1

W (i)
n δ

X
(i)
1:n

(x1:n) ,

where W (i)
n ∝ wn

(
X

(i)
1:n, y1:n

)
,

N∑
i=1

W (i)
n = 1.

– Summary of Last Lecture Page 4



3.1– Sequential Importance Sampling

• At time n, we propose not to sample new paths X
(i)
1:n but to keep the paths

X
(i)
1:n−1 which are available at time n − 1 and just add a component X

(i)
n .

Mathematically, it means that we set

qn (x1:n| y1:n) = qn−1 (x1:n−1| y1:n−1)︸ ︷︷ ︸
distribution of the paths X

(i)
1:n−1 at time n−1

× qn (xn| y1:n, x1:n−1)︸ ︷︷ ︸
conditional distribution of the new component X

(i)
n

= q1 (x1| y1)
n∏

k=2

qk (xk| y1:k, x1:k−1)
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3.1– Sequential Importance Sampling

• The weights satisfy the following recursion

wn (x1:n, y1:n) =
p (x1:n, y1:n)
qn (x1:n| y1:n)

=
p (x1:n−1, y1:n−1)

qn−1 (x1:n−1| y1:n−1)
× f (xn|xn−1) g (yn|xn)

qn (xn| yn, xn−1)

= wn−1 (x1:n−1, y1:n−1) × f (xn|xn−1) g (yn|xn)
qn (xn| yn, xn−1)

• This implies that

W (i)
n ∝ W

(i)
n−1

f
(

X
(i)
n

∣∣∣X(i)
n−1

)
g
(

yn|X(i)
n

)
qn

(
X

(i)
n

∣∣∣ yn, X
(i)
n−1

)
• We have designed a SIS scheme of computational complexity
O (N) independent of the time index.
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3.1– Sequential Importance Sampling

Given
{

X
(i)
n−1, W

(i)
n−1

}
approximating p (x1:n−1| y1:n−1) at time n − 1,

the algorithm proceeds as follows at time n.

• At time n

• Sample X
(i)
n ∼ qn

(
xn| yn, X

(i)
n−1

)
for i = 1, ..., N

• Compute the weights

W (i)
n ∝ W

(i)
n−1

f
(

X
(i)
n

∣∣∣X(i)
n−1

)
g
(

yn|X(i)
n

)
qn

(
X

(i)
n

∣∣∣ yn, X
(i)
n−1

)
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3.2– Selection of the Importance Distribution

• We know that it is crucial to select a good importance distribution
for IS estimates to have reasonable performance.

• At time n, the optimal choice in terms of minimizing the variance
of the weights

{
wn

(
X

(i)
1:n, y1:n

)}
is obviously given by

qn (x1:n| y1:n) = p (x1:n| y1:n)

but this choice is impossible and we cannot even get a reasonable
approximation of it (as in MCMC) because of the sequential design
of the importance distribution. For example, remember that
X

(i)
1 ∼ q1 (x1| y1) whereas at time n, we would love to

have X
(i)
1 ∼ p (x1| y1:n)!
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3.3– Suboptimal distributions

• A “locally” optimal choice consists of selecting the distribution
qn (xn| yn, xn−1) minimizing the variance of

wn (x1:n, y1:n) ∝ p (x1:n| y1:n)
qn−1 (x1:n−1| y1:n−1) qn (xn| yn, xn−1)

=
p (x1:n−1| y1:n)

qn−1 (x1:n−1| y1:n−1)
× p (xn| yn, xn−1)

qn (xn| yn, xn−1)

conditional upon x1:n−1. This is given by

qn (xn| yn, xn−1) = p (xn| yn, xn−1) =
f (xn|xn−1) g (yn|xn)∫

f (xn|xn−1) g (yn|xn) dxn

and

wn (x1:n, y1:n) ∝ wn (x1:n−1, y1:n) ×
∫

f (xn|xn−1) g (yn|xn) dxn.
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3.3– Suboptimal distributions

• It is not always possible to use this choice but one can make some
approximations.

• For example, one can use an Extended/Unscented Kalman filter to come
up with a clever proposal.

• The key is once more that asymptotically (as N → ∞), the Monte Carlo
approximation will converge towards the true values.
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3.3– Suboptimal distributions

• A simpler choice consists of selecting

qn (x1:n| y1:n) = p (x1:n)

that is

qn (x1| y1) = μ (x1) and qn (xn| yn, xn−1) = f (xn|xn−1)

and

wn (x1:n, y1:n) = wn−1 (x1:n−1, y1:n−1) × g (yn|xn)

=
n∏

k=1

g (yk|xk) .

• This choice will be extremely poor if the data are very informative and
the prior is diffuse.
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3.4– Application to Stochastic Volatility

• We present a simple application to SV where

f (xk|xk−1) = N (
xk;φx, σ2

)
,

g (yk|xk) = N (
yk;0, β2 exp (xk)

)
.

• We cannot sample from p (xn| yn, xn−1) but it is unimodal and
we can compute numerically its mode mn (xn−1) and use a t−distribution
with 5 degrees of freedom and scale set as the inverse of the negated
second-order of log p (xn| yn, xn−1) evaluated at mn (xn−1) and given by

σ2
n (xn−1) =

(
1
σ2

+
y2

n

2β2
exp (−mn (xn−1))

)−1

.
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3.5– Simulation Results

• The algorithm performs EXTREMLY poorly! After a few time steps, only
a very small number of particles have non negligible weights.
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and n = 100 (bottom).

– Sequential Importance Sampling Page 13



3.5– Simulation Results

• You should not be surprised! This algorithm is nothing but an implementation
of IS where we severely restrict the structure of the importance distribution.

• As the dimension of the target p (x1:n| y1:n) increases over time, the problem
is becoming increasingly difficult. In practice, the discrepancy between the
target and the IS distribution qn (x1:n| y1:n) can only also increase (on average).

• As n increases the variance of the weights increases (typically geometrically)
and the IS approximation collapses.

• You can use any IS distribution you want (even the locally optimal one), the
algorithm will collapse.
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4.1– Resampling

• Intuitive KEY idea: When the variance of the weights
{

W
(i)
n

}
is high, we

would like to get rid of the particles with low weights (relative to 1/N) and
multiply the particles with high weights.

• The main reason is that if a particle at time n has a low weight then typically
it will still have a low weight at time n + 1 (though I can easily give you a
counterexample).

• You want to focus your computational efforts on the “promising” parts of
the space.
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4.1– Resampling

• To measure the variation of the weights, we can use the Effective
Sample Size (ESS) or the coefficient of variation CV

ESS =

(
N∑

i=1

(
W (i)

n

)2
)−1

, CV =

(
1
N

N∑
i=1

(
NW (i)

n − 1
)2
)1/2

• We have ESS = N and CV = 0 if W
(i)
n = 1/N for any i.

• We have ESS = 1 and CV =
√

N − 1 if W
(i)
n = 1 and W

(j)
n = 1 for j �= i.
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4.1– Resampling

• We can also use the entropy

Ent = −
N∑

i=1

W (i)
n log2

(
W (i)

n

)

• We have Ent = log2 (N) if W
(i)
n = 1/N for any i.

• We have Ent = 0 if W
(i)
n = 1 and W

(j)
n = 1 for j �= i.
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4.1– Resampling

• If the variation of the weights as measured by ESS, CV or Ent is too high,
then we resample the particles.

• The simplest way to resample the particles consists of resampling N times
from the current approximation

X
(i)

1:n ∼ pN (x1:n| y1:n)

where

pN (x1:n| y1:n) =
N∑

i=1

W (i)
n δ

X
(i)
1:n

(x1:n) .
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4.1– Resampling

• This corresponds to perform an approximation of pN (x1:n| y1:n)

N∑
i=1

N
(i)
n

N
δ
X

(i)
1:n

(x1:n) �
N∑

i=1

W (i)
n δ

X
(i)
1:n

(x1:n)

where N
(i)
n is the number of offspring of the particle X

(i)
1:n and∑N

i=1 N
(i)
n = N.

• The previous scheme is equivalent to sample

(
N (1)

n , ..., N (N)
n

)
∼ M

(
N ; W (1)

n , ..., W (N)
n

)
which is such that E

(
N

(i)
n

)
= NW

(i)
n but better schemes can be developed.
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4.2– Multinomial Resampling

• We select N index
(̂
i1, ..., îN

)
amongst (1, ..., N) according to the multinomial

of parameters
(
W

(1)
n , ..., W

(N)
n

)
.

• Practically, we sample ui i.i.d.∼ U [0, 1]

j

i

ω ω ω1 7

u

ı̂i ← j
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4.3– Stratified Resampling

• An alternative by Kitagawa consists of selecting

u1 ∼ U
[
0, N−1

]
, ui = u1 +

i

N

s[j]
ω ω

1 2 3 4 5 6 7u u u u u u u

s[1]

ı̂i ← s[j]

• There is NO need to sort the weights to apply this procedure.
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4.3– Stratified Resampling

• Many alternative algorithms have been proposed for resampling and
are typically such that E

(
N

(i)
n

)
= NW

(i)
n but differ in terms of var

(
N

(i)
n

)
and cov

(
N

(i)
n , N

(j)
n

)
.

• We emphasize that there is not much room to improve performance of
the resampling step.
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4.4– Sequential Importance Sampling Resampling

• At time n

• Sample X
(i)
n ∼ qn

(
xn| yn, X

(i)
n−1

)
for i = 1, ..., N

• Compute the weights

W (i)
n ∝ W

(i)
n−1

f
(

X
(i)
n

∣∣∣X(i)
n−1

)
g
(

yn|X(i)
n

)
qn

(
X

(i)
n

∣∣∣ yn, X
(i)
n−1

)

• If the variation of the weights is high, resample the particles{
X

(i)
1:n, W

(i)
n

}
to obtain a new population

{
X

(i)
1:n, 1/N

}
.
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4.5– Experimental Results for Linear Gaussian Model
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4.5– Experimental Results for Linear Gaussian Model

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

– Sequential Importance Sampling Resampling Page 26



4.5– Experimental Results for Linear Gaussian Model
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4.5– Experimental Results for Linear Gaussian Model
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4.5– Experimental Results for Linear Gaussian Model

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

time index

st
at

e

– Sequential Importance Sampling Resampling Page 29



4.5– Experimental Results for Linear Gaussian Model
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4.5– Experimental Results for Linear Gaussian Model
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4.5– Experimental Results for Linear Gaussian Model
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4.6– Experimental Results for Stochastic Volatility Model
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4.6– Experimental Results for Stochastic Volatility Model
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4.6– Experimental Results for Stochastic Volatility Model
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4.6– Experimental Results for Stochastic Volatility Model
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5.1– Convergence Results

• Convergence results are beyond the scope of this course but there are many
results available.

• In particular we have

E

[(∫
ϕ (x1:n)

(
p̂N (dx1:n| y1:n) − p (dx1:n| y1:n)

))2
]
≤ Cn

N
.

• It looks like a nice result... but it is rather useless as Cn increases
polynomially/exponentially with time.
⇒ To achieve a fixed precision, this would require to use an time-increasing
number of particles N .
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5.1– Convergence Results

• One cannot hope to estimate with a fixed precision a target distribution
of increasing dimension.

• So at best, we can expect results of the following form

E

[(∫
ϕ (xn−L+1:n)

(
p̂N (dxn−L+1:n| y1:n) − p (dxn−L+1:n| y1:n)

))2
]
≤ CL

N

IF the model has nice forgetting/mixing properties, i.e.

‖p (xn| y2:n, x1) − p (xn| y2:n, x′
1)‖ ≤ Dλn−1

with λ < 1.

• Under such assumptions, there is no accumulation of errors over time.
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5.1– Convergence Results

• Summary: You can only expect to approximate the “most recent” marginals
p (xn−L+1:n| y1:n) but NOT the joint distributions p (x1:n| y1:n) .

• This seems rather limited but in most real-world applications we are only
interested in the so-called filtering distribution p (xn| y1:n) and we can also
use the property to estimate smoothing distributions

p (xk| y1:n) � p (xk| y1:k+L)

if the system has ergodic properties. Finally we have

p (y1:n) = p (y1)
n∏

k=2

p (yk| y1:k−1)

where

p (yk| y1:k−1) =
∫

g (yk|xk) p (xk| y1:k−1) dxk.
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5.1– Convergence Results

• These results also demonstrate that one cannot expect to obtain good
performance if the model has static parameters; i.e. if we have

X1 ∼ μ, Xk| (Xk−1 = xk−1) ∼ fθ ( ·|xk−1) ,

Yk| (Xk = xk) ∼ gθ ( ·|xk) .

where θ ∼ π (θ) and we want to estimate p (x1:n, θ| y1:n) .

• Indeed the dynamic model Zn = (Xn, θ) is not ergodic as

f (x′, θ′|x, θ) = δθ (θ′) fθ (x′|x) .

• This is intuitive! At time 1, we sample N particles θ(i) and these values
are never ever modified later on.
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5.1– Convergence Results

• At first glance, this is really bad news. SMC appears unable to deal with
static parameters.

• A dirty solution consists of adding noise to a fixed parameter to transform it
as a time-varying parameter

θn = θn−1 + εn.

• This is not clean and we are going to discuss later on a rigorous approach...
which requires a “deeper” understanding of SMC.
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6.1– Towards General SMC Methods

• The SMC approach can be extended to any sequence of target distributions

πn (x1:n) =
γn (x1:n)

Zn
.

• In particular, we do not require the target distribution to satisfy

πn (x1:n) ∝ μ (x1)
n∏

k=2

f (xk|xk−1)
n∏

k=1

g (yk|xk) .

• The only requirement here is that

πn (x1:n−1) > 0 ⇒ πn−1 (x1:n−1) > 0.
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6.2– Conditinionally Linear Gaussian State-Space Models

• As an example consider a switching state-space model

Zn = A (Xn) Zn−1 + B (Xn) Vn, Z1 ∼ N (0, Σ0) , Vn
i.i.d.∼ N (0, I)

Yn = C (Xn)Zn + D (Xn) Wn, Wn
i.i.d.∼ N (0, I)

where Xn is an unobserved Markov process

X1 ∼ μ, Xn|Xn−1 = x ∼ f ( ·|x) .
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6.2– Conditinionally Linear Gaussian State-Space Models

• We could estimate using SMC

p (x1:n, z1:n| y1:n) ∝ p (x1:n) p (z1:n|x1:n) p (y1:n|x1:n, z1:n)

= μ (x1)
n∏

k=2

f (xk|xk−1) p (z1)
n∏

k=2

N (
zn; A (xn) zn−1, B (xn) BT (

×
n∏

k=1

N (
yn; C (xn) zn, D (xn) DT (xn)

)

• This fits in the framework discussed previously: {Xn, Zn} is a Markov process
and the observations {Yn} are conditionally independent given {Xn, Zn} .
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6.3– Variance reduction via Rao-Blackwellisation

• However, conditional upon {Xn} the model is linear Gaussian. It follows
that we have

p (x1:n, z1:n| y1:n) = p (x1:n| y1:n) p (z1:n| y1:n, x1:n)︸ ︷︷ ︸
Gaussian distribution

and it is only necessary to estimate through SMC the marginal distribution

p (x1:n| y1:n) ∝ p (y1:n|x1:n) p (x1:n)

where the likelihood term is given by the Kalman filter.

• We have p (y1:n|x1:n) �=∏n
k=1 p (yk|xk) but this does not matter!

Additionally we could have also a process {Xn} which is non-Markovian.
As long as we can compute the target up
to a normalizing constant then we will be able to apply SMC.
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6.4– Sequential Importance Sampling

• We can use sequential importance sampling

X
(i)
1:n ∼ qn (x1:n)

where

qn (x1:n) = qn−1 (x1:n−1) qn (xn| y1:n, x1:n−1)

= q1 (x1)
n∏

k=2

qk (xk|x1:k−1)

• Whether the process is Markov or not does not matter whatsoever.
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6.4– Sequential Importance Sampling

• We need to compute the weights associated to each particles X
(i)
1:n.

• We have

wn (x1:n) =
γn (x1:n)
qn (x1:n)

∝ πn (x1:n)
qn (x1:n)

=
πn−1 (x1:n−1)
qn−1 (x1:n−1)

πn (x1:n)
πn−1 (x1:n−1) qn (xn|x1:n−1)

∝ wn−1 (x1:n−1)
πn (x1:n)

πn−1 (x1:n−1) qn (xn|x1:n−1)
.

• In many cases, we can compute the incremental weight in a computational
time independent of n.
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6.5– Selection of the Importance Distribution

• We propose to select the importance distribution minimizing the variance of

the importance
weight conditional upon x1:n−1.

• We have

wn (x1:n) ∝ wn−1 (x1:n−1)
πn (x1:n)

πn−1 (x1:n−1) qn (xn|x1:n−1)

∝ wn−1 (x1:n−1)
πn (x1:n−1)

πn−1 (x1:n−1)
πn (xn|x1:n−1)
qn (xn|x1:n−1)

so the (locally) optimal choice is

qn (xn|x1:n−1) = πn (xn|x1:n−1)
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6.6– Sequential Importance Sampling Resampling

• At time n

• Sample X
(i)
n ∼ qn

(
xn|X(i)

1:n−1

)
for i = 1, ..., N

• Compute the weights

W (i)
n ∝ W

(i)
n−1

πn

(
X

(i)
1:n

)
πn−1

(
X

(i)
1:n−1

)
qn

(
X

(i)
n

∣∣∣X(i)
1:n−1

)

• If the variation of the weights is high, resample the particles{
X

(i)
1:n, W

(i)
n

}
to obtain a new population

{
X

(i)
1:n, 1/N

}
.
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7.1– Summary

• Sequential Importance Sampling is inefficient.

• Resampling is a simple and effective mechanism
which mitigates this problem.

• On thursday, we will discuss some applications of SMC.
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