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1.1— Outline

e Nonlinear Non Gaussian Dynamic Models.

e Sequential Bayesian Inference.

e Sequential Importance Sampling.

e Sequential Importance Sampling Resampling.
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2.1— What have we done so far?

e MCMC are iterative algorithms to sample from a fixed
target distribution 7 () < f (x) defined on X.

e MCMC methods can also be used to estimate the normalizing
constant [ f (z)dz although there is no simple efficient method.

e MCMC methods are not adapted to sequential Bayesian
inference where the posterior has to be recomputed each time

a new observation is received.
e Generally speaking MCMC are not useful when the target

distribution is “time-varying”; annealing is an exception but

it requires target variations to decrease over time.
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2.1— What have we done so far?

e Today we will present an alternative set of methods which

allows us to estimate “time-varying” targets.

e These methods are non-iterative methods and rely on

Importance sampling and resampling mechanisms.

e For sake of illustration, we will detail here an application

to nonlinear non-Gaussian state-space models.

e We will show in the next lectures that the methodology

is much more general.
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3.1— Nonlinear non-Gaussian State-space models

e A nonlinear non-Gaussian state-space model is defined by a pair of
stochastic processes { Xy },~; and {Y%},~;. {Xk},> is an unobserved (hidden)
Markov process defined by

X1~ p, Xig|(Xge1 =2p-1) ~ f(]ar—1).

The observations {Yj},~, are conditionally independent given { Xy},

and

Yol (Xk =21) ~ g (| 2p) .

e The aim is to recover optimally (in a sense to precise) { Xy },~ given {Yi}, -1 -
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3.1— Nonlinear non-Gaussian State-space models
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3.1— Nonlinear non-Gaussian State-space models

e Remember that this class of models is extremely general and includes

for example

i.i.d.

Xk = gO(Xk_l,Vk> where Vk ~ fv,
Y = ¢ (Xg, Wi) where W, "5 gy,

e See Lecture 12 for numerous examples.
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3.2— Some Examples

e Stochastic Volatility model

Xy = oXp_1+0oVg, Vi i'i;fi-j\/‘((),l) Xi~ N (O’ 1 —J¢2>
ii.d.
Y = Bexp(Xi/2) Wi, Wi ~"N(0,1)
e Bearings only tracking
Xy = AXp 14 BW, Vi KN (0,%),
1 [ Xk,3 Lid.
Y., = tan ( )—I—O‘Wk, Wy "~ N(O,l)
Xk

e In both cases, we have typically high-frequency data.
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4.1— Bayesian model

e The evolution equation defines a prior for Xi.,, = (X1, ..., X,)

p (1) = p (1) H f(zrlzp—1).

k=2

e The observation equation defines a likelihood

mn
p(y1:n|$1;n) — H g(yk\ xk)
k=1

e We are “naturally” in a Bayesian framework.
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4.2— Bayesian Inference

e Inference about X;.,, given a realization of the observations y;.p,
is based on

. P (T1:n) P (Y1:n| T1:n)

[ p@1n) p (Y| T1:0) dT10,

p(x1:n|y1:n) Ocp(ajl:n)p(yl:n‘xl:n)-

e We might also be interested in computing the marginal likelihood
for model choice or ML parameter estimation

p(ylzn) — /p(x1:n>p(y1:n‘x1:n) dwl:n

e Typically this posterior and the marginal likelihood does not admit
a closed-form expression except in the (very) important cases where
{ X1} takes values in a finite state-space or { X} & {Y;} follow

linear GGaussian equations.
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4.3— Bayesian Computation

e We have seen before how to estimate p (x1.n|y1.n) using MCMC.

e However, in many real-world applications, each time we receive
a new observation say y,+1 at time n 4+ 1, we want to update our
knowledge, that is compute p (x1.n21|¥1.n41) and in particular

we are often interested in p (Zn11|Y1:ne1) -
e We could run a new MCMC of invariant p (x1.p41|y1.n21) but this
is computationally expensive and the computational complexity would

increase over time!

e We would like to have an algorithm whose computational

complexity is independent of the time index n.
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4.4— Recursion for the successive target distributions

e The basic idea consists of reusing the approximation of p (z1.,| y1.n)
available at time n to generate an approximation of p (Z1.p41|Y1:nt1)-

e One has

p (yn+1\ LT1:n+15 y1:n> p (5131:n+1\ y1;n)
p (yn—|—1| y1:n>

P(331:n+1\ y1;n+1) —

P (Yn+1| Trnt1, Y1:0) P (Tna1| T1ms Y1:0) D (T1:0] Y1:0)

p (yn—|—1| ylzn)

g (yn—i—l‘ xn—l—l) f (xn—i—l‘ CEn)Z? (x1:n| y1:n>
p (yn—l—l‘ yl:n)
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4.4— Recursion for the successive target distributions

e An alternative way to derive the formula is as follows

P(331:n+1\y1:n+1) X P(5E1:n+1)p(y1:n+1|331:n+1)

n—+1 n—+1
o< (@) [ f (zelan—1) [ 9 (vl z)
k=2 k=1

X f(xn—i-l‘xn)g(yn—i—ﬂxnﬂ—l)p(xl:n)p(yl:n‘xl:n)

X f(xn—i—l‘ajn)g(yn—i—ﬂxn—l—l)p(ajlzn|ylzn)
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4.4— Recursion for the successive target distributions

e In most of the literature, you’ll find the following recursion

on the marginal distributions {p (z,|y1.n)}

p(Znir|yr) = / F(nir|20) p (2| yion) iy,

g (yn+1| $n+1)p (flfn+1| y1;n)
p (yn—l—l‘ yl:n)

p(ajn—|—1| yl:n—i—l) —

e This recursion yields the standard HMM filter and the Kalman filter

for linear Gaussian models.

e In our case, this recursion will NOT be used and we will always

deal with the joint distributions even if we are only interested in

approximating {p (zn|y1:n)}-
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4.5— Building Sequentially Monte Carlo Approximations

e Assume that you are at time 1 and want to approximate p (x1|y1)
then, because the state is usually of reasonable dimension, you can

use importance sampling.

e We select an importance distribution ¢; (z1|y1) and use
the identity

w1 (ajlayl)% (x1|y1)

p(@ =
(@1]y1) [ w1 (z1,y1) q1 (z1] y1) daq
where
B p(x1,y1)
w1 {@1,31) = g1 (z1]y1)
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4.5— Building Sequentially Monte Carlo Approximations

e We sample N particles (random samples)

X~ gy (21| )

and obtain the approximation

N
PN (wrly) =D WS (a1)

1=1

where

w1 (Xfi), y1)

Z;Vﬂ w1 <X1(j>a yl)

Wi =
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4.5— Building Sequentially Monte Carlo Approximations

e Now at time 2, we want to approximate p (x1.2|y1.2). We can also
use IS to achieve that by selecting an importance distribution
q2 (x1.2] y1.2), using the identity

p<x1:2‘y1:2) = w2 ($1:2,y1:2) 92 (2131:2|y1:2)

[ wa (x1:2,Y1:2) @2 (T1:2] Y1:2) dT1:0”

p(331:2,y1:2)
q2 (371:2| 91:2)

wa (T1:2,Y1:2) =
and sampling a large number N of particles

X1(Z% ~ 42 (5131:2\ y1:2)
to obtain

N

p" (12| y12) = ZWQ(i)éX@ (x1.2) with W2(i) X W2 (Xg,ym) :
i=1 '
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4.5— Building Sequentially Monte Carlo Approximations

e We could repeat this method at each time step n. This would require

designing an IS distribution ¢, (x1.,| ¥1.n), sSampling N paths sz,,)l ~ Gn (T1:0| Y1:n)

and computing the associated weights

dn (Xl(zq)@ yl:n)

e In the general case this is NOT a sequential method because the

Wf,sji) X Wy, (Xl(fn,ylzn) where w,, (Xl(fn,ylzn) =

computational complexity increases with the time index n.

e A very simple remark allows us to derive a sequential algorithm.

We are going to limit the form of the IS distribution.
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4.6— Sequential Importance Sampling

e At time n, we propose not to sample new paths X 1(17)1 but to keep the paths
X fff,)l_l which are available at time n — 1 and just add a component X,
Mathematically, it means that we set

dn (x1:n|y1:n) — gn—l (xlzn—1|y1:n—1z

“/”

distribution of the paths x

1:31_1 at time n—1

X gn(ajn‘yl:naxlzn—lz

“/”

conditional distribution of the new component X,,(f)

= ¢ (21]y1) H ar (Tk| Y1:6, T1:k-1)
k=2
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4.6— Sequential Importance Sampling

e In practice, we will actually only used distributions of the form

dn (xn‘ Y1:n, xl:n—l) = (n (xn‘ ynaxn—l) .

This will be justified later but this should be intuitive. Given x,,_1, ¥1.,—1 and

1.n—2 do not bring any information about X,.

e We don’t have yet a recursive method as IS requires not only to
(4)

1., but also requires the computation of the weights

sample the paths X
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4.6— Sequential Importance Sampling

e The weights satisty the following recursion
p (xlzna ylzn)

dn (xl:n‘ ylzn)

W, (xlznayl:n) —

p(ajl:n—laylzn—l) v f($n|517n—1)9(yn|$n)
dn—1 (5131:n—1| ylzn—1> dn (flfn| yn,flfn—1)

f(xnlTn-1)g (Yn|Tn)
dn (xn‘ Yn, xn—l)

= Wp-1 (xlzn—laylin—l) X

e This implies that

W@ o f(Xg) X?(%Z)1>g(y”‘X7g))
n X n—1 i i
n (Xé) yn,Xflll)

e We have designed a SIS scheme of computational complexity
O (N) independent of the time index.
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4.6— Sequential Importance Sampling

Given {X (%)

n—1»

W7§7’_)1} approximating p (z1.,—1|y1.n—1) at time n — 1, the algo-

rithm proceeds as follows at time n.
o At time n
e Sample X\ ~ In (xn| yn,Xﬁfll) fori=1,....N

e Compute the weights

W@ o f(Xg) X?(%Z)1>g(y”‘X7g)>
In (Xé,) yn,Xflll)
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4.7— Selection of the Importance Distribution

e We know that it is crucial to select a good importance distribution

for IS estimate to have reasonable performance.

e The optimal choice is obviously given by

dn (x1:n| y1:n> =P (xlzn‘ y1:n>

but this choice is impossible and we cannot even get a reasonable
approximation of it (as in MCMC) because of the sequential design
of the importance distribution. For example, remember that

Xfi) ~ q1 (x1]y1) whereas at time n, we would love to

have Xl(i) ~p(x1|Y1.n)!
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4.8— Suboptimal distributions

e A “locally” optimal choice consists of selecting the distribution
Gn (Zpn|Yn, Tn_1) minimizing the variance of

p (yln)p (xl:n‘ ylzn)
dn—1 (5131:n—1| y1:n—1) dn (ﬂfn| yn,ilfn—1)

Wn, (xlznaylzn) —

P(W1n) P (T1m—1|Y1:0) y P(Tn| Yn, Trn_1)

dn—1 (5131:n—1| ylzn—1> dn (flfn| yn,flfn—1)

conditional upon x1.,_1. This is given by

Gn (Tn|Yns Tn—1) = P (Tn|Yn, Tn—1) = fffé;xqr‘xxi:;;g(;y?r‘xx;)dx

and

Wn, (xlzna y1:n> X Wnp, (xlzn—la ylzn) X /f (xn‘ xn—l) g (yn| xn) dwn
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4.8— Suboptimal distributions

e It is not always possible to use this choice but one can make some

approximations.

e For example, one can use an Extended/Unscented Kalman filter to come

up with a clever proposal.

e The key is once more that asymptotically (as N — oo), the Monte Carlo

approximation will converge towards the true values.
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4.8— Suboptimal distributions

e A simpler choice consists of selecting
Gn (T1:0| Y1:n) = P (T1:0)
that is
gn (z1]y1) = p(z1) and ¢n (Tn| Yn, Tn-1) = f(@n| Tp-1)

and

Wn, (xlzna ylzn) = Wn—-1 (xlzn—lp ylzn—l) X g (yn‘ xn) .

e This choice will be extremely poor if the data are very informative and

the prior is diffuse.
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4.9— Application to Stochastic Volatility

e We present a simple application to SV where

f(ap|ap-1) = N (zpoz,07),

g(yelzr) = N(yk;O,ﬁQeXp(xk)>.

e We cannot sample from p (x| yn, n—1) but it is unimodal and
we can compute numerically its mode m,, (x,_1) and use a t—distribution
with 5 degrees of freedom and scale set as the inverse of the negated

second-order of log p (z,| Yn, xn_1) evaluated at m,, (x,_1) and given by

1 Y2 !
op (Zn-1) = (; + ﬁ exp (—my, (flfn—1>)) :
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4.10— Simulation Results

e The algorithm performs EXTREMLY poorly! After a few time steps, only

a very small number of particles have non negligible weights.
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Histograms of the base 10 logarithm of WY for n = 1 (top), n = 50 (middle)
and n = 100 (bottom).
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4.10— Simulation Results

¢ You should not be surprised! This algorithm is nothing but an implementation

of IS where we severely restrict the structure of the importance distribution.
e As the dimension of the target p (z1.,|y1.,) increases over time, the problem
is becoming increasingly difficult. In practice, the discrepancy between the

target and the IS distribution ¢, (x1.,| y1.n) can only also increase (on average).

e As n increases the variance of the weights increases (typically geometrically)

and the IS approximation collapses.

e You can use any IS distribution you want (even the locally optimal one), the

algorithm will collapse.
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5.1— Resampling

o Intuitive KEY idea: When the variance of the weights {quz)} is high, we
would like to get rid of the particles with low weights (relative to 1/IN) and
multiply the particles with high weights.

e The main reason is that if a particle at time n has a low weight then typically
it will still have a low weight at time n + 1 (though I can easily give you a

counterexample).

e You want to focus your computational efforts on the “promising” parts of

the space.
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5.1— Resampling

e To measure the variation of the weights, we can use the Effective
Sample Size (ESS) or the coefficient of variation CV

- (G) er- (35 eme-y)

1=1 1=1

e We have ESS = N and CV =0 if qui) = 1/N for any 1.

e We have ESS =1 and CV = /N — 1 if W) =1 and W) =1 for j # 1.
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5.1— Resampling

e We can also use the entropy

N
Ent = — Z Wf,@ log, (Wf,,(f))

1=1

e We have Ent = log, (N) if Wi = 1/N for any 1.

e We have Ent =0 if Wéi) = 1 and quj) =1 for 5 # 1.
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5.1— Resampling

e If the variation of the weights as measured by ESS, CV or Ent is too high,

then we resample the particles.

e The simplest way to resample the particles consists of resampling N times

from the current approximation

(%)
Xl:n ~ pN (xlzn‘ yl:n)

where
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5.1— Resampling

e This corresponds to perform an approximation of p™¥ (z1.,| y1.n)

NG N |
S g (i) = 3 W8 (1)

n

where N\” is the number of offspring of the particle X m and
Zéil N. 7§Z) = N.

e The previous scheme is equivalent to sample

(ng”, ...,ngN>) ~ M (N; W, ...,WW)

which is such that E (N,Si)) =N W,&“ but better schemes can be developed.
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5.1— Resampling

o At time n
e Sample X\~ In (xn| yn,Xﬁfll) fori=1,.... N

e Compute the weights

| f (quf') XffL) g (yn\ Xé”)
Wéz) 0.6 Wf,sjﬁl ) )
n (Xﬁf) yn,Xfﬁl)

e If the variation of the weights is high, resample the particles

{ 5 ()

1:n>

Wéz)} to obtain a new population {Xl(zq),b, 1/N}.
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5.1— Resampling
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5.1— Resampling
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5.1— Resampling
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5.1— Resampling
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6.1— Summary

e Sequential Importance Sampling is inefficient.

e Resampling is a simple and effective mechanism

which mitigates this problem.

e Next week, we will discuss the design of efficient SMC.
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