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1.1— Outline

e Tempering.

e Annealing.

e Slice sampling.
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2.1— What have we done so far?

e Let the target distribution 7 () be defined on X then practical
MCMC algorithms consist of designing a collection of MH moves

invariant with respect to .

e These moves can be trans-dimensonal and typically only

update a subset of variables.

e Every heuristic idea can be “Metropolized” to become theoretically

valid.
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2.2— Limitations of current approaches

e For complex target distributions, it can be very difficult to design

efficient algorithms.

e It will always be difficult to explore a multimodal target if nothing
is known beforehand about the structure of this distribution.

e We would like to have generic mechanisms to help us improving

the performance of MCMC algorithms.
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3.1— Introducing auxiliary distributions

e The key is to notice that although it might be difficult to sample

from 7 (x), it could be easier to sample from related distributions.

e In particular, it should be easier to sample from

P L10)

J I ()] dz

o [ ()]
where v < 1.
e For v < 1 the target 77 (x) is flatter than 7 (x), hence easier to sample from.

e This is called tempering.
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3.2— Graphical illustration

Representation of 7 (z) (blue), 7 (z) (red) and

— Tempering

0.35

0.3

0.25

0.2

0.15

0.1

0.05

ﬁ0°01

1
1000

!
1500

|
2000

!
2500

1
3000

!
3500

1
4000

4500

() (black)

Page 6



3.3— Example: Gaussian distribution

e Consider 7 (z) =N (z;m,0?) then T (z) = N (z;m,0?/7) .

e In one considers a simple random walk MH step then

o (2.2') — min (1’ Zi((z;)) — min (1, (7;((3;’)))7)

and the acceptance ratio
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3.4— Example: Discrete distribution

e Consider a discrete distribution 7 () on X = {1,..., M} then

N
7 (1) = — ()
> iz T (7)
and clearly
1
— 1
7 (z) - o

as v — 0.

e It is trivial to sample from a uniform distribution
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3.5— Graphical illustration

Representation of 7 (z) (blue), 7#°-° (z) (red) and 7°-°! (z) (black)
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3.6— Sequence of Tempered Distributions

e Instead of using only one auxiliary distribution 7 (x), we will use

a sequence of P distribution defined as

m () oc [ ()]

where v1 = 1 and v < Yi_1.

e In this case m; () = m (x) and 7 (x) is a sequence of distributions

increasingly simpler to sample.
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3.7— How to reuse samples?

e Assume we run an MCMC algorithm to sample from 7 (),

how to use these samples to approximate 7 (x) .

e The first simple idea consists of using importance sampling, i.e.

(7 () /7% () 71 ()
J (m(z) /7g () T (2) da

m(z) =

that is

N
: . . 11—~
™ (x) = Z W,EZ)(SXS) (x) where Wéz) X (7‘(‘ (X]S’))> "
i=1

e This idea is simple and will work properly if v, is close to 1.
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3.8— Simulated tempering

e Alternatively, we could build a target distribution
on {1,....,p} x X defined as

w(k,x) =7 (k)7 ()

e Then we could proposed deterministic moves like jumping from
dimension k£ to 1 accepted with probability

win (1. 25)

e Unfortunately, we don’t know the normalizing constants of m (x)!

For example, if we were selecting

7 (k,x) < [f (z)]" where 7 (z) o< f (z)

then it means that

7 (k) ox / f (@) d.

and you might biased unnecessarily the time spent in high temperatures.
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3.9— Parallel tempering

e A more computationally intensive consists of building
an MCMC on X of invariant distribution

7T(£E1,...,£I§p) = T (:Ul) X ... XTp (:Cp)

e This seems to be a more difficult problem as the dimension
of the new target is higher and includes m; (1) = 7 (1)

as a marginal.

e The advantage is that we can design clever moves

and use sample from “hot” chains to feed the “cold” chain.
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3.10— Swap moves

e We can have a simple update kernel which updates each component
of the Markov chain ( {Z), e XI(DZ)) independently using

P
K (z1.p,21.p) = | | Ki (2, 7))
k=1

where K; is an MCMC kernel of invariant distribution ;.

e We can pick two chains associated to m; and 7}
and propose to swap their components, i.e. we propose

/

B — . . / —_— . / — .
T_,; ;= T—jj, Tj =T, and T; = T

This is accepted to

2| A

a(x1.p,x}.p) = min (1,
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3.11- Alternative Up-and-Down Strategy

e The idea is to propose to sample from 7 by using the following MCMC move
of invariant distribution m = mg (Neal, 1996). The proposal is given by first

tempering and then annealing

X ~ K (X)), X,~Ky(X1,"),..., Xp~Kp (X}_l,-)
X;—l ~ Kp (X]/.Dv')v X;—2 ~ Kp_1 (XI*D—lv')v'“ng ~ Ky (va)
where we assume here that K; is m;—reversible.

e The acceptance rate for the candidate X5, ; is given by

m (X7) e P (Xp_1) mp-1 (Xp_y) «...x Mo (X3)

X
o (X0) p1 (Xp_y) 7w (Xp_y) ™ (X¢)

min(1,
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3.11- Alternative Up-and-Down Strategy

e The proof of validity relies on the fact that w-reversibility
can easily be checked.Let’s write X7 = X% _; then the
proposal distribution is

P P
mo (Xo) [ | Kn (Xio0, X2) 1] Ko (X5, X520)
k=1 k=1

(X)) ﬁ T (X%) K (X’ X! ) ﬁ Tk (XZ—l)K (X* X*)
= 7 ; * —1»
0 0 e Tk (X]/g_1> k k k—1 e T (Xk> k k—1 k
P P
= o (X¢) [T Be (i1, X0) T K (X0, Xi721)
k=1 k=1
x 0 (X:) X .oox P (Xp_1) 7p (Xp_i) X e 2 (XO:)
™1 (Xo) TP (XP 1) TpP-1 (XP—l) o (X¢)
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3.11- Alternative Up-and-Down Strategy

e Multiplying by the acceptance probability we have

7o (X§) TThe1 K (Xp_ 1, X0) Tlor K (X5, X521)

7T1(X1> o x 71'p(X}_1> “« 7Tp_1(X1*3_1)
7TP—1(X§D—1) 7TP(X1>I-E’—1)

= To (Xf)k) Hk;P:1 Ky (Xl;k—leZ) szpzl Ky, (Xl/w Xl,c—l)

o(Xo) oy (X)) me(Xpl)) o m(Xg

SEACAN e (Xp 1) me (X)) 7 mo(Xg
1 T wp(Xp_y) | mp-1(Xp_y)

x min(1, ro(X) X e X o () () X -

7'(‘0(X(/)> S X Wp_l(X;g_1> WP(X;D_1>
( mp(Xp_y) mpo1(Xp_y)
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3.12— Application to A Complex Toy Example

Artificial Target Distribution on (—1,1) x (—1,1)
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3.12— Application to A Complex Toy Example

With Regular Metropolis With Simulated Annealing With Tempered Transitions
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MH (left), Parallel Tempering (center) and Tempered transitions (right)
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3.13— Application to Mixture of Distributions

— Tempering

Simulated Tempering Tempered Transilions

Mixture of 4 Gaussians (Neal, 1996)
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3.14— Discussion

e Parallel tempering and Tempered transitions are generic

and powerful methods for sampling in complex problems.
e Selection of the number P of proposals and {7} is complex.

e Various rules of thumb have been derived and preliminary

runs are also often used.
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4.1— Simulated Annealing

e An idea closely related to tempering is annealing.

e We have seen that

T () oc [m ()]

is a flattened version of 7 () when v < 0.

e On the contrary, 77 (z) is a peakened version of the target

as 7y Increases.
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4.2— Simulated Annealing

e Under regularity conditions, it can be shown that the support

of 77 (z) concentrates itself on the set of global maxima of w (x).

e In the discrete case, let us write the unique maximum

r* = argmax {m (z) : x € X'}

then

as for any = # «*

— Annealing
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4.3— Graphical illustration

Representation of 7 (z) (top), 7° (z) (middle)
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4.3— Graphical illustration

e Similarly in the continuous case, one can show that

—1/2

~ 9%logm (v) 5 (2)

(%Z-(%j

lim 77 (x) Z

Y—0O0
r*eX*

x*

e If one could sample from 7 (x) for large v (asymptotically
v — 00) then we could solve any global optimization problem!
Indeed maximizing any function f : X — R would be equivalent

to sample

T (x) o [exp (f (2))]

where we have v — 0.

e As v increases, sampling from 7 (x) is becoming harder.
If it was simple, global optimization problem could be solved easily.
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4.4— Graphical illustration

Representation of 7 (z) (red), #'° () (blue) and 7' (z) (black)
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4.4— Graphical illustration

e To sample from 7" (z) for a large «, we could use the same
idea as parallel tempering where we would consider a sequence
of distribution 7 () with a decreasing sequence {vx} such
that v; >> 1.

e However, this could be very expensive so an alternative simpler
technique is used known as simulated annealing (highly popular

method proposed in 1982)

e Basic idea: Sample an nonhomogeneous Markov chain at each

time k with transition kernel K (x,z’) of invariant distribution .
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4.4— Graphical illustration

e Any MCMC algorithm can be modified straightforwardly to
perform global optimization! Just consider now a sequence of

nonhomogeneous targets.

e To ensure that this nonhomogeneous Markov chain converges
towards mo, as k — oo you need to have conditions such as

Ky, (z,2") > 6%y, (') and ~, = Clog (k + ko) .

e The second condition is not realistic, 4 increases too slowly and

in practice we select v growing polynomially.
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5.1— Hybrid Monte Carlo

e Alternative approaches consists of increasing the target

distributions with auxiliary variables.

o Hybrid Monte Carlo: Define
7 (z,y) oc 7 (z) exp (—By'y)

e Basis: It is possible to move approximately on the manifold
defined by 7 (x,y) =cst. See tutorial paper by Stoltz & al.
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5.2— Slice Sampling

e Consider the target 7 (z) o< f (x). We consider
the extended target

(2, u) o< T{(z,u);0 <u < f(x)}

e By construction, we have

/7(xu)du— JUH(ww);0su< fe)idu - f(2)
; ffl{ O<u<f(g;)}dudq; ff(af)da?

e Note that the same representation was implicitly used in Rejection sampling.
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5.2— Slice Sampling

e To sample from 7 (x,u) hence from 7 (x), we can use

Gibbs sampling

m(zlu) = U({z:u< f(2))),
T(ulz) = U{u:u< f(2)}).

e Sampling from 7 (u|x) is trivial but 7 (x| u) can be complex!

e MH step can be used to sample from 7 (u|x).
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5.2— Slice Sampling

e Example: 7 (z) 3 exp (—/x) can be sampled using

Uz ~ U (0, L exp (—\/E))

and

u < %exp (—Vz) 0 <z <log (2u))”

then

X|u~U (o, log (2u)]2)
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5.2— Slice Sampling

e In practice, the slice sampler is not really useful per se but
can be straightforwardly extended when

k

() o f(z)=]]fi (=)

i=1
where f; (x) > 0.

e We built the extended target

k
7 (x,uq.) X H L{(x,u);0 <wu; < fi(x)}

1=1

/---/7(w,u1:k)du1:k =7 (x).
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5.2— Slice Sampling

e In this case the Gibbs sampler satisfies

k
T(ulz) = [[U{uiw < f(2)})

1=1

T(xlu) = U{Ex:u < fi(x),. .,ur < fr(x)}).
o [ixample: Sample from

™ (%) o< (1+sin” (32)) (1 + cos™ (5z) ) exp (_%>

\ - 7\ 7

~~

f1(@) fa()

\ .

f 3?@
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5.2— Slice Sampling

e We need to sample uniformly from the set

{z:sin*(3z) > 1 —wus} N {z:cos’ (5z) >1—wuz} N {x x| < \/—210gu3}
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5.3— Poisson-log-normal model

e Suppose we have X ~ N (0,1) and
Y| X ~ Poisson (exp (X))

e The posterior is

™ (x) o< exp (yz — exp (z)) exp (—0.5z7) .

e We introduce the following joint density where u € (0, c0)

7 (x,u) o exp (—u) I (u > exp (z)) exp (=0.5 (z* — 2yz))

which yields

T(ulxr) o« exp(—u)l(u>exp(x)),

T (u,z) o< exp(—0.5 (2° —2yz)) I(z < logu).
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5.4— Discussion

e MCMUC is a very active research area with many

possibilities and ideas to explore.

e On thursday, we will discuss another class of methods
known as SMC.
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