Stat 535 C - Statistical Computing & Monte Carlo Methods

Lecture 19 - 21st March 2006

Arnaud Doucet

Email: arnaud@cs.ubc.ca

1.1- Outline

- Tempering.
- Annealing.
- Slice sampling.

2.1— What have we done so far?

- Let the target distribution $\pi(x)$ be defined on \mathcal{X} then practical MCMC algorithms consist of designing a collection of MH moves invariant with respect to π .
- These moves can be trans-dimensional and typically only update a subset of variables.
- Every heuristic idea can be "Metropolized" to become theoretically valid.

2.2— Limitations of current approaches

- For complex target distributions, it can be very difficult to design efficient algorithms.
- It will always be difficult to explore a multimodal target if nothing is known beforehand about the structure of this distribution.
- We would like to have generic mechanisms to help us improving the performance of MCMC algorithms.

3.1– Introducing auxiliary distributions

- The key is to notice that although it might be difficult to sample from $\pi(x)$, it could be easier to sample from related distributions.
- In particular, it should be easier to sample from

$$\overline{\pi}^{\gamma}(x) = \frac{\left[\pi(x)\right]^{\gamma}}{\int \left[\pi(x)\right]^{\gamma} dx} \propto \left[\pi(x)\right]^{\gamma}$$

where $\gamma < 1$.

- For $\gamma < 1$ the target $\overline{\pi}^{\gamma}(x)$ is flatter than $\pi(x)$, hence easier to sample from.
- This is called tempering.

3.2 – Graphical illustration

Representation of $\pi(x)$ (blue), $\overline{\pi}^{0.5}(x)$ (red) and $\overline{\pi}^{0.01}(x)$ (black)

3.3– Example: Gaussian distribution

- Consider $\pi(x) = \mathcal{N}(x; m, \sigma^2)$ then $\overline{\pi}^{\gamma}(x) = \mathcal{N}(x; m, \sigma^2/\gamma)$.
- In one considers a simple random walk MH step then

$$\alpha\left(x, x'\right) = \min\left(1, \frac{\overline{\pi}^{\gamma}\left(x'\right)}{\overline{\pi}^{\gamma}\left(x\right)}\right) = \min\left(1, \left(\frac{\pi\left(x'\right)}{\pi\left(x\right)}\right)^{\gamma}\right)$$

and the acceptance ratio

$$\left(\frac{\pi\left(x'\right)}{\pi\left(x\right)}\right)^{\gamma} \to 1 \text{ as } \gamma \to 0.$$

3.4— Example: Discrete distribution

• Consider a discrete distribution $\pi(x)$ on $\mathcal{X} = \{1, ..., M\}$ then

$$\overline{\pi}^{\gamma}(x) = \frac{\pi^{\gamma}(x)}{\sum_{i=1}^{M} \pi^{\gamma}(i)}$$

and clearly

$$\overline{\pi}^{\gamma}(x) \to \frac{1}{M}$$

as $\gamma \to 0$.

• It is trivial to sample from a uniform distribution

3.5– Graphical illustration

Representation of $\pi(x)$ (blue), $\overline{\pi}^{0.5}(x)$ (red) and $\overline{\pi}^{0.01}(x)$ (black)

3.6—Sequence of Tempered Distributions

• Instead of using only one auxiliary distribution $\overline{\pi}^{\gamma}(x)$, we will use a sequence of P distribution defined as

$$\pi_k(x) \propto [\pi(x)]^{\gamma_k}$$

where $\gamma_1 = 1$ and $\gamma_k < \gamma_{k-1}$.

• In this case $\pi_1(x) = \pi(x)$ and $\pi_k(x)$ is a sequence of distributions increasingly simpler to sample.

3.7 How to reuse samples?

- Assume we run an MCMC algorithm to sample from $\pi_k(x)$, how to use these samples to approximate $\pi(x)$.
- The first simple idea consists of using importance sampling, i.e.

$$\pi(x) = \frac{(\pi(x)/\pi_k(x)) \pi_k(x)}{\int (\pi(x)/\pi_k(x)) \pi_k(x) dx}$$

that is

$$\pi^{N}(x) = \sum_{i=1}^{N} W_{k}^{(i)} \delta_{X_{k}^{(i)}}(x) \text{ where } W_{k}^{(i)} \propto \left(\pi\left(X_{k}^{(i)}\right)\right)^{1-\gamma_{k}}.$$

• This idea is simple and will work properly if γ_k is close to 1.

3.8- Simulated tempering

• Alternatively, we could build a target distribution on $\{1, ..., p\} \times \mathcal{X}$ defined as

$$\pi\left(k,x\right) = \pi\left(k\right)\pi_{k}\left(x\right)$$

• Then we could proposed deterministic moves like jumping from dimension k to 1 accepted with probability

$$\min\left(1, \frac{\pi\left(1, x\right)}{\pi\left(k, x\right)}\right)$$

• Unfortunately, we don't know the normalizing constants of $\pi_k(x)$! For example, if we were selecting

$$\pi(k, x) \propto [f(x)]^{\gamma_k}$$
 where $\pi(x) \propto f(x)$

then it means that

$$\pi(k) \propto \int [f(x)]^{\gamma_k} dx.$$

and you might biased unnecessarily the time spent in high temperatures.

3.9—Parallel tempering

• A more computationally intensive consists of building an MCMC on \mathcal{X}^P of invariant distribution

$$\overline{\pi}(x_1, ..., x_P) = \pi_1(x_1) \times ... \times \pi_P(x_P)$$

- This seems to be a more difficult problem as the dimension of the new target is higher and includes $\pi_1(x_1) = \pi(x_1)$ as a marginal.
- The advantage is that we can design clever moves and use sample from "hot" chains to feed the "cold" chain.

3.10– Swap moves

• We can have a simple update kernel which updates each component of the Markov chain $\left(X_1^{(i)},...,X_P^{(i)}\right)$ independently using

$$K(x_{1:P}, x'_{1:P}) = \prod_{k=1}^{P} K_i(x_i, x'_i)$$

where K_i is an MCMC kernel of invariant distribution π_i .

• We can pick two chains associated to π_i and π_j and propose to swap their components, i.e. we propose

$$x'_{-i,j} = x_{-i,j}, \ x'_i = x_j \text{ and } x'_j = x_i.$$

This is accepted to

$$\alpha(x_{1:P}, x'_{1:P}) = \min\left(1, \frac{\overline{\pi}(x'_{1:P})}{\overline{\pi}(x_{1:P})}\right) = \min\left(1, \frac{\pi_i(x_j)\pi_j(x_i)}{\pi_i(x_i)\pi_j(x_j)}\right).$$

3.11— Alternative Up-and-Down Strategy

• The idea is to propose to sample from π by using the following MCMC move of invariant distribution $\pi = \pi_0$ (Neal, 1996). The proposal is given by first tempering and then annealing

$$X_1' \sim K_1(X_0',\cdot), X_2' \sim K_2(X_1',\cdot), ..., X_P' \sim K_P(X_{P-1}',\cdot)$$

$$X_{P-1}^{*} \sim K_{P}(X_{P}',\cdot), X_{P-2}^{*} \sim K_{P-1}(X_{P-1}^{*},\cdot), ..., X_{0}^{*} \sim K_{1}(X_{1}^{*},\cdot)$$

where we assume here that K_i is π_i -reversible.

• The acceptance rate for the candidate X'_{2P-1} is given by

$$\min(1, \frac{\pi_1(X_1')}{\pi_0(X_0')} \times \dots \times \frac{\pi_P(X_{P-1}')}{\pi_{P-1}(X_{P-1}')} \times \frac{\pi_{P-1}(X_{P-1}^*)}{\pi_P(X_{P-1}^*)} \times \dots \times \frac{\pi_0(X_0^*)}{\pi_1(X_0^*)})$$

3.11— Alternative Up-and-Down Strategy

• The proof of validity relies on the fact that π -reversibility can easily be checked. Let's write $X_P^* = X_{P-1}'$ then the proposal distribution is

$$\pi_0(X_0') \prod_{k=1}^P K_k(X_{k-1}', X_k') \prod_{k=1}^P K_k(X_k^*, X_{k-1}^*)$$

$$= \pi_0 (X'_0) \prod_{k=1}^{P} \frac{\pi_k (X'_k)}{\pi_k (X'_{k-1})} K_k (X'_k, X'_{k-1}) \prod_{k=1}^{P} \frac{\pi_k (X^*_{k-1})}{\pi_k (X^*_k)} K_k (X^*_{k-1}, X^*_k)$$

$$= \pi_0 (X_0^*) \prod_{k=1}^P K_k (X_{k-1}^*, X_k^*) \prod_{k=1}^P K_k (X_k', X_{k-1}')$$

$$\times \frac{\pi_0(X'_0)}{\pi_1(X'_0)} \times \dots \times \frac{\pi_{P-1}(X'_{P-1})}{\pi_P(X'_{P-1})} \frac{\pi_P(X'_{P-1})}{\pi_{P-1}(X'_{P-1})} \times \dots \times \frac{\pi_1(X_0^*)}{\pi_0(X_0^*)}$$

3.11— Alternative Up-and-Down Strategy

• Multiplying by the acceptance probability we have

$$\pi_{0}(X'_{0}) \prod_{k=1}^{P} K_{k} \left(X'_{k-1}, X'_{k}\right) \prod_{k=1}^{P} K_{k} \left(X^{*}_{k}, X^{*}_{k-1}\right)$$

$$\times \min(1, \frac{\pi_{1}(X'_{1})}{\pi_{0}(X'_{0})} \times \cdots \times \frac{\pi_{P}(X'_{P-1})}{\pi_{P-1}(X'_{P-1})} \times \frac{\pi_{P-1}(X^{*}_{P-1})}{\pi_{P}(X^{*}_{P-1})} \times \cdots \times \frac{\pi_{0}(X^{*}_{0})}{\pi_{1}(X^{*}_{0})})$$

$$= \pi_{0}(X^{*}_{0}) \prod_{k=1}^{P} K_{k} \left(X^{*}_{k-1}, X^{*}_{k}\right) \prod_{k=1}^{P} K_{k} \left(X'_{k}, X'_{k-1}\right)$$

$$\times \frac{\pi_{0}(X'_{0})}{\pi_{1}(X'_{0})} \times \cdots \times \frac{\pi_{P-1}(X'_{P-1})}{\pi_{P}(X'_{P-1})} \frac{\pi_{P}(X'_{P-1})}{\pi_{P-1}(X'_{P-1})} \times \cdots \times \frac{\pi_{1}(X^{*}_{0})}{\pi_{0}(X^{*}_{0})}$$

$$\times \min(1, \frac{\pi_{1}(X'_{1})}{\pi_{0}(X'_{0})} \times \cdots \times \frac{\pi_{P}(X'_{P-1})}{\pi_{P-1}(X'_{P-1})} \times \frac{\pi_{P-1}(X^{*}_{P-1})}{\pi_{P}(X^{*}_{P-1})} \times \cdots \times \frac{\pi_{0}(X^{*}_{0})}{\pi_{1}(X^{*}_{0})})$$

$$= \pi_{0}(X^{*}_{0}) \prod_{k=1}^{P} K_{k} \left(X^{*}_{k-1}, X^{*}_{k}\right) \prod_{k=1}^{P} K_{k} \left(X'_{k}, X'_{k-1}\right)$$

$$\times \min(1, \frac{\pi_{0}(X'_{0})}{\pi_{1}(X'_{0})} \times \cdots \times \frac{\pi_{P-1}(X'_{P-1})}{\pi_{P}(X'_{P-1})} \frac{\pi_{P}(X'_{P-1})}{\pi_{P-1}(X'_{P-1})} \times \cdots \times \frac{\pi_{1}(X^{*}_{0})}{\pi_{0}(X^{*}_{0})})$$

Artificial Target Distribution on $(-1,1) \times (-1,1)$

3.12—Application to A Complex Toy Example

MH (left), Parallel Tempering (center) and Tempered transitions (right)

3.13 – Application to Mixture of Distributions

Mixture of 4 Gaussians (Neal, 1996)

3.14 – Discussion

- Parallel tempering and Tempered transitions are generic and powerful methods for sampling in complex problems.
- Selection of the number P of proposals and $\{\gamma_k\}$ is complex.
- Various rules of thumb have been derived and preliminary runs are also often used.

4.1—Simulated Annealing

- An idea closely related to tempering is annealing.
- We have seen that

$$\overline{\pi}^{\gamma}(x) \propto [\pi(x)]^{\gamma}$$

is a flattened version of $\pi(x)$ when $\gamma < 0$.

• On the contrary, $\overline{\pi}^{\gamma}(x)$ is a peakened version of the target as γ increases.

4.2—Simulated Annealing

- Under regularity conditions, it can be shown that the support of $\overline{\pi}^{\gamma}(x)$ concentrates itself on the set of global maxima of $\pi(x)$.
- In the discrete case, let us write the unique maximum

$$x^* = \arg\max\left\{\pi\left(x\right) : x \in \mathcal{X}\right\}$$

then

$$\lim_{\gamma \to \infty} \overline{\pi}^{\gamma} \left(x^* \right) = 1$$

as for any $x \neq x^*$

$$\lim_{\gamma \to \infty} \frac{\overline{\pi}^{\gamma}(x)}{\overline{\pi}^{\gamma}(x^{*})} = \lim_{\gamma \to \infty} \left(\frac{\pi(x)}{\pi(x^{*})}\right)^{\gamma} = 0.$$

4.3 – Graphical illustration

Representation of $\pi\left(x\right)$ (top), $\overline{\pi}^{10}\left(x\right)$ (middle) and $\overline{\pi}^{100}\left(x\right)$ (bottom)

4.3— Graphical illustration

• Similarly in the continuous case, one can show that

$$\lim_{\gamma \to \infty} \overline{\pi}^{\gamma}(x) \propto \sum_{x^* \in \mathcal{X}^*} \left| -\frac{\partial^2 \log \pi(x)}{\partial x_i \partial x_j} \right|_{x^*}^{-1/2} \delta(x)$$

• If one could sample from $\overline{\pi}^{\gamma}(x)$ for large γ (asymptotically $\gamma \to \infty$) then we could solve any global optimization problem! Indeed maximizing any function $f: \mathcal{X} \to \mathbb{R}$ would be equivalent to sample

$$\overline{\pi}^{\gamma}(x) \propto \left[\exp\left(f(x)\right)\right]^{\gamma}$$

where we have $\gamma \to \infty$.

• As γ increases, sampling from $\overline{\pi}^{\gamma}(x)$ is becoming harder. If it was simple, global optimization problem could be solved easily.

4.4— Graphical illustration

Representation of $\pi(x)$ (red), $\overline{\pi}^{10}(x)$ (blue) and $\overline{\pi}^{100}(x)$ (black)

4.4— Graphical illustration

- To sample from $\overline{\pi}^{\gamma}(x)$ for a large γ , we could use the same idea as parallel tempering where we would consider a sequence of distribution $\pi_k(x)$ with a decreasing sequence $\{\gamma_k\}$ such that $\gamma_1 >> 1$.
- However, this could be very expensive so an alternative simpler technique is used known as simulated annealing (highly popular method proposed in 1982)
- Basic idea: Sample an nonhomogeneous Markov chain at each time k with transition kernel $K_k(x, x')$ of invariant distribution π_k .

4.4— Graphical illustration

- Any MCMC algorithm can be modified straightforwardly to perform global optimization! Just consider now a sequence of nonhomogeneous targets.
- To ensure that this nonhomogeneous Markov chain converges towards π_{∞} as $k \to \infty$ you need to have conditions such as

$$K_k(x, x') \ge \delta^k \mu_k(x')$$
 and $\gamma_k = C \log(k + k_0)$.

• The second condition is not realistic, γ_k increases too slowly and in practice we select γ_k growing polynomially.

5.1– Hybrid Monte Carlo

• Alternative approaches consists of increasing the target distributions with auxiliary variables.

• Hybrid Monte Carlo: Define

$$\pi\left(x,y\right)\propto\pi\left(x\right)\exp\left(-\beta y^{\mathsf{T}}y\right)$$

• Basis: It is possible to move approximately on the manifold defined by $\pi(x,y) = \text{cst.}$ See tutorial paper by Stoltz & al.

5.2– Slice Sampling

• Consider the target $\pi(x) \propto f(x)$. We consider the extended target

$$\overline{\pi}(x, u) \propto 1\{(x, u); 0 \le u \le f(x)\}$$

• By construction, we have

$$\int \overline{\pi}(x, u) \, du = \frac{\int 1\{(x, u); 0 \le u \le f(x)\} \, du}{\int \int 1\{(x, u); 0 \le u \le f(x)\} \, du dx} = \frac{f(x)}{\int f(x) \, dx}$$

• Note that the same representation was implicitly used in Rejection sampling.

5.2—Slice Sampling

• To sample from $\overline{\pi}(x, u)$ hence from $\pi(x)$, we can use Gibbs sampling

$$\overline{\pi}(x|u) = \mathcal{U}(\{x : u \le f(x)\}),$$

$$\overline{\pi}(u|x) = \mathcal{U}(\{u : u \leq f(x)\}).$$

- Sampling from $\overline{\pi}(u|x)$ is trivial but $\overline{\pi}(x|u)$ can be complex!
- MH step can be used to sample from $\overline{\pi}(u|x)$.

5.2- Slice Sampling

• Example: $\pi(x) \propto \frac{1}{2} \exp(-\sqrt{x})$ can be sampled using

$$U|x \sim \mathcal{U}\left(0, \frac{1}{2}\exp\left(-\sqrt{x}\right)\right)$$

and

$$u \le \frac{1}{2} \exp\left(-\sqrt{x}\right) \Leftrightarrow 0 \le x \le \left[\log\left(2u\right)\right]^2$$

then

$$X|u \sim \mathcal{U}\left(0, \left[\log\left(2u\right)\right]^{2}\right)$$

5.2- Slice Sampling

• In practice, the slice sampler is not really useful per se but can be straightforwardly extended when

$$\pi(x) \propto f(x) = \prod_{i=1}^{k} f_i(x)$$

where $f_i(x) > 0$.

• We built the extended target

$$\overline{\pi}(x, u_{1:k}) \propto \prod_{i=1}^{k} 1\{(x, u); 0 \leq u_i \leq f_i(x)\}$$

which satisfies

$$\int \cdots \int \overline{\pi}(x, u_{1:k}) du_{1:k} = \pi(x).$$

5.2– Slice Sampling

• In this case the Gibbs sampler satisfies

$$\overline{\pi}(u_{1:k}|x) = \prod_{i=1}^{k} \mathcal{U}(\{u_i : u_i \le f(x)\})$$

$$\overline{\pi}(x|u) = \mathcal{U}(\{x : u_1 \le f_1(x), ..., u_k \le f_k(x)\}).$$

• Example: Sample from

$$\pi(x) \propto \underbrace{\left(1 + \sin^2(3x)\right)\left(1 + \cos^4(5x)\right)}_{f_1(x)} \underbrace{\exp\left(-\frac{x^2}{2}\right)}_{f_3(x)}$$

5.2–Slice Sampling

• We need to sample uniformly from the set

$${x:\sin^2(3x) \ge 1 - u_1} \cap {x:\cos^4(5x) \ge 1 - u_2} \cap {x:|x| \le \sqrt{-2\log u_3}}$$

5.3—Poisson-log-normal model

• Suppose we have $X \sim \mathcal{N}(0,1)$ and

$$Y|X \sim Poisson(\exp(X))$$

• The posterior is

$$\pi(x) \propto \exp(yx - \exp(x)) \exp(-0.5x^2)$$
.

• We introduce the following joint density where $u \in (0, \infty)$

$$\overline{\pi}(x,u) \propto \exp(-u) \mathbb{I}(u > \exp(x)) \exp(-0.5(x^2 - 2yx))$$

which yields

$$\overline{\pi}(u|x) \propto \exp(-u)\mathbb{I}(u > \exp(x)),$$

$$\overline{\pi}(u,x) \propto \exp(-0.5(x^2 - 2yx)) \mathbb{I}(x < \log u).$$

5.4 Discussion

- MCMC is a very active research area with many possibilities and ideas to explore.
- On thursday, we will discuss another class of methods known as SMC.