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1.1— Outline

e Trans-dimensional Markov chain Monte Carlo.

e Bayesian model for autoregressions.

e Bayesian analysis of finite mixture of GGaussians.
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2.1— Metropolis-Hastings

e The standard MH algorithm where X CR? corresponds to
K (z,dx') = a(x,2') q(z,dz") + (1 — /a (x,2)q (x,dz)) O (dz')

where

e You should think of

not as just a “number”!
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2.1— Metropolis-Hastings

e The acceptance ratio corresponds to a ratio of probability measures -importance

weight- defined on the same spaces

7 (dx") q (2, dx) _ 7 (2')dx'q (2, x) dx _ m(2") q (2, x)
7 (dx) q (x,dx") 7 (z)drq (x, ') dr’ 7 (x)q(z,2")

e You can only compared points defined on the same joint space. If you have
r = (x1,22) and w1 (dx1) = 71 (1) dx1, 72 (dx1, dxs) = To (1, T2) dr1dXo,

you can compute numerically

T2 ($1,$2)
7i%] (331)

but it means nothing as the measures m; and 7y are not defined on the same

space. You CANNOT compare a surface to a volume!
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2.2— Designing trans-dimensional moves

e In the general case where X is a union of subspaces of different dimensions,
you might want to move from x € R? to 2’ € R

e To construct this move, you can use © € R” and u’ € R™ and
a one-to-one differentiable mapping h:R? x R" — RY x R"

(z',u") = h(z,u) where u ~ g
and

(z,u) = h™* (2',u) where u ~ g’

e We need d +r =d + 1’ and typically, if d < d’, then v’ =0 and r = d' — r,

that is in most case the variable 4’ is not introduced.
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2.2— Designing trans-dimensional moves

e We can rewrite formally

7 (dz) q (z, (dz’,du’)) = 7 (x) g (u) dzdu
and

7 (dz") q (2, (dz,du)) = 7 (') ¢ (u") dz'du’.

e An acceptance ratio ensuring w—reversibility of this trans-dimensional move

is given by

B 0 (x,u)

m(dx') q (2!, (dz,du)) 7 (2') g (v') ‘3(93’,%’)
T (dx)q(z, (dz',dv’)) 7 (z') g (u) '

e In this respect, the RIMCMC is an extension of standard MH as you need

introduce auxiliary variables u and u/'.
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2.3— Example: Birth/Death Moves

e Assume we have a distribution defined on {1} x RU {2} x R x R. We want

to propose some moves to go from (1,0) to (2,601,02).

e We can propose u ~ g € R and set

(01,02) =h(0,u) = (0,u),

i.e. we do not need to introduce a variable u'. Its inverse is given by

(9,%) = h/ (91, 92) = (91,92) .

e The acceptance probability for this “birth” move is given by
. 7T (27 917 92) )
= min | 1, :
) ( 77(1791)9(92)
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d (01, 02)
0(0,u)

min (1 7'('(2,91,92) 1
- m(L0) g(u)




2.3— Example: Birth/Death Moves

e The acceptance probability for the associated “death move” is
1,6 v 1,6
( 7 (2, 0,u)

m(2,01,02) 0 (01,02)
e Once the birth move is defined then the death move follows automatically.

In the death move, we do not simulate from g but its expression still

appear in the acceptance probability.
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2.4— Example: Birth/Death Moves

e To simplify notation -as in Green (1995) & Robert (2004)-, we don’t
emphasize that actually we can have the proposal g which is a function

of the current point 6 but it is possible!

e We can propose u ~ g (-|8) € R and set
(01,602) =h(0,u) = (0,u).

Its inverse is given by

((9,%) — h/ ((91, (92) = ((91,(92) .

e The acceptance probability for this “birth” move is given by

) =min (1 i)
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min (1 7(2,(91,(92) 1 '8(91,92)
" on(1,0) g(ulf)| 0(0,u)




2.4— Example: Birth/Death Moves

e The acceptance probability for the associated “death move” is
1 1
win (1T L0 0@ w) [\ L (16) g (ul6)
( T(2,60,u)

T (2,01,02) 0 (01,02)
e Once the birth move is defined then the death move follows automatically.

In the death move, we do not simulate from g but its expression still
appears in the acceptance probability.

e Clearly if we have g (02| 61) = 7 (62| 2, 01) then the expressions simplify

min (1, W(Ig’)?&zj@l)) = mmn (1 wéig)
(

mm<1,7r(1,9)g(u|9)) _ mm(l m 1,9))

(2,0, u) 7 (2,0)
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2.5— Example: Split/Merge Moves

e Assume we have a distribution defined on {1} x RU {2} x R x R. We want
to propose some moves to go from (1,0) to (2,601,6-).

e We can propose u ~ g € R and set

(01,02) =h(0,u) = (0 —u,0 +u).
Its inverse is given by

(0,u) = h' (61,05) = (

01 +602 0, — 0,
2 7 2 .

e The acceptance probability for this “split” move is given by

) —min 1 7T(2,(91,(92) 2
SR e ()
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0 (01, 02)
0(0,u)

min (1 7T(2,(91,(92) 1
- 7w (L0) g (u)




2.5— Example: Split/Merge Moves

e The acceptance probability for the associated “merge move” is

) =min (1 eI

e Once the split move is defined then the merge move follows automatically.

| 7 (1,6) 3 (6, u)
H (1’ 7(2,601,05)" (u) ‘a (01, 05)

In the merge move, we do not simulate from g but its expression still

appear in the acceptance probability.
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2.6— Mixture of Moves

e In practice, the algorithm is based on a combination of moves to move from

x = (k,0;) to ' = (k’, 0y ) indexed by i € M and in this case we just need

to have

/ 7 (dz) o; (z,2") q; (xz,dx") = / 7 (dz") o; (2, x) q; (2, dx)
(x,x’)EAXB (x,x’)EAXB

to ensure that the kernel P (x, B) defined for = ¢ B

1 / /
P(va) — W Z % (CC,ZI?)qZ'(ZC,dSC)
1€EM

is m-reversible.

e In practice, we would like to have
P(z,B) = Z 7i () a; (z,2") q; (z, dx’)
1eM
where j; (x) is the probability of selecting the move 7 once we are in x
and Z’iEM ]7, (ZIZ) = 1.
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2.6— Mixture of Moves

e In this case reversibility is ensured if

f(a:,:c’)eAxB m(dz) ji (z) a; (z,2") ¢; (z, da’)

— f(a:,:c/)eAxB m (dx') j; (2') i (2, 2) q; (27, dx)

which is satisfied if

e In practice, we will only have a limited number of moves possible from each

point .
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2.7— Summary

e For each point x = (k, 6;), we define a collection of potential moves selected

randomly with probability j; () where i € M.

e To move from x = (k,0;) to ' = (K, 0;/), we build one (or several)

deterministic differentiable and inversible mapping(s)

Ok, e k) = Ty (Ors Ui 1r)

where ug p» ~ gr.r and ug  ~ grr r and we accept the move with proba

)

i (1 m (K, 0k ) gi (K, 0k) g 1k (uir i) | 0Tk iy (Ok, g i)
©ow(k,0k) Ji (K, Ok) gk ke (Uk i) 0 (O, uk k)
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2.8~ One minute break

e This brilliant idea is due to P.J. Green, Reversible Jump MCMC' and Bayesian
Model Determination, Biometrika, 1995 although special cases had appeared

earlier in physics.

e This is one of the top ten most cited paper in maths and is used nowadays
in numerous applications including genetics, econometrics, computer graphics,

ecology, etc.
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2.9— Example: Bayesian Model for Autoregressions

e The model k € K = {1, ..., knax} is given by an AR of order k

k
Y, = Z a;Yn_; + oV, where V,, ~ N (0,1)
i=1

and we have 0, = (ak,1;k, a,%) € R* x Rt where
p(k) = kl forkeck,

p(Oplk) = N (ak,lzk;0,0252lk) G (02; %, %) .

e For sake of simplicity, we assume here that the initial conditions
Y1 —kpn:0 = (0, ..., 0) are known and we want to sample from

p(Ok, k|y1.7).

e Note that this is not very clever as p (k| y1.7) is known up to a normalizing
constant!
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2.9— Example: Bayesian Model for Autoregressions

e We propose the following moves. If we have (/4:, ai.k, 0,%) then with probability
b we propose a birth move if k¥ < k., with proba u; we propose an update

move and with proba dp = 1 — by — u; we propose a death move.
e We have d; = 0 and bg jpax = 0.

e The update move can simply done in a Gibbs step as

v
p(Oc|y1.7, k) =N (akz,lzk;mka U2Zkz> g (‘725 §k7 l;)
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2.9— Example: Bayesian Model for Autoregressions

e Birth move: We propose to move from k£ to k + 1
2 L 2 h
(a’k—i—l,l:ka ak—i—l,k—i—l? 0k+1) — (a’k,lzka u, O-k) where u ~ gk,k—i—l

and the acceptance probability is

min (1, p (ak,l:ka u, U]%a k + 1} ylzT) dk—|—1 ) .

p(ak1:k,0%, k|l y1.7) bkgk k+1 ()

e Death move: We propose to move from k to k — 1
2 2
(ak—1,1:k—1,U,0k_1> = (ak,l:k—laak,kaak)

and the acceptance probability is

. D (afk,lzkz—la ok — 1} y1:T> bk—19k—1.k (Qk k)
min | 1, 5
p(ar:k, 0%, k|l yi1) di
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2.9— Example: Bayesian Model for Autoregressions

e The performance are obviously very dependent on the selection of the proposal

distribution. We select whenever possible the full conditional distribution, i.e.

2
we have u = ag41 k41 ~ P <ak+1,k+1‘ Y1:T, Ok 1:k, Ok, K + 1) and

. p (ak,lzka u, O_lza k + 1‘ yl:T) dk—i—l
min | 1, 5 5
p (a’k,l:ka O k‘ yl:T) bkp (U| Y1:17,0k 1:k, 0, k + 1)

. p(ak,lzkaalzak+ 1‘y1:T> dk—i—l
= min | 1, 5 .
p(ak1:k, 05, k| y1.1) b

e In such cases, it is actually possible to reject a candidate before sampling it!
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2.9— Example: Bayesian Model for Autoregressions

e We simulate 200 data with k& = 5 and use 10,000 iterations of RIMCMUC.
e The algorithm output is (k(i), 6’,(;)) ~ p(0k, k| y) (asymptotically).

e The histogram of (k) yields an estimate of p (k|y).

e Histograms of (9,(:)) for which k(¥ = kq yields estimates of p (0, |y, ko).

e The algorithm provides us with an estimate of p (k|y) which matches
analytical expressions.
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2.10— Finite Mixture of Gaussians

e The model k € K = {1, ..., kmax} is given by a mixture of k Gaussians

~ Zﬂ-z ,Uza

and we have 6, = (lek,ulzk,a%:k) € Sr x RF x (Rﬂk.

e We need to defined a prior p (k,0r) = p (k) p (0r| k), say

p(k) = k!l for €K
k Yo
_ . | | Yo 7)o
p(9k| k) — D(”kz,l:ka ]-7 oo 1) i:1N(Mk,Za 76)29 ( Ok i 2 ' 9 ) :

e Given T data, we are interested in 7 (k, 0| y1.7) .
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2.11— Trans-dimensional MCMC

e When £ is fixed, we will use Gibbs steps to sample from 7 (0, z1.7| y1.7, k)
where 2.7 are the discrete latent variables such that Pr (z, = i| k, 0x) = 7x ;.

e To allow to move in the model space, we define a birth and death move.

The birth and death moves use as a target @ (0x| y1.7, k) and not 7 ( Ok, z1.7| y1.7, k) -

= Reduced dimensionality, easier to design moves.
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2.12— Birth Move

e We propose a naive move to go from k — k + 1 where j ~ Uy 41y

Hk+1,—j =  Hk1:ks Ok41,—5 = Ok 1:k>

Thtt,—5 = (1= Ths1,5) Th,—j
where (7Tk;.|_1,j, Lhk+1 .5 a,%ﬂ j) ~ gi.k+1 (prior distribution in practice).

k—1

e The Jacobian of the transformation is (1 — 741 ;) (only £ — 1 “true”

variables for 7y ;)

e Now one has to be careful when considering the reverse death move.
Assume the death move going from k£ + 1 — k by removing
the component j.
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2.12— Birth Move

e The acceptance probability of the birth move is given by min (1, A)
where

2
) 7 (k: + 1, T k415 M1, 100415 0k+1,1;k+1‘ yl:T)

2
T (k, Tk, 1:ky Mk, 1:k Uk,uc’ y1:T)

(dig1,k/ (B+1)) (1 - 7Tk+1,j)k_1
(bkz,k+1/ (k+1)) 9k, k+1 (7k+1,jv HE+1,55 ‘732‘)

e This move will work properly if the prior is not too diffuse. Otherwise
the acceptance probability will be small.

e We have (k + 1) birth moves to move from £k — k+ 1 and k£ + 1
associated death moves.
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2.13— Split and Merge Moves

e To move from &k — k£ + 1, one can also select a split move of

the component j ~ Uy |y

ki1l = UITkj, Tht1+1 = (1 —u1) mg 5,

_ Tkj — Tk+1,5U2
Hik+1,5 — UME,5, Hk41,54+1 — HEk,j5
Tk,j — Tk+1,j

2 2 2 Tk,j — Tk+1,;U3 9
Okt1.i U30 55 Ofa1. j4+1 — Ok i
J J J Thi — Thal. J

with w1, us, uz ~ U (0,1).
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2.13— Split and Merge Moves

e The associated merge move is

Tk = Tk+l,j T Tht1,j+1;
Tkilk,; = Tk+1,jMk+1,5 T Th+1,j41Mk+1,5+1;
Tk,jOk i — Tk+1,j0k+1,5 T Tk+1,j+10k+1 j+1-

e The Jacobian of the transformation of the split is given by

2
a (Wk—i—l,l:k—i—la,uk:—l—l,lzkz—l—la0k+1,1:k+1) 7'('2,]-

= 5 |1k,
2 _
a (ﬂ-k,lzkaluk,l:k7O-k,l;k;aulau27u3) (]‘ Ul)

2
Uk,j'
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2.13— Split and Merge Moves

e It follows that the acceptance probability of the split move
with j ~ Uy gy is min (1, A) where

2
) s (k + 1, Tl 1 1:k4+15 LE+1,1:k4+1, 0k+1,1;k+1‘ y1;T)

2
™ (k, Tk,1:ks ME,1:E, O-k:,lzk’ ylzT)

(mi+1.6/k) 72, '
(Skk+1/k) (1 —u)

e You should think of the split move as a mixture of

k split moves and you have k associated merge moves.
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2.14— Application to the Galaxy Dataset

e

od

L0

=

=

- Al B I L J

G T T T T T 1
1.0 1.5 2.0 2.5 3.0 3.5

velocities

Velocity (km/sc) of galaxies in the Corona Borealis Region
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2.14— Application to the Galaxy Dataset

e We set kmax = 20 and we select (rather) informative priors following

Green & Richardson (1999). In practice, it is worth using a hierarchical prior.
e We run the algorithm for over 1,000,000 iterations.
e We set additional constraints on the mean pg 1 < pp2 < ... < Uk k-

e The cumulative averages stabilize very quickly.
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2.14— Application to the Galaxy Dataset

Histogram of k
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Estimation of the marginal posterior distribution p (k| y1.7) .
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2.14— Application to the Galaxy Dataset

Galaxy dataset

2.0
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Estimation of E | f (y| k, 0r)| y1.7]
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2.15— Summary

e Trans-dimensional MCMC allows us to implement numerically problems with

Bayesian model uncertainty.
e Practical implementation is relatively easy, theory behind not so easy...

e Designing efficient trans-dimensional MCMC algorithms is still a research

problem.
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