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1.1– Outline

• Trans-dimensional Markov chain Monte Carlo.

• Bayesian model for autoregressions.

• Bayesian analysis of finite mixture of Gaussians.
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2.1– Metropolis-Hastings

• The standard MH algorithm where X ⊂R
d corresponds to

K (x, dx′) = α (x, x′) q (x, dx′) +
(

1 −
∫

α (x, z) q (x, dz)
)

δx (dx′)

where

α (x, x′) = min
{

1,
π (x′) q (x′, x)
π (x) q (x, x′)

}
• You should think of

π (x′) q (x′, x)
π (x) q (x, x′)

not as just a “number”!
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2.1– Metropolis-Hastings

• The acceptance ratio corresponds to a ratio of probability measures -importance
weight- defined on the same spaces

π (dx′) q (x′, dx)
π (dx) q (x, dx′)

=
π (x′) dx′q (x′, x) dx

π (x) dxq (x, x′) dx′ =
π (x′) q (x′, x)
π (x) q (x, x′)

.

• You can only compared points defined on the same joint space. If you have
x = (x1, x2) and π1 (dx1) = π1 (x1) dx1, π2 (dx1, dx2) = π2 (x1, x2) dx1dx2,

you can compute numerically

π2 (x1, x2)
π1 (x1)

but it means nothing as the measures π1 and π2 are not defined on the same
space. You CANNOT compare a surface to a volume!
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2.2– Designing trans-dimensional moves

• In the general case where X is a union of subspaces of different dimensions,
you might want to move from x ∈ R

d to x′ ∈ R
d.

• To construct this move, you can use u ∈ R
r and u′ ∈ R

r′
and

a one-to-one differentiable mapping h:Rd × R
r → R

d′ × R
r′

(x′, u′) = h (x, u) where u ∼ g

and

(x, u) = h−1 (x′, u′) where u ∼ g′.

• We need d + r = d′ + r′ and typically, if d < d′, then r′ = 0 and r = d′ − r,

that is in most case the variable u′ is not introduced.
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2.2– Designing trans-dimensional moves

• We can rewrite formally

π (dx) q (x, (dx′, du′)) = π (x) g (u) dxdu

and

π (dx′) q (x′, (dx, du)) = π (x′) g′ (u′) dx′du′.

• An acceptance ratio ensuring π−reversibility of this trans-dimensional move
is given by

π (dx′) q (x′, (dx, du))
π (dx) q (x, (dx′, du′))

=
π (x′) g′ (u′)
π (x′) g (u)

∣∣∣∣∂ (x′, u′)
∂ (x, u)

∣∣∣∣ .

• In this respect, the RJMCMC is an extension of standard MH as you need
introduce auxiliary variables u and u′.
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2.3– Example: Birth/Death Moves

• Assume we have a distribution defined on {1} × R ∪ {2} × R × R. We want
to propose some moves to go from (1, θ) to (2, θ1, θ2) .

• We can propose u ∼ g ∈ R and set

(θ1, θ2) = h (θ, u) = (θ, u) ,

i.e. we do not need to introduce a variable u′. Its inverse is given by

(θ, u) = h′ (θ1, θ2) = (θ1, θ2) .

• The acceptance probability for this “birth” move is given by

min
(

1,
π (2, θ1, θ2)

π (1, θ)
1

g (u)

∣∣∣∣∂ (θ1, θ2)
∂ (θ, u)

∣∣∣∣
)

= min
(

1,
π (2, θ1, θ2)

π (1, θ1) g (θ2)

)
.
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2.3– Example: Birth/Death Moves

• The acceptance probability for the associated “death move” is

min
(

1,
π (1, θ)

π (2, θ1, θ2)
g (u)

∣∣∣∣ ∂ (θ, u)
∂ (θ1, θ2)

∣∣∣∣
)

= min
(

1,
π (1, θ) g (u)
π (2, θ, u)

)

• Once the birth move is defined then the death move follows automatically.
In the death move, we do not simulate from g but its expression still
appear in the acceptance probability.
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2.4– Example: Birth/Death Moves

• To simplify notation -as in Green (1995) & Robert (2004)-, we don’t
emphasize that actually we can have the proposal g which is a function
of the current point θ but it is possible!

• We can propose u ∼ g ( ·| θ) ∈ R and set

(θ1, θ2) = h (θ, u) = (θ, u) .

Its inverse is given by

(θ, u) = h′ (θ1, θ2) = (θ1, θ2) .

• The acceptance probability for this “birth” move is given by

min
(

1,
π (2, θ1, θ2)

π (1, θ)
1

g (u| θ)

∣∣∣∣∂ (θ1, θ2)
∂ (θ, u)

∣∣∣∣
)

= min
(

1,
π (2, θ1, θ2)

π (1, θ1) g (θ2| θ1)

)
.
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2.4– Example: Birth/Death Moves

• The acceptance probability for the associated “death move” is

min
(

1,
π (1, θ)

π (2, θ1, θ2)
g (u| θ)

∣∣∣∣ ∂ (θ, u)
∂ (θ1, θ2)

∣∣∣∣
)

= min
(

1,
π (1, θ) g (u| θ)

π (2, θ, u)

)

• Once the birth move is defined then the death move follows automatically.
In the death move, we do not simulate from g but its expression still
appears in the acceptance probability.

• Clearly if we have g (θ2| θ1) = π (θ2| 2, θ1) then the expressions simplify

min
(

1,
π (2, θ1, θ2)

π (1, θ1) g (θ2| θ1)

)
= min

(
1,

π (2, θ1)
π (1, θ1)

)
,

min
(

1,
π (1, θ) g (u| θ)

π (2, θ, u)

)
= min

(
1,

π (1, θ)
π (2, θ)

)
.
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2.5– Example: Split/Merge Moves

• Assume we have a distribution defined on {1} × R ∪ {2} × R × R. We want
to propose some moves to go from (1, θ) to (2, θ1, θ2) .

• We can propose u ∼ g ∈ R and set

(θ1, θ2) = h (θ, u) = (θ − u, θ + u) .

Its inverse is given by

(θ, u) = h′ (θ1, θ2) =
(

θ1 + θ2

2
,
θ2 − θ1

2

)
.

• The acceptance probability for this “split” move is given by

min
(

1,
π (2, θ1, θ2)

π (1, θ)
1

g (u)

∣∣∣∣∂ (θ1, θ2)
∂ (θ, u)

∣∣∣∣
)

= min

(
1,

π (2, θ1, θ2)
π
(
1, θ1+θ2

2

) 2
g
(

θ2−θ1
2

)
)

.
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2.5– Example: Split/Merge Moves

• The acceptance probability for the associated “merge move” is

min
(

1,
π (1, θ)

π (2, θ1, θ2)
g (u)

∣∣∣∣ ∂ (θ, u)
∂ (θ1, θ2)

∣∣∣∣
)

= min
(

1,
π (1, θ)

π (2, θ − u, θ + u)
g (u)

2

)

• Once the split move is defined then the merge move follows automatically.
In the merge move, we do not simulate from g but its expression still
appear in the acceptance probability.
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2.6– Mixture of Moves

• In practice, the algorithm is based on a combination of moves to move from
x = (k, θk) to x′ = (k′, θk′) indexed by i ∈ M and in this case we just need
to have∫

(x,x′)∈A×B

π (dx)αi (x, x′) qi (x, dx′) =
∫

(x,x′)∈A×B

π (dx′) αi (x′, x) qi (x′, dx)

to ensure that the kernel P (x, B) defined for x /∈ B

P (x, B) =
1

|M|
∑
i∈M

αi (x, x′) qi (x, dx′)

is π-reversible.

• In practice, we would like to have

P (x, B) =
∑
i∈M

ji (x) αi (x, x′) qi (x, dx′)

where ji (x) is the probability of selecting the move i once we are in x

and
∑

i∈M ji (x) = 1.
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2.6– Mixture of Moves

• In this case reversibility is ensured if

∫
(x,x′)∈A×B

π (dx) ji (x) αi (x, x′) qi (x, dx′)

=
∫
(x,x′)∈A×B

π (dx′) ji (x′)αi (x′, x) qi (x′, dx)

which is satisfied if

αi (x, x′) = min
(

1,
π (x′) ji (x′) g′i (u′)
π (x) ji (x) gi (u)

∣∣∣∣∂ (x′, u′)
∂ (x, u)

∣∣∣∣
)

.

• In practice, we will only have a limited number of moves possible from each

point x.
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2.7– Summary

• For each point x = (k, θk), we define a collection of potential moves selected
randomly with probability ji (x) where i ∈ M.

• To move from x = (k, θk) to x′ = (k′, θk′), we build one (or several)
deterministic differentiable and inversible mapping(s)

(θk′ , uk′,k) = Tk,k′ (θk, uk,k′)

where uk,k′ ∼ gk,k′ and uk′,k ∼ gk′,k and we accept the move with proba

min
(

1,
π (k′, θk′) ji (k′, θk′) gk′,k (uk′,k)
π (k, θk) ji (k, θk) gk,k′ (uk,k′)

∣∣∣∣∂Tk,k′ (θk, uk,k′)
∂ (θk, uk,k′)

∣∣∣∣
)

.
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2.8– One minute break

• This brilliant idea is due to P.J. Green, Reversible Jump MCMC and Bayesian
Model Determination, Biometrika, 1995 although special cases had appeared
earlier in physics.

• This is one of the top ten most cited paper in maths and is used nowadays
in numerous applications including genetics, econometrics, computer graphics,
ecology, etc.
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2.9– Example: Bayesian Model for Autoregressions

• The model k ∈ K = {1, ..., kmax} is given by an AR of order k

Yn =
k∑

i=1

aiYn−i + σVn where Vn ∼ N (0, 1)

and we have θk =
(
ak,1:k, σ2

k

) ∈ R
k × R

+ where

p (k) = k−1
max for k ∈ K,

p (θk| k) = N (
ak,1:k; 0, σ2

kδ2Ik

) IG (σ2;
ν0

2
,
γ0

2

)
.

• For sake of simplicity, we assume here that the initial conditions
y1−kmax:0 = (0, ..., 0) are known and we want to sample from

p (θk, k| y1:T ) .

• Note that this is not very clever as p (k| y1:T ) is known up to a normalizing
constant!
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2.9– Example: Bayesian Model for Autoregressions

• We propose the following moves. If we have
(
k, a1:k, σ2

k

)
then with probability

bk we propose a birth move if k ≤ kmax, with proba uk we propose an update
move and with proba dk = 1 − bk − uk we propose a death move.

• We have d1 = 0 and bk max = 0.

• The update move can simply done in a Gibbs step as

p (θk| y1:T , k) = N (
ak,1:k; mk, σ2Σk

)IG (σ2;
νk

2
,
γk

2

)
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2.9– Example: Bayesian Model for Autoregressions

• Birth move: We propose to move from k to k + 1(
ak+1,1:k, ak+1,k+1, σ

2
k+1

)
=
(
ak,1:k, u, σ2

k

)
where u ∼ gk,k+1

and the acceptance probability is

min

(
1,

p
(
ak,1:k, u, σ2

k, k + 1
∣∣ y1:T

)
dk+1

p (ak,1:k, σ2
k, k| y1:T ) bkgk,k+1 (u)

)
.

• Death move: We propose to move from k to k − 1(
ak−1,1:k−1, u, σ2

k−1

)
=
(
ak,1:k−1, ak,k, σ2

k

)
and the acceptance probability is

min

(
1,

p
(
ak,1:k−1, σ

2
k, k − 1

∣∣ y1:T

)
bk−1gk−1,k (ak,k)

p (ak,1:k, σ2
k, k| y1:T ) dk

)
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2.9– Example: Bayesian Model for Autoregressions

• The performance are obviously very dependent on the selection of the proposal
distribution. We select whenever possible the full conditional distribution, i.e.
we have u = ak+1,k+1 ∼ p

(
ak+1,k+1| y1:T , ak,1:k, σ2

k, k + 1
)

and

min

(
1,

p
(
ak,1:k, u, σ2

k, k + 1
∣∣ y1:T

)
dk+1

p (ak,1:k, σ2
k, k| y1:T ) bkp (u| y1:T , ak,1:k, σ2

k, k + 1)

)

= min

(
1,

p
(
ak,1:k, σ2

k, k + 1
∣∣ y1:T

)
dk+1

p (ak,1:k, σ2
k, k| y1:T ) bk

)
.

• In such cases, it is actually possible to reject a candidate before sampling it!
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2.9– Example: Bayesian Model for Autoregressions

• We simulate 200 data with k = 5 and use 10,000 iterations of RJMCMC.

• The algorithm output is
(
k(i), θ

(i)
k

)
∼ p (θk, k| y) (asymptotically).

• The histogram of
(
k(i)
)

yields an estimate of p (k| y) .

• Histograms of
(
θ
(i)
k

)
for which k(i) = k0 yields estimates of p (θk0 | y, k0).

• The algorithm provides us with an estimate of p (k| y) which matches
analytical expressions.
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2.10– Finite Mixture of Gaussians

• The model k ∈ K = {1, ..., kmax} is given by a mixture of k Gaussians

Yn ∼
k∑

i=1

πiN
(
μi, σ

2
i

)
.

and we have θk =
(
π1:k, μ1:k, σ2

1:k

) ∈ Sk × R
k × (R+)k.

• We need to defined a prior p (k, θk) = p (k) p (θk| k), say

p (k) = k−1
max for ∈ K

p (θk| k) = D (πk,1:k; 1, ..., 1)
k∏

i=1

N (μk,i; α, β)IG
(
σ2

k,i;
ν0

2
,
γ0

2

)
.

• Given T data, we are interested in π (k, θk| y1:T ) .
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2.11– Trans-dimensional MCMC

• When k is fixed, we will use Gibbs steps to sample from π (θk, z1:T | y1:T , k)
where z1:T are the discrete latent variables such that Pr (zn = i| k, θk) = πk,i.

• To allow to move in the model space, we define a birth and death move.
The birth and death moves use as a target π (θk| y1:T , k) and not π (θk, z1:T | y1:T , k) .

⇒ Reduced dimensionality, easier to design moves.
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2.12– Birth Move

• We propose a naive move to go from k → k + 1 where j ∼ U{1,...,k+1}

μk+1,−j = μk,1:k, σ2
k+1,−j = σ2

k,1:k,

πk+1,−j = (1 − πk+1,j)πk,−j ,

where
(
πk+1,j , μk+1,j, σ

2
k+1,j

)
∼ gk,k+1 (prior distribution in practice).

• The Jacobian of the transformation is (1 − πk+1,j)
k−1 (only k − 1 “true”

variables for πk,−j)

• Now one has to be careful when considering the reverse death move.
Assume the death move going from k + 1 → k by removing
the component j.
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2.12– Birth Move

• The acceptance probability of the birth move is given by min (1, A)
where

A =
π
(

k + 1, πk+1,1:k+1, μk+1,1:k+1, σ
2
k+1,1:k+1

∣∣∣ y1:T

)
π
(

k, πk,1:k, μk,1:k, σ2
k,1:k

∣∣∣ y1:T

)

× (dk+1,k/ (k + 1)) (1 − πk+1,j)
k−1

(bk,k+1/ (k + 1)) gk,k+1

(
πk+1,j , μk+1,j , σ2

j

) .

• This move will work properly if the prior is not too diffuse. Otherwise
the acceptance probability will be small.

• We have (k + 1) birth moves to move from k → k + 1 and k + 1
associated death moves.
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2.13– Split and Merge Moves

• To move from k → k + 1, one can also select a split move of
the component j ∼ U{1,...,k}

πk+1,j = u1πk,j , πk+1,j+1 = (1 − u1)πk,j ,

μk+1,j = u2μk,j , μk+1,j+1 =
πk,j − πk+1,ju2

πk,j − πk+1,j
μk,j ,

σ2
k+1,j = u3σ

2
k,j , σ2

k+1,j+1 =
πk,j − πk+1,ju3

πk,j − πk+1,j
σ2

k,j

with u1, u2, u3 ∼ U (0, 1) .
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2.13– Split and Merge Moves

• The associated merge move is

πk,j = πk+1,j + πk+1,j+1,

πk,jμk,j = πk+1,jμk+1,j + πk+1,j+1μk+1,j+1,

πk,jσ
2
k,j = πk+1,jσ

2
k+1,j + πk+1,j+1σ

2
k+1,j+1.

• The Jacobian of the transformation of the split is given by

∣∣∣∣∣∣
∂
(
πk+1,1:k+1, μk+1,1:k+1, σ

2
k+1,1:k+1

)
∂
(
πk,1:k, μk,1:k, σ2

k,1:k, u1, u2, u3

)
∣∣∣∣∣∣ =

π3
k,j

(1 − u1)
2 |μk,j |σ2

k,j .
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2.13– Split and Merge Moves

• It follows that the acceptance probability of the split move
with j ∼ U{1,...,k} is min (1, A) where

A =
π
(

k + 1, πk+1,1:k+1, μk+1,1:k+1, σ
2
k+1,1:k+1

∣∣∣ y1:T

)
π
(

k, πk,1:k, μk,1:k, σ2
k,1:k

∣∣∣ y1:T

)

× (mk+1,k/k)
(sk,k+1/k)

× π3
k,j

(1 − u1)
2 |μk,j |σ2

k,j .

• You should think of the split move as a mixture of
k split moves and you have k associated merge moves.
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2.14– Application to the Galaxy Dataset

Velocity (km/sc) of galaxies in the Corona Borealis Region
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2.14– Application to the Galaxy Dataset

• We set kmax = 20 and we select (rather) informative priors following
Green & Richardson (1999). In practice, it is worth using a hierarchical prior.

• We run the algorithm for over 1,000,000 iterations.

• We set additional constraints on the mean μk,1 < μk,2 < .... < μk,k.

• The cumulative averages stabilize very quickly.
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2.14– Application to the Galaxy Dataset

Histogram of k

k
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Estimation of the marginal posterior distribution p (k| y1:T ) .
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2.14– Application to the Galaxy Dataset

Galaxy dataset

1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

Estimation of E [f (y| k, θk)| y1:T ]
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2.15– Summary

• Trans-dimensional MCMC allows us to implement numerically problems with
Bayesian model uncertainty.

• Practical implementation is relatively easy, theory behind not so easy...

• Designing efficient trans-dimensional MCMC algorithms is still a research
problem.
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