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1.1— Outline

e Sequential Importance Sampling.

e Sequential Importance Sampling Resampling for Optimal Filtering.

e Limitations and Generalizations.
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2.1— Nonlinear non-Gaussian State-space models

e Nonlinear non-Gaussian state-space model
X1~y Xi| (Xim1 = 2p—1) ~ f(|2r-1),
Yi| (X = i) ~ g ([ zk) -

e We are interested in the sequence of posterior distributions

P(Z1m|Y1m) X p(Z1:) P (Yin| T1:n)

n

= p() [ f(alzi-0) [ g (yel zn).
k=2

=1

k
\ - 7\ 7

prior likelihood
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2.2— Importance Sampling

e We propose to use IS

W, (xl:na ylzn) dn (xlzn‘ ylzn)
f Wn (ajlzna ylzn) dn (x1:n| yl:n) dxl:n 7

p(xlzn‘ylzn) —

p (ajlzn: y1:n> x P (xlzn‘ ylzn)

Wn \L1:n, Y1: — .
n (Z1:m 2 Gn (T1:n| Y1:n) Gn (T1:n|Y1:n)

o It X{) ~ gy (21| y1n) then @Y (21:0] Y1) = = S0 0

ﬁN (x1:n| yl:n) — Z W#)CSX?) (xlzn) ’
i—1 n
where W9« wy, (X&),L,yl:n) , Z W) =1,
i=1
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3.1— Sequential Importance Sampling

e At time n, we propose not to sample new paths X 1(17)1 but to keep the paths
X fff,)l_l which are available at time n — 1 and just add a component X,
Mathematically, it means that we set

dn (x1:n|y1:n) — gn—l (xlzn—1|y1:n—1z

“/”

distribution of the paths x

1:31_1 at time n—1

X gn(ajn‘yl:naxlzn—lz

“/”

conditional distribution of the new component X,,(f)

= ¢ (21]y1) H ar (Tk| Y1:6, T1:k-1)
k=2

— Sequential Importance Sampling Page 5



3.1— Sequential Importance Sampling

e The weights satisty the following recursion
p (xlzna ylzn)

dn (xl:n‘ ylzn)

Wn (ajlzn;yl:n) —

p(ajl:n—laylzn—l) v f($n|517n—1)9(yn|$n)
dn—1 (5131:n—1| ylzn—1> dn (flfn| yn,flfn—1)

f (xn‘ xn—l)Q (yn| xn)
dn (xn‘ Yn, xn—l)

= Wp-1 (xlzn—laylin—l) X

e This implies that

W@ o f(Xg) X?(%Z)1>g(y”‘X7g))
n X n—1 i i
n (Xé) yn,Xflll)

e We have designed a SIS scheme of computational complexity
O (N) independent of the time index.
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3.1— Sequential Importance Sampling

Given {X@

n—1

Wéz_)l} approximating p (x1.n_1|y1.n_1) at time n — 1,
the algorithm proceeds as follows at time n.
o At time n

e Sample X\ ~ On, (xn| yn,Xf,(Ql) fori=1,....N

e Compute the weights

W@ o ) f(XS) Xf'gz)l)g(y”‘X;@))
n X n—1 ;
qn (X7£LZ) nangzll)
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3.2— Selection of the Importance Distribution

e We know that it is crucial to select a good importance distribution

for IS estimates to have reasonable performance.

e At time n, the optimal choice in terms of minimizing the variance
of the weights {’wn (X Y?),L, yl:n)} is obviously given by

dn (x1:n| ylzn) =D (ajlzn‘ ylzn)

but this choice is impossible and we cannot even get a reasonable
approximation of it (as in MCMC) because of the sequential design
of the importance distribution. For example, remember that

Xl(i) ~ q1 (1] y1) whereas at time n, we would love to

have X{i) ~p(x1|Y1.0)!
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3.3— Suboptimal distributions

e A “locally” optimal choice consists of selecting the distribution
Gn (Zpn|Yn, Tn_1) minimizing the variance of

P(x1m| Y1:n)
dn—1 (5131:n—1| ylzn—1> dn (ﬂﬁn\ YUn, xn—l)

Wn, (xlznaylzn) X

p<x1:n—1|y1:n> % p(:l:n|yn,:1:n_1)

dn—1 (5131:n—1| ylzn—1> dn (flfn| Yn s fl?n—1)

conditional upon x1.,_1. This is given by

Gn (Tn|Yns Tn—1) = P (Tn|Yn, Tn—1) = fffé;xqr‘xxi:;;g(;y?r‘xx;)dx

and

Wn, (xlzna y1:n> X Wnp, (xlzn—la ylzn) X /f (xn‘ xn—l) g (yn| xn) dwn
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3.3— Suboptimal distributions

e It is not always possible to use this choice but one can make some

approximations.

e For example, one can use an Extended/Unscented Kalman filter to come

up with a clever proposal.

e The key is once more that asymptotically (as N — oo), the Monte Carlo

approximation will converge towards the true values.
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3.3— Suboptimal distributions

e A simpler choice consists of selecting
Gn (ZT1:n| Y1:n) = P (T1:n)
that is
Gn (21| 1) = p (1) and gn (Zn|Yn, 2n-1) = f (Tn]2n-1)

and

Wn, (xlzn,ylzn) = Wp-1 ($1:n—1,y1:n—1) X g (yn\ xn)

= [ 9(vklax).

k=1

e This choice will be extremely poor if the data are very informative and
the prior is diffuse.
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3.4— Application to Stochastic Volatility

e We present a simple application to SV where

f(ap|ap-1) = N (zpoz,07),

g(yelzr) = N(yk;O,ﬁQeXp(xk)>.

e We cannot sample from p (x| yn, n—1) but it is unimodal and
we can compute numerically its mode m,, (x,_1) and use a t—distribution
with 5 degrees of freedom and scale set as the inverse of the negated

second-order of log p (z,| Yn, xn_1) evaluated at m,, (x,_1) and given by

1 Y2 !
op (Zn-1) = (; + ﬁ exp (—my, (flfn—1>)) :
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3.5— Simulation Results

e The algorithm performs EXTREMLY poorly! After a few time steps, only

a very small number of particles have non negligible weights.
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Histograms of the base 10 logarithm of WY for n = 1 (top), n = 50 (middle)
and n = 100 (bottom).
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3.5— Simulation Results

¢ You should not be surprised! This algorithm is nothing but an implementation

of IS where we severely restrict the structure of the importance distribution.
e As the dimension of the target p (z1.,|y1.,) increases over time, the problem
is becoming increasingly difficult. In practice, the discrepancy between the

target and the IS distribution ¢, (x1.,| y1.n) can only also increase (on average).

e As n increases the variance of the weights increases (typically geometrically)

and the IS approximation collapses.

e You can use any IS distribution you want (even the locally optimal one), the

algorithm will collapse.

— Sequential Importance Sampling Page 14



4.1— Resampling

o Intuitive KEY idea: When the variance of the weights {quz)} is high, we
would like to get rid of the particles with low weights (relative to 1/IN) and
multiply the particles with high weights.

e The main reason is that if a particle at time n has a low weight then typically
it will still have a low weight at time n + 1 (though I can easily give you a

counterexample).

e You want to focus your computational efforts on the “promising” parts of

the space.
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4.1— Resampling

e To measure the variation of the weights, we can use the Effective
Sample Size (ESS) or the coefficient of variation CV

- (G) er- (35 eme-y)

1=1 1=1

e We have ESS = N and CV =0 if qui) = 1/N for any 1.

e We have ESS =1 and CV = /N — 1 if W) =1 and W) =1 for j # 1.
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4.1— Resampling

e We can also use the entropy
N . .
Ent = — Z W) log, (Wf,,(f))
i=1
e We have Ent = log, (N) if Wi = 1/N for any 1.

e We have Ent =0 if Wéi) = 1 and quj) =1 for 5 # 1.
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4.1— Resampling

e If the variation of the weights as measured by ESS, CV or Ent is too high,

then we resample the particles.

e The simplest way to resample the particles consists of resampling N times

from the current approximation

(%)
Xl:n ~ pN (xlzn‘ yl:n)

where
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4.1— Resampling

e This corresponds to perform an approximation of p™¥ (z1.,| y1.n)

where N\” is the number of offspring of the particle X m and
Zéil N. 7§Z) = N.

e The previous scheme is equivalent to sample

(ng”, ...,ngN>) ~ M (N; W, ...,WW)

which is such that E (N,Si)) =N W,&“ but better schemes can be developed.
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4.2— Multinomial Resampling

AN

e We select N index (?1, i ) amongst (1, ..., V) according to the multinomial

of parameters (Wf,gl), e Wf,gN)).

e Practically, we sample u' SN ) 0, 1]
I I
1 j 7
() 0 0
A .
]
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4.3— Stratified Resampling

e An alternative by Kitagawa consists of selecting

1 ~1 i _ o1 i
U U[O,N },u—u —I—N
| 2 3 4 5 6 7
s[1] S]]
) )

e There is NO need to sort the weights to apply this procedure.
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4.3— Stratified Resampling

e Many alternative algorithms have been proposed for resampling and
are typically such that £ (ngz)) — N quz) but differ in terms of var (ngz))

and cov (Néi), ngj)) :

e We emphasize that there is not much room to improve performance of

the resampling step.
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4.4— Sequential Importance Sampling Resampling

o At time n
e Sample X\~ In (xn| yn,Xﬁfll) fori=1,.... N

e Compute the weights

| f (quf') Xf;L) g (yn\Xﬁb”)
Wéz) 0.6 Wf,sjﬁl ) )
n (Xﬁf) yn,Xfﬁl)

e If the variation of the weights is high, resample the particles

{ 5 ()

1:n>

Wéz)} to obtain a new population {Xl(zq),b, 1/N}.
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4.5— Experimental Results for Linear (Gaussian Model

1.6

1.4

1.2

state
T

0.8

0.6

1

0.4 !

10

time index

15

20

25

1.6

1.2

state

0.8

0.6

— Sequential Importance Sampling Resampling

10

time index

15

20

25

Page 24



4.5— Experimental Results for Linear (Gaussian Model
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4.5— Experimental Results for Linear (Gaussian Model
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4.5— Experimental Results for Linear (Gaussian Model
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4.5— Experimental Results for Linear (Gaussian Model
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4.5— Experimental Results for Linear (Gaussian Model
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4.5— Experimental Results

for Linear Gaussian Model
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4.5— Experimental Results for Linear (Gaussian Model
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4.5— Experimental Results for Linear (Gaussian Model
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4.6— Experimental Results for Stochastic Volatility Model
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and n = 100 (bottom).

— Sequential Importance Sampling Resampling Page 33



4.6— Experimental Results for Stochastic Volatility Model
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4.6— Experimental Results for Stochastic Volatility Model
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4.6— Experimental Results for Stochastic Volatility Model

0.08

0.06

o
N

Density
o o
N

\/O

-2
-1.5

-0.5

Monte Carlo estimates of the marginal distributions p (x,|y1.n)
and true values of {X,,}.

— Sequential Importance Sampling Resampling Page 36



5.1— Convergence Results

e Convergence results are beyond the scope of this course but there are many

results available.

e In particular we have

Ch
E < .
- N

(/90 (@1:0) (P (d@1m| Y1:n) — P (dz1:0] y1;n)>)2

e It looks like a nice result... but it is rather useless as C,, increases
polynomially /exponentially with time.
= To achieve a fixed precision, this would require to use an time-increasing

number of particles V.
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5.1— Convergence Results

e One cannot hope to estimate with a fixed precision a target distribution

of increasing dimension.

e So at best, we can expect results of the following form

E

<G
- N

(/ Y (fEn—L+1:n) (ﬁN (dwn—LH:n\ yl:n) — P (dfl?n—L+1:n| y1:n>))2

[F' the model has nice forgetting/mixing properties, i.e.

[P (2] y2in, 1) = P (20| Y2, 24) || < DA™

with A < 1.
e Under such assumptions, there is no accumulation of errors over time.
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5.1— Convergence Results

e Summary: You can only expect to approximate the “most recent” marginals
P (Tn_r+1:n|Y1:n) but NOT the joint distributions p (x1.,|y1.n) -

e This seems rather limited but in most real-world applications we are only
interested in the so-called filtering distribution p (x,|y1.,) and we can also
use the property to estimate smoothing distributions

p (ka| yl:n> ~p (xk‘ ylzk—i—L)

if the system has ergodic properties. Finally we have

p (i) =p 1) | [ p(velyre—1)
k=2

where

p (el yroe1) = /g<yk\azk>p<ask|yl:k_1>da:k.
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5.1— Convergence Results

e These results also demonstrate that one cannot expect to obtain good
performance if the model has static parameters; i.e. if we have

X1~ py, Xi| (X1 =axp-1) ~ fo (| xr-1),

Vil (Xk = ) ~ go (-] )
where 6 ~ 7 (0) and we want to estimate p (Z1.n, 0| Y1.n) -
e Indeed the dynamic model Z,, = (X,,,#) is not ergodic as

/ (:U/,(g" ZC,Q) = 0g (9/) Jo (:C/| aj) ‘

e This is intuitive! At time 1, we sample N particles 89 and these values
are never ever modified later on.

— Limitations and Generalizations Page 40



5.1— Convergence Results

e At first glance, this is really bad news. SMC appears unable to deal with

static parameters.

e A dirty solution consists of adding noise to a fixed parameter to transform it

as a time-varying parameter

Qn = Qn—l + En-

e This is not clean and we are going to discuss later on a rigorous approach...

which requires a “deeper” understanding of SMC.

— Limitations and Generalizations Page 41



6.1— Towards General SMC Methods

e The SMC approach can be extended to any sequence of target distributions

n \L1:n
7"-71(1131:?7,):/y (Zl )

e In particular, we do not require the target distribution to satisfy

n

Tn, (xlzn) X M(ajl) H f(ajk| ajk—l) H g(yk| ajk) .

e The only requirement here is that

Tn (X1:m—1) > 0= Tp_1 (T1:n—1) > 0.
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6.2— Conditinionally Linear Gaussian State-Space Models

e As an example consider a switching state-space model

i d

Zpy = A(Xp)Zp1+B(Xp) Vi, Z1 ~N(0,%), V,, = N(0,1)
Y, = C(X,)Zn+D(Xn)W,, Wo =" N (0,1

where X,, is an unobserved Markov process

Xi~p, Xp|Xpa=2~f(]2).
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6.2— Conditinionally Linear Gaussian State-Space Models

e We could estimate using SMC

p (xlzna Zl:n' y1:n> xX P (xlzn)p (len‘ xl:n>p (y1:n| L1:ny Zl:n)

n n

= p(21) H f (k| zk—1)p (1) HN (Zn?A(xn) 2n—1, B (25,) B (

n

X HN(yn,C(xn) 2n, D (T) D' (x”))

k=1

e This fits in the framework discussed previously: {X,, Z, } is a Markov process
and the observations {Y;,} are conditionally independent given {X,, Z,}.
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6.3— Variance reduction via Rao-Blackwellisation

e However, conditional upon {X,} the model is linear Gaussian. It follows

that we have
P (xlzna Zl:n| ylzn) =P (x1:n| y1:n> p (len‘ Y1:n, xl:n)

\ . 7
Ve

Gaussian distribution

and it is only necessary to estimate through SMC the marginal distribution

P(Z1n| Y1:n) X D (Y1:0| T1:0) D (T1:0)

where the likelihood term is given by the Kalman filter.
e We have p (y1.n|Z1:n) # [[1—1 P (yk| zr) but this does not matter!
Additionally we could have also a process {X,,} which is non-Markovian.

As long as we can compute the target up
to a normalizing constant then we will be able to apply SMC.
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6.4— Sequential Importance Sampling

e We can use sequential importance sampling
Xl(zq)z ~ qn (T1:1)

where

dn (xl:n) = (gn-—1 (xlzn—l) dn (ajn‘ Y1:n xl:n—l)

= q1(z1) H qr (k| T1:5-1)

k=2

e Whether the process is Markov or not does not matter whatsoever.
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6.4— Sequential Importance Sampling

e We need to compute the weights associated to each particles X 1(7’7)1

e We have

Wn (xlzn) — : X

Tn—1 (xlzn—l) Tn (xlzn)
dn—1 ($1:n—1) Tn—1 ($1:n—1) dn ($n| $1:n—1)

Tn (xl:n)

Tn—1 (xlzn—1> dn (xn‘ xl:n—l) .

X Wnp-1 (flflzn—1)

e In many cases, we can compute the incremental weight in a computational
time independent of n.
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6.5— Selection of the Importance Distribution

e We propose to select the importance distribution minimizing the variance of

the importance
weight conditional upon x1.,,_1.

e We have

T (x1:n>
Tn—1 (ajlzn—l) dn (xn‘ xl:n—l)

Wn, (x1:n> X Wnp-1 (xlzn—l)

T (xl:n—l) T (ajn‘ xl:n—l)
Tn—1 (xlzn—l) dn (xn‘ xl:n—l)

X Wnp-1 (331:n—1)

so the (locally) optimal choice is

dn (xn‘ xl:n—l) = Tn (xn| xl:n—l)
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6.6— Sequential Importance Sampling Resampling

o At time n
e Sample X\ ~ O, (xn| X{%_J fori=1,....N
e Compute the weights

o (X60)

Tn—1 (Xizq)z_l) dn (ngZ)

(4) (2)
Wn X Wn—l ()
Xl:n—l)

e If the variation of the weights is high, resample the particles

{ 5 ()

1:n>

Wéz)} to obtain a new population {Xl(zq),b, 1/N}.
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7.1— Summary

e Sequential Importance Sampling is inefficient.

e Resampling is a simple and effective mechanism

which mitigates this problem.

e On thursday, we will discuss some applications of SMC.
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