
Stat 535 C - Statistical Computing & Monte Carlo Methods

Lecture 20 - 23rd March 2006

Arnaud Doucet

Email: arnaud@cs.ubc.ca

1



1.1– Outline

• Nonlinear Non Gaussian Dynamic Models.

• Sequential Bayesian Inference.

• Sequential Importance Sampling.

• Sequential Importance Sampling Resampling.
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2.1– What have we done so far?

• MCMC are iterative algorithms to sample from a fixed
target distribution π (x) ∝ f (x) defined on X .

• MCMC methods can also be used to estimate the normalizing
constant

∫
f (x) dx although there is no simple efficient method.

• MCMC methods are not adapted to sequential Bayesian
inference where the posterior has to be recomputed each time
a new observation is received.

• Generally speaking MCMC are not useful when the target
distribution is “time-varying”; annealing is an exception but
it requires target variations to decrease over time.
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2.1– What have we done so far?

• Today we will present an alternative set of methods which
allows us to estimate “time-varying” targets.

• These methods are non-iterative methods and rely on
Importance sampling and resampling mechanisms.

• For sake of illustration, we will detail here an application
to nonlinear non-Gaussian state-space models.

• We will show in the next lectures that the methodology
is much more general.
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3.1– Nonlinear non-Gaussian State-space models

• A nonlinear non-Gaussian state-space model is defined by a pair of
stochastic processes {Xk}k≥1 and {Yk}k≥1 . {Xk}k≥1 is an unobserved (hidden)
Markov process defined by

X1 ∼ μ, Xk| (Xk−1 = xk−1) ∼ f ( ·|xk−1) .

The observations {Yk}k≥1 are conditionally independent given {Xk}k≥1

and

Yn| (Xk = xk) ∼ g ( ·|xk) .

• The aim is to recover optimally (in a sense to precise) {Xk}k≥1 given {Yk}k≥1 .
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3.1– Nonlinear non-Gaussian State-space models
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3.1– Nonlinear non-Gaussian State-space models

• Remember that this class of models is extremely general and includes
for example

Xk = ϕ (Xk−1, Vk) where Vk
i.i.d.∼ fV ,

Yk = ψ (Xk,Wk) where Wk
i.i.d.∼ gV .

• See Lecture 12 for numerous examples.
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3.2– Some Examples

• Stochastic Volatility model

Xk = φXk−1 + σVk, Vk
i.i.d.∼ N (0, 1) , X1 ∼ N

(
0,

σ

1 − φ2

)

Yk = β exp (Xk/2)Wk, Wk
i.i.d.∼ N (0, 1)

• Bearings only tracking

Xk = AXk−1 +BVk, Vk
i.i.d.∼ N (0,Σ) ,

Yk = tan−1

(
Xk,3

Xk,1

)
+ σWk, Wk

i.i.d.∼ N (0, 1)

• In both cases, we have typically high-frequency data.
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4.1– Bayesian model

• The evolution equation defines a prior for X1:n = (X1, ..., Xn)

p (x1:n) = μ (x1)
n∏

k=2

f (xk|xk−1) .

• The observation equation defines a likelihood

p (y1:n|x1:n) =
n∏

k=1

g (yk|xk) .

• We are “naturally” in a Bayesian framework.
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4.2– Bayesian Inference

• Inference about X1:n given a realization of the observations y1:n
is based on

p (x1:n| y1:n) =
p (x1:n) p (y1:n|x1:n)∫

p (x1:n) p (y1:n|x1:n) dx1:n
∝ p (x1:n) p (y1:n|x1:n) .

• We might also be interested in computing the marginal likelihood
for model choice or ML parameter estimation

p (y1:n) =
∫
p (x1:n) p (y1:n|x1:n) dx1:n

• Typically this posterior and the marginal likelihood does not admit
a closed-form expression except in the (very) important cases where
{Xk} takes values in a finite state-space or {Xk} & {Yk} follow
linear Gaussian equations.
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4.3– Bayesian Computation

• We have seen before how to estimate p (x1:n| y1:n) using MCMC.

• However, in many real-world applications, each time we receive
a new observation say yn+1 at time n+ 1, we want to update our
knowledge, that is compute p (x1:n+1| y1:n+1) and in particular
we are often interested in p (xn+1| y1:n+1) .

• We could run a new MCMC of invariant p (x1:n+1| y1:n+1) but this
is computationally expensive and the computational complexity would
increase over time!

• We would like to have an algorithm whose computational
complexity is independent of the time index n.
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4.4– Recursion for the successive target distributions

• The basic idea consists of reusing the approximation of p (x1:n| y1:n)
available at time n to generate an approximation of p (x1:n+1| y1:n+1).

• One has

p (x1:n+1| y1:n+1) =
p (yn+1|x1:n+1, y1:n) p (x1:n+1| y1:n)

p (yn+1| y1:n)

=
p (yn+1|x1:n+1, y1:n) p (xn+1|x1:n, y1:n) p (x1:n| y1:n)

p (yn+1| y1:n)

=
g (yn+1|xn+1) f (xn+1|xn) p (x1:n| y1:n)

p (yn+1| y1:n)
.
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4.4– Recursion for the successive target distributions

• An alternative way to derive the formula is as follows

p (x1:n+1| y1:n+1) ∝ p (x1:n+1) p (y1:n+1|x1:n+1)

∝ μ (x1)
n+1∏
k=2

f (xk|xk−1)
n+1∏
k=1

g (yk|xk)

∝ f (xn+1|xn) g (yn+1|xn+1) p (x1:n) p (y1:n|x1:n)

∝ f (xn+1|xn) g (yn+1|xn+1) p (x1:n| y1:n)
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4.4– Recursion for the successive target distributions

• In most of the literature, you’ll find the following recursion
on the marginal distributions {p (xn| y1:n)}

p (xn+1| y1:n) =
∫
f (xn+1|xn) p (xn| y1:n) dxn,

p (xn+1| y1:n+1) =
g (yn+1|xn+1) p (xn+1| y1:n)

p (yn+1| y1:n)

• This recursion yields the standard HMM filter and the Kalman filter
for linear Gaussian models.

• In our case, this recursion will NOT be used and we will always
deal with the joint distributions even if we are only interested in
approximating {p (xn| y1:n)}.
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4.5– Building Sequentially Monte Carlo Approximations

• Assume that you are at time 1 and want to approximate p (x1| y1)
then, because the state is usually of reasonable dimension, you can
use importance sampling.

• We select an importance distribution q1 (x1| y1) and use
the identity

p (x1| y1) =
w1 (x1, y1) q1 (x1| y1)∫
w1 (x1, y1) q1 (x1| y1) dx1

where

w1 (x1, y1) =
p (x1, y1)
q1 (x1| y1) .
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4.5– Building Sequentially Monte Carlo Approximations

• We sample N particles (random samples)

X
(i)
1 ∼ q1 (x1| y1)

and obtain the approximation

pN (x1| y1) =
N∑

i=1

W
(i)
1 δ

X
(i)
1

(x1)

where

W
(i)
1 =

w1

(
X

(i)
1 , y1

)
∑N

j=1w1

(
X

(j)
1 , y1

) .
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4.5– Building Sequentially Monte Carlo Approximations

• Now at time 2, we want to approximate p (x1:2| y1:2). We can also
use IS to achieve that by selecting an importance distribution
q2 (x1:2| y1:2), using the identity

p (x1:2| y1:2) =
w2 (x1:2, y1:2) q2 (x1:2| y1:2)∫

w2 (x1:2, y1:2) q2 (x1:2| y1:2) dx1:2
,

w2 (x1:2, y1:2) =
p (x1:2, y1:2)
q2 (x1:2| y1:2)

and sampling a large number N of particles

X
(i)
1:2 ∼ q2 (x1:2| y1:2)

to obtain

pN (x1:2| y1:2) =
N∑

i=1

W
(i)
2 δ

X
(i)
1:2

(x1:2) with W (i)
2 ∝ w2

(
X

(i)
1:2, y1:2

)
.
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4.5– Building Sequentially Monte Carlo Approximations

• We could repeat this method at each time step n. This would require
designing an IS distribution qn (x1:n| y1:n), samplingN pathsX(i)

1:n ∼ qn (x1:n| y1:n)
and computing the associated weights

W (i)
n ∝ wn

(
X

(i)
1:n, y1:n

)
where wn

(
X

(i)
1:n, y1:n

)
=

p
(
X

(i)
1:n, y1:n

)
qn

(
X

(i)
1:n

∣∣∣ y1:n) .

• In the general case this is NOT a sequential method because the
computational complexity increases with the time index n.

• A very simple remark allows us to derive a sequential algorithm.
We are going to limit the form of the IS distribution.
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4.6– Sequential Importance Sampling

• At time n, we propose not to sample new paths X(i)
1:n but to keep the paths

X
(i)
1:n−1 which are available at time n− 1 and just add a component X(i)

n .

Mathematically, it means that we set

qn (x1:n| y1:n) = qn−1 (x1:n−1| y1:n−1)︸ ︷︷ ︸
distribution of the paths X

(i)
1:n−1 at time n−1

× qn (xn| y1:n, x1:n−1)︸ ︷︷ ︸
conditional distribution of the new component X

(i)
n

= q1 (x1| y1)
n∏

k=2

qk (xk| y1:k, x1:k−1)
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4.6– Sequential Importance Sampling

• In practice, we will actually only used distributions of the form

qn (xn| y1:n, x1:n−1) = qn (xn| yn, xn−1) .

This will be justified later but this should be intuitive. Given xn−1, y1:n−1 and
x1:n−2 do not bring any information about Xn.

• We don’t have yet a recursive method as IS requires not only to
sample the paths X(i)

1:n but also requires the computation of the weights

W (i)
n ∝ wn

(
X

(i)
1:n, y1:n

)
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4.6– Sequential Importance Sampling

• The weights satisfy the following recursion

wn (x1:n, y1:n) =
p (x1:n, y1:n)
qn (x1:n| y1:n)

=
p (x1:n−1, y1:n−1)

qn−1 (x1:n−1| y1:n−1)
× f (xn|xn−1) g (yn|xn)

qn (xn| yn, xn−1)

= wn−1 (x1:n−1, y1:n−1) × f (xn|xn−1) g (yn|xn)
qn (xn| yn, xn−1)

• This implies that

W (i)
n ∝W

(i)
n−1

f
(
X

(i)
n

∣∣∣X(i)
n−1

)
g
(
yn|X(i)

n

)
qn

(
X

(i)
n

∣∣∣ yn, X
(i)
n−1

)

• We have designed a SIS scheme of computational complexity
O (N) independent of the time index.
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4.6– Sequential Importance Sampling

Given
{
X

(i)
n−1,W

(i)
n−1

}
approximating p (x1:n−1| y1:n−1) at time n− 1, the algo-

rithm proceeds as follows at time n.

• At time n

• Sample X
(i)
n ∼ qn

(
xn| yn, X

(i)
n−1

)
for i = 1, ..., N

• Compute the weights

W (i)
n ∝W

(i)
n−1

f
(
X

(i)
n

∣∣∣X(i)
n−1

)
g
(
yn|X(i)

n

)
qn

(
X

(i)
n

∣∣∣ yn, X
(i)
n−1

)
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4.7– Selection of the Importance Distribution

• We know that it is crucial to select a good importance distribution
for IS estimate to have reasonable performance.

• The optimal choice is obviously given by

qn (x1:n| y1:n) = p (x1:n| y1:n)

but this choice is impossible and we cannot even get a reasonable
approximation of it (as in MCMC) because of the sequential design
of the importance distribution. For example, remember that
X

(i)
1 ∼ q1 (x1| y1) whereas at time n, we would love to

have X(i)
1 ∼ p (x1| y1:n)!
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4.8– Suboptimal distributions

• A “locally” optimal choice consists of selecting the distribution
qn (xn| yn, xn−1) minimizing the variance of

wn (x1:n, y1:n) =
p (y1:n) p (x1:n| y1:n)

qn−1 (x1:n−1| y1:n−1) qn (xn| yn, xn−1)

=
p (y1:n) p (x1:n−1| y1:n)
qn−1 (x1:n−1| y1:n−1)

× p (xn| yn, xn−1)
qn (xn| yn, xn−1)

conditional upon x1:n−1. This is given by

qn (xn| yn, xn−1) = p (xn| yn, xn−1) =
f (xn|xn−1) g (yn|xn)∫
f (xn|xn−1) g (yn|xn) dxn

and

wn (x1:n, y1:n) ∝ wn (x1:n−1, y1:n) ×
∫
f (xn|xn−1) g (yn|xn) dxn.
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4.8– Suboptimal distributions

• It is not always possible to use this choice but one can make some
approximations.

• For example, one can use an Extended/Unscented Kalman filter to come
up with a clever proposal.

• The key is once more that asymptotically (as N → ∞), the Monte Carlo
approximation will converge towards the true values.
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4.8– Suboptimal distributions

• A simpler choice consists of selecting

qn (x1:n| y1:n) = p (x1:n)

that is

qn (x1| y1) = μ (x1) and qn (xn| yn, xn−1) = f (xn|xn−1)

and

wn (x1:n, y1:n) = wn−1 (x1:n−1, y1:n−1) × g (yn|xn) .

• This choice will be extremely poor if the data are very informative and
the prior is diffuse.
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4.9– Application to Stochastic Volatility

• We present a simple application to SV where

f (xk|xk−1) = N (
xk;φx, σ

2
)
,

g (yk|xk) = N (
yk;0, β2 exp (xk)

)
.

• We cannot sample from p (xn| yn, xn−1) but it is unimodal and
we can compute numerically its mode mn (xn−1) and use a t−distribution
with 5 degrees of freedom and scale set as the inverse of the negated
second-order of log p (xn| yn, xn−1) evaluated at mn (xn−1) and given by

σ2
n (xn−1) =

(
1
σ2

+
y2

n

2β2
exp (−mn (xn−1))

)−1

.
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4.10– Simulation Results

• The algorithm performs EXTREMLY poorly! After a few time steps, only
a very small number of particles have non negligible weights.
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4.10– Simulation Results

• You should not be surprised! This algorithm is nothing but an implementation
of IS where we severely restrict the structure of the importance distribution.

• As the dimension of the target p (x1:n| y1:n) increases over time, the problem
is becoming increasingly difficult. In practice, the discrepancy between the
target and the IS distribution qn (x1:n| y1:n) can only also increase (on average).

• As n increases the variance of the weights increases (typically geometrically)
and the IS approximation collapses.

• You can use any IS distribution you want (even the locally optimal one), the
algorithm will collapse.
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5.1– Resampling

• Intuitive KEY idea: When the variance of the weights
{
W

(i)
n

}
is high, we

would like to get rid of the particles with low weights (relative to 1/N) and
multiply the particles with high weights.

• The main reason is that if a particle at time n has a low weight then typically
it will still have a low weight at time n+ 1 (though I can easily give you a
counterexample).

• You want to focus your computational efforts on the “promising” parts of
the space.
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5.1– Resampling

• To measure the variation of the weights, we can use the Effective
Sample Size (ESS) or the coefficient of variation CV

ESS =

(
N∑

i=1

(
W (i)

n

)2
)−1

, CV =

(
1
N

N∑
i=1

(
NW (i)

n − 1
)2
)1/2

• We have ESS = N and CV = 0 if W (i)
n = 1/N for any i.

• We have ESS = 1 and CV =
√
N − 1 if W (i)

n = 1 and W (j)
n = 1 for j �= i.
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5.1– Resampling

• We can also use the entropy

Ent = −
N∑

i=1

W (i)
n log2

(
W (i)

n

)

• We have Ent = log2 (N) if W (i)
n = 1/N for any i.

• We have Ent = 0 if W (i)
n = 1 and W (j)

n = 1 for j �= i.
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5.1– Resampling

• If the variation of the weights as measured by ESS, CV or Ent is too high,
then we resample the particles.

• The simplest way to resample the particles consists of resampling N times
from the current approximation

X
(i)

1:n ∼ pN (x1:n| y1:n)

where

pN (x1:n| y1:n) =
N∑

i=1

W (i)
n δ

X
(i)
1:n

(x1:n) .
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5.1– Resampling

• This corresponds to perform an approximation of pN (x1:n| y1:n)

N∑
i=1

N
(i)
n

N
δ
X

(i)
1:n

(x1:n) �
N∑

i=1

W (i)
n δ

X
(i)
1:n

(x1:n)

where N (i)
n is the number of offspring of the particle X(i)

1:n and∑N
i=1N

(i)
n = N.

• The previous scheme is equivalent to sample

(
N (1)

n , ..., N (N)
n

)
∼ M

(
N ;W (1)

n , ...,W (N)
n

)
which is such that E

(
N

(i)
n

)
= NW

(i)
n but better schemes can be developed.
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5.1– Resampling

• At time n

• Sample X
(i)
n ∼ qn

(
xn| yn, X

(i)
n−1

)
for i = 1, ..., N

• Compute the weights

W (i)
n ∝W

(i)
n−1

f
(
X

(i)
n

∣∣∣X(i)
n−1

)
g
(
yn|X(i)

n

)
qn

(
X

(i)
n

∣∣∣ yn, X
(i)
n−1

)

• If the variation of the weights is high, resample the particles

{
X

(i)
1:n,W

(i)
n

}
to obtain a new population

{
X

(i)
1:n, 1/N

}
.
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5.1– Resampling
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5.1– Resampling
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5.1– Resampling
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5.1– Resampling
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6.1– Summary

• Sequential Importance Sampling is inefficient.

• Resampling is a simple and effective mechanism
which mitigates this problem.

• Next week, we will discuss the design of efficient SMC.
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