1.1– Outline

- Bayesian Model Selection
- Metropolis-Hastings on a General State-Space
- Trans-dimensional Markov chain Monte Carlo.
2.1– Bayesian Model Selection

• Most Bayesian models discussed until now: prior $p(\theta)$ and likelihood $p(y|\theta)$. Using MCMC, we sample from

$$p(\theta|y) = \frac{p(\theta)p(y|\theta)}{\int p(\theta)p(y|\theta)\,d\theta}.$$

• We discuss several examples where the model under study is fully specified.

• In practice, we might have a collection of candidate models. This class of problems include cases where “the number of unknowns is something you don’t know” (Green, 1995).
2.1– Bayesian Model Selection

• Assume we have a (countable) set \mathcal{K} of candidate models then an associated Bayesian model is such that

 • k denotes the model and has a prior probability $p(k)$

 • $\theta_k \in \Theta_k$ is the unknown parameter associated to model k

 of prior $p(\theta_k|k)$.

 • The likelihood is $p(y|k, \theta_k)$.

• You can think of it as a “standard” Bayesian model of parameter $(k, \theta_k) \in \bigcup_{k \in \mathcal{K}} \{k\} \times \Theta_k$.
2.1– Bayesian Model Selection

- The Bayes’ rule gives the posterior

\[p(k, \theta_k | y) = \frac{p(k) p(\theta_k | k) p(y | k, \theta_k)}{\sum_{k \in K} \int_{\Theta_k} p(k) p(\theta_k | k) p(y | k, \theta_k) d\theta_k} \]

defined on \(\bigcup_{k \in K} \{k\} \times \Theta_k \).

- From this posterior, we can compute

\[p(k | y) \text{ and } \frac{p(y | k)}{p(y | j)} = \frac{p(k | y) p(j)}{p(j | y) p(k)} \]

or performing Bayesian model averaging

\[p(y' | y) = \sum_{k \in K} \int_{\Theta_k} p(y' | k, \theta_k) p(k, \theta_k | y) d\theta_k \]
2.2– Example: Autoregressive Time Series

• The model $k \in \mathcal{K} = \{1, \ldots, k_{\text{max}}\}$ is given by an AR of order k

$$Y_n = \sum_{i=1}^k a_i Y_{n-i} + \sigma V_n \text{ where } V_n \sim \mathcal{N}(0, 1)$$

and we have $\theta_k = (a_{1:k}, \sigma^2) \in \mathbb{R}^k \times \mathbb{R}^+.$

• We need to defined a prior $p(k, \theta_k) = p(k) p(\theta_k | k)$, say

$$p(k) = k_{\text{max}}^{-1} \text{ for } k \in \mathcal{K},$$

$$p(\theta_k | k) = \mathcal{N}(a_{1:k}; 0, \sigma^2 \delta^2 I_k) \mathcal{IG}\left(\sigma^2; \frac{\nu_0}{2}, \frac{\gamma_0}{2}\right).$$

• One should be careful, the parameters denoted similarly can have a different “meaning” so that computing say $p(\sigma^2 | y)$ does not mean much.

• Some authors favour a more precise notation $\theta_k = (a_{k,1:k}, \sigma_k^2)$ but this can be cumbersome.
2.3– Example: Finite Mixture of Gaussians

- The model $k \in \mathcal{K} = \{1, \ldots, k_{\text{max}}\}$ is given by a mixture of k Gaussians

\[Y_n \sim \sum_{i=1}^{k} \pi_i \mathcal{N}(\mu_i, \sigma_i^2). \]

and we have $\theta_k = (\pi_{1:k}, \mu_{1:k}, \sigma_{1:k}^2) \in S_k \times \mathbb{R}^k \times (\mathbb{R}^+)^k$.

- We need to defined a prior $p(k, \theta_k) = p(k) p(\theta_k | k)$, say

\[p(k) = k_{\text{max}}^{-1} \text{ for } k \in \mathcal{K}, \]

\[p(\theta_k | k) = \mathcal{D}(\pi_{1:k}; 1, \ldots, 1) \prod_{i=1}^{k} \mathcal{N}(\mu_i; \alpha, \beta) \mathcal{IG} \left(\sigma_i^2; \frac{\nu_0}{2}, \frac{\gamma_0}{2} \right). \]

- Some authors favour a more precise notation $\theta_k = \left(\pi_{k,1:k}, \mu_{k,1:k}, \sigma_{k,1:k}^2 \right)$.
• Assume $Y \in \mathbb{R}, X_k \in \mathbb{R}$ and

$$Y = \sum_{\{k: \gamma_k = 1\}} \beta_k X_k + \sigma V = \beta_\gamma^T X_\gamma + \sigma V$$

where, for a vector $\gamma = (\gamma_1, ..., \gamma_p)$, $\beta_\gamma = \{\beta_k : \gamma_k = 1\}$, $X_\gamma = \{X_k : \gamma_k = 1\}$ and $n_\gamma = \sum_{k=1}^{p} \gamma_k$.

• Prior distributions

$$\pi_\gamma (\beta_\gamma, \sigma^2) = \mathcal{N} (\beta_\gamma; 0, \delta^2 \sigma^2 I_{n_\gamma}) \mathcal{I} \mathcal{G} \left(\sigma^2; \frac{\nu_0}{2}, \frac{\gamma_0}{2} \right)$$

and $\pi (\gamma) = \prod_{k=1}^{p} \pi (\gamma_k) = 2^{-p}$.

• In this case we have 2^p models (i.e. configurations of γ) and the parameter space associated to any vector γ is $\mathbb{R}^{n_\gamma} \times \mathbb{R}^+$.

– Motivation
• For such problems, we could use the following approach:
For each $k \in K$, one could use MCMC to sample from

$$p(\theta_k | y, k) = \frac{p(\theta_k | k) p(y | k, \theta_k)}{\int_{\Theta_k} p(\theta_k | k) p(y | k, \theta_k) d\theta_k} = \frac{p(\theta_k | k) p(y | k, \theta_k)}{p(y | k)}.$$

• Problem: K can contain a very large/infinite number of models and many have a very low posterior $p(k | y)$ and so are not relevant for prediction. Moreover, the calculation of $p(y | k)$ is not direct.
As stated before, Bayesian model selection problems corresponds to the case where the parameter space is simply $\bigcup_{k \in \mathcal{K}} (\{k\} \times \Theta_k)$.

Can we define MCMC algorithms - i.e. Markov chain kernels with fixed invariant distribution $p(k, \theta_k | y)$ - ?

We are going to present a generalization of MH after revisiting first the MH algorithm.
3.2– Revisiting the MH algorithm

- Consider the STANDARD case where the target is $\pi \, (dx)$ where $x \in X \subset \mathbb{R}^d$.
- The MH kernel is given by

$$K (x, dx') = \alpha (x, x') \, q (x, dx') + \left(1 - \int \alpha (x, z) \, q (x, dz) \right) \delta_x (dx')$$

and to ensure its π–invariance we just to ensure its π–reversibility

$$\int_{(x, x') \in A \times B} \pi (dx) \, K (x, dx') = \int_{(x, x') \in A \times B} \pi (dx') \, K (x', dx)$$

$$\iff \int_{(x, x') \in A \times B} \pi (dx) \, \alpha (x, x') \, q (x, dx') = \int_{(x, x') \in A \times B} \pi (dx') \, \alpha (x', x) \, q (x', dx)$$

as we always have

$$\int_{(x, x') \in A \times B} \pi (dx) \, \left(1 - \int \alpha (x, z) \, q (x, dz) \right) \delta_x (dx')$$

$$= \int_{(x, x') \in A \times B} \pi (dx') \, \left(1 - \int \alpha (x', z) \, q (x', dz) \right) \delta_{x'} (dx)$$
3.2– Revisiting the MH algorithm

• We say that a measure $\gamma(dx)$ admits a density with respect to a measure $\lambda(dx)$ if for any (measurable) set $A \in B(\mathcal{X})$

$$\lambda(A) = 0 \Rightarrow \gamma(A) = 0$$

and we call

$$\frac{\gamma(dx)}{\lambda(dx)} = f(x)$$

the density of $\gamma(dx)$ with respect to $\lambda(dx)$.

• In 95% of the applications in statistics $\lambda(dx)$ is the Lebesgue measure dx and we write

$$\frac{\gamma(dx)}{\lambda(dx)} = \frac{\gamma(dx)}{dx} = \gamma(x).$$
3.2– Revisiting the MH algorithm

• In the case where we have \(\pi(dx) = \pi(x) \, dx \) and \(q(x,dx') = q(x,x') \, dx' \) and

\[
\pi(dx) \alpha(x,x') q(x,dx') = \pi(dx') \alpha(x',x) q(x',dx)
\]

\[\iff \pi(x) \alpha(x,x') q(x,x') \, dx \, dx' = \pi(x') \alpha(x',x) q(x',x) \, dx \, dx'
\]

\[\iff \pi(x) \alpha(x,x') q(x,x') = \pi(x') \alpha(x',x) q(x',x)
\]

• This is clearly satisfied if

\[
\alpha(x,x') = \min \left\{ 1, \frac{\pi(x') q(x',x)}{\pi(x) q(x,x')} \right\} = \min \left\{ 1, \frac{\pi(dx') q(x',dx)}{\pi(dx) q(x,dx')} \right\}
\]
3.2– Revisiting the MH algorithm

• In practice, we typically define \(q(x, dx') \) indirectly. Say if \(\mathcal{X} \subset \mathbb{R}^d \) then we propose \(u \sim g \) of dimension \(r \) and then define \(x' = h(x, u) \) so that

\[
(1) - \int_{(x, x') \in A \times B} \pi(dx) q(x, dx') \alpha(x, x') = \int_{(x, x') \in A \times B} \pi(x) g(u) \alpha(x, x') dx du.
\]

• We propose to define the reverse transition by \(x = h'(x', u') \) where \(u' \sim g' \) and

\[
(2) - \int_{(x, x') \in A \times B} \pi(dx') q(x', dx) \alpha(x', x) = \int_{(x, x') \in A \times B} \pi(x') g'(u') \alpha(x', x) dx' du'.
\]

• We want to ensure reversibility i.e. \((1) = (2)\).
3.2– Revisiting the MH algorithm

• (1)=(2) if (loosely speaking!)

\[\pi(x) g(u) \alpha(x, x') \, dx \, du = \pi(x') g'(u') \alpha(x', x) \, dx' \, du' \]

• If the transformation \((x, u) \) to \((x', u')\) is a diffeomorphism (the transformation and its inverse are differentiable) then this equality is satisfied if

\[\pi(x) g(u) \alpha(x, x') = \pi(x') g'(u') \alpha(x', x) \left| \frac{\partial (x', u')}{\partial (x, u)} \right| . \]

• It follows that a choice ensuring \(\pi \)-reversibility is given by

\[\alpha(x, x') = \min \left(1, \frac{\pi(x') g'(u')}{\pi(x) g(u)} \left| \frac{\partial (x', u')}{\partial (x, u)} \right| \right) . \]
3.3– Revisiting the Random-Walk Metropolis

- This presentation appears (and is!) unnecessarily complex when $\mathcal{X} \subset \mathbb{R}^d$.

- Assume $x = (x_1, x_2) \in \mathbb{R}^2$ and $u \sim g \in \mathbb{R}$ and we have
 \[x'_1 = x_1 + u, \quad x'_2 = x_2, \quad u' = -u \]
 and we propose the reverse move where $u' \sim g \in \mathbb{R}$
 \[x_1 = x'_1 + u', \quad x_2 = x'_2, \quad u = -u' \]
 and the acceptance probability is simply
 \[
 \alpha(x, x') = \min \left(1, \frac{\pi(x'_1, x_2) g(x_1 - x'_1)}{\pi(x_1, x_2) g(x'_1 - x_1)} \right)
 \]

- The main benefit of this approach is that it can also be used whatever the dimension of x in different parts of \mathcal{X} when $\mathcal{X} = \bigcup_{k \in \mathcal{K}} \left(\{k\} \times \mathbb{R}^{n_k} \right)$.
• Suppose the dimensions of x, x', u and u' are respectively d, d', r and r' then we have functions

$$h : \mathbb{R}^d \times \mathbb{R}^r \to \mathbb{R}^{d'} \quad \text{and} \quad h' : \mathbb{R}^{d'} \times \mathbb{R}^{r'} \to \mathbb{R}^d$$

used respectively for $x' = h(x, u)$ and $x = h'(x', u')$.

• To ensure that we have a diffeomorphism between (x, u) and (x', u'), we need the so-called matching condition $d + r = d' + r'$.

• Then we can also used exactly the same reasoning to build the moves.
4.2– Example: Birth/Death Moves

• Assume we have a distribution defined on $\{1\} \times \mathbb{R} \cup \{2\} \times \mathbb{R} \times \mathbb{R}$. We want to propose some moves to go from $(1, \theta)$ to $(2, \theta_1, \theta_2)$.

• We can propose $u \sim g \in \mathbb{R}$ and set

$$ (\theta_1, \theta_2) = h(\theta, u) = (\theta, u). $$

Its inverse is given by

$$ (\theta, u) = h'(\theta_1, \theta_2) = (\theta_1, \theta_2). $$

• The acceptance probability for this “birth” move is given by

$$ \min \left(1, \frac{\pi(2, \theta_1, \theta_2)}{\pi(1, \theta)} \cdot \frac{1}{g(u)} \left| \frac{\partial (\theta_1, \theta_2)}{\partial (\theta, u)} \right| \right) = \min \left(1, \frac{\pi(2, \theta_1, \theta_2)}{\pi(1, \theta_1) g(\theta_2)} \right). $$
4.2– Example: Birth/Death Moves

- The acceptance probability for the associated “death move” is

\[\min \left(1, \frac{\pi(1, \theta)}{\pi(2, \theta_1, \theta_2)} g(u) \left| \frac{\partial (\theta, u)}{\partial (\theta_1, \theta_2)} \right| \right) = \min \left(1, \frac{\pi(1, \theta) g(u)}{\pi(2, \theta, u)} \right) \]

- Once the birth move is defined then the death move follows automatically. In the death move, we do not simulate from \(g \) but its expression still appear in the acceptance probability.
4.3– Example: Birth/Death Moves

- To simplify notation has in Green (1995) & Robert (2004), we don’t emphasize that actually we can have the proposal g which is a function of the current point θ but it is possible!

- We can propose $u \sim g(\cdot | \theta) \in \mathbb{R}$ and set

$$ (\theta_1, \theta_2) = h(\theta, u) = (\theta, u). $$

Its inverse is given by

$$ (\theta, u) = h'(\theta_1, \theta_2) = (\theta_1, \theta_2). $$

- The acceptance probability for this “birth” move is given by

$$ \min \left(1, \frac{\pi(2, \theta_1, \theta_2)}{\pi(1, \theta)} \frac{1}{g(u | \theta)} \left| \frac{\partial (\theta_1, \theta_2)}{\partial (\theta, u)} \right| \right) = \min \left(1, \frac{\pi(2, \theta_1, \theta_2)}{\pi(1, \theta_1) g(\theta_2 | \theta_1)} \right). $$
4.3– Example: Birth/Death Moves

- The acceptance probability for the associated “death move” is

\[
\min \left(1, \frac{\pi(1, \theta)}{\pi(2, \theta_1, \theta_2)} g(u|\theta) \left| \frac{\partial (\theta, u)}{\partial (\theta_1, \theta_2)} \right| \right) = \min \left(1, \frac{\pi(1, \theta) g(u|\theta)}{\pi(2, \theta, u)} \right)
\]

- Once the birth move is defined then the death move follows automatically. In the death move, we do not simulate from \(g \) but its expression still appears in the acceptance probability.

- Clearly if we have \(g(\theta_2|\theta_1) = \pi(\theta_2|2, \theta_1) \) then the expressions simplify

\[
\min \left(1, \frac{\pi(2, \theta_1, \theta_2)}{\pi(1, \theta_1) g(\theta_2|\theta_1)} \right) = \min \left(1, \frac{\pi(2, \theta_1)}{\pi(1, \theta_1)} \right),
\]

\[
\min \left(1, \frac{\pi(1, \theta) g(u|\theta)}{\pi(2, \theta, u)} \right) = \min \left(1, \frac{\pi(1, \theta)}{\pi(2, \theta)} \right).
\]
4.4– Example: Split/Merge Moves

• Assume we have a distribution defined on \(\{1\} \times \mathbb{R} \cup \{2\} \times \mathbb{R} \times \mathbb{R} \). We want to propose some moves to go from \((1, \theta)\) to \((2, \theta_1, \theta_2)\).

• We can propose \(u \sim g \in \mathbb{R} \) and set

\[
(\theta_1, \theta_2) = h(\theta, u) = (\theta - u, \theta + u).
\]

Its inverse is given by

\[
(\theta, u) = h'(\theta_1, \theta_2) = \left(\frac{\theta_1 + \theta_2}{2}, \frac{\theta_2 - \theta_1}{2} \right).
\]

• The acceptance probability for this “split” move is given by

\[
\min \left(1, \frac{\pi(2, \theta_1, \theta_2)}{\pi(1, \theta)} \cdot \frac{1}{g(u)} \cdot \left| \frac{\partial (\theta_1, \theta_2)}{\partial (\theta, u)} \right| \right) = \min \left(1, \frac{\pi(2, \theta_1, \theta_2)}{\pi\left(1, \frac{\theta_1 + \theta_2}{2}\right)} \cdot \frac{2}{g\left(\frac{\theta_2 - \theta_1}{2}\right)} \right).
\]
4.4– Example: Split/Merge Moves

- The acceptance probability for the associated “merge move” is

\[
\min \left(1, \frac{\pi(1, \theta)}{\pi(2, \theta_1, \theta_2)} g(u) \left| \frac{\partial (\theta, u)}{\partial (\theta_1, \theta_2)} \right| \right) = \min \left(1, \frac{\pi(1, \theta)}{\pi(2, \theta - u, \theta + u)} \frac{g(u)}{2} \right)
\]

- Once the split move is defined then the merge move follows automatically. In the merge move, we do not simulate from \(g \) but its expression still appear in the acceptance probability.
4.5– Mixture of Moves

- In practice, the algorithm is based on a combination of moves to move from $x = (k, \theta_k)$ to $x' = (k', \theta_{k'})$ indexed by $i \in M$ and in this case we just need to have

$$\int_{(x,x') \in A \times B} \pi(dx) \alpha_i(x, x') q_i(x, dx') = \int_{(x,x') \in A \times B} \pi(dx') \alpha_i(x', x) q_i(x', dx)$$

to ensure that the kernel $P(x, B)$ defined for $x \notin B$

$$P(x, B) = \sum_{i \in M} \alpha_i(x, x') q_i(x, dx')$$

is π-reversible.

- In practice, we would like to have

$$P(x, B) = \sum_{i \in M} j_i(x) \alpha_i(x, x') q_i(x, dx')$$

where $j_i(x)$ is the probability of selecting the move i once we are in x and $\sum_{i \in M} j_i(x) = 1$.

- Trans-dimensional MCMC
4.5– Mixture of Moves

• In this case reversibility is ensured if

$$\int_{(x,x') \in A \times B} \pi(dx) j_i(x) \alpha_i(x, x') q_i(x, dx')$$

$$= \int_{(x,x') \in A \times B} \pi(dx') j_i(x') \alpha_i(x', x) q_i(x', dx)$$

which is satisfied if

$$\alpha_i(x, x') = \min \left(1, \frac{\pi(x') j_i(x') g'_i(u')}{\pi(x) j_i(x) g_i(u)} \left| \frac{\partial (x', u')}{\partial (x, u)} \right| \right).$$

• In practice, we will only have a limited number of moves possible from each point x.
4.6– Summary

- For each point \(x = (k, \theta_k) \), we define a collection of potential moves selected randomly with probability \(j_i (x) \) where \(i \in M \).

- To move from \(x = (k, \theta_k) \) to \(x' = (k', \theta_{k'}) \), we build one (or several) deterministic differentiable and invertible mapping(s)

\[
(\theta_{k'}, u_{k', k}) = T_{k, k'} (\theta_k, u_{k, k'})
\]

where \(u_{k, k'} \sim g_{k, k'} \) and \(u_{k', k} \sim g_{k', k} \) and we accept the move with proba

\[
\min \left(1, \frac{\pi (k', \theta_{k'}) j_i (k', \theta_{k'}) g_{k', k} (u_{k', k})}{\pi (k, \theta_k) j_i (k, \theta_k) g_{k, k'} (u_{k, k'})} \left| \frac{\partial T_{k, k'} (\theta_k, u_{k, k'})}{\partial (\theta_k, u_{k, k'})} \right| \right).
\]
• This brilliant idea is due to P.J. Green, *Reversible Jump MCMC and Bayesian Model Determination*, Biometrika, 1995 although special cases had appeared earlier in physics.

• This is one of the top ten most cited paper in maths and is used nowadays in numerous applications including genetics, econometrics, computer graphics, ecology, etc.
The model $k \in \mathcal{K} = \{1, ..., k_{\text{max}}\}$ is given by an AR of order k

$$Y_n = \sum_{i=1}^{k} a_i Y_{n-i} + \sigma V_n$$

where $V_n \sim \mathcal{N}(0, 1)$

and we have $\theta_k = (a_{k,1:k}, \sigma_k^2) \in \mathbb{R}^k \times \mathbb{R}^+$ where

$$p(k) = k_{\text{max}}^{-1} \text{ for } k \in \mathcal{K},$$

$$p(\theta_k | k) = \mathcal{N}(a_{k,1:k}; 0, \sigma_k^2 \delta^2 I_k) \mathcal{IG} \left(\sigma^2; \frac{\nu_0}{2}, \frac{\gamma_0}{2} \right).$$

For sake of simplicity, we assume here that the initial conditions

$y_{1-k_{\text{max}}:0} = (0, ..., 0)$ are known and we want to sample from

$$p(\theta_k, k | y_{1:T}).$$

Note that this is not very clever as $p(k | y_{1:T})$ is known up to a normalizing constant!
4.8– Example: Bayesian Model for Autoregressions

- We propose the following moves. If we have \((k, a_{1:k}, \sigma_k^2)\) then with probability \(b_k\) we propose a birth move if \(k \leq k_{\text{max}}\), with proba \(u_k\) we propose an update move and with proba \(d_k = 1 - b_k - u_k\) we propose a death move.

- We have \(d_1 = 0\) and \(b_{k_{\text{max}}} = 0\).

- The update move can simply done in a Gibbs step as

\[
p(\theta_k | y_{1:T}, k) = \mathcal{N}(a_{k,1:k}; m_k, \sigma^2 \Sigma_k) \mathcal{IG}\left(\sigma^2; \frac{\nu_k}{2}, \frac{\gamma_k}{2}\right)
\]
4.8– Example: Bayesian Model for Autoregressions

- **Birth move**: We propose to move from k to $k+1$

 \[
 (a_{k+1,1:k}, a_{k+1,k+1}, \sigma^2_{k+1}) = (a_{k,1:k}, u, \sigma^2_k)
 \]
 where $u \sim g_{k,k+1}$

 and the acceptance probability is

 \[
 \min \left(1, \frac{p(a_{k,1:k}, u, \sigma^2_k, k+1 \mid y_{1:T}) d_{k+1}}{p(a_{k,1:k}, \sigma^2_k, k \mid y_{1:T}) b_k g_{k,k+1} (u)} \right).
 \]

- **Death move**: We propose to move from k to $k-1$

 \[
 (a_{k-1,1:k-1}, u, \sigma^2_{k-1}) = (a_{k,1:k-1}, a_k, \sigma^2_k)
 \]

 and the acceptance probability is

 \[
 \min \left(1, \frac{p(a_{k,1:k-1}, \sigma^2_k, k-1 \mid y_{1:T}) b_{k-1} g_{k-1,k} (a_k, k)}{p(a_{k,1:k}, \sigma^2_k, k \mid y_{1:T}) d_k} \right).
 \]
4.8– Example: Bayesian Model for Autoregressions

• The performance are obviously very dependent on the selection of the proposal distribution. We select whenever possible the full conditional distribution, i.e. we have \(u = a_{k+1,k+1} \sim p \left(a_{k+1,k+1} \mid y_{1:T}, a_{k,1:k}, \sigma^2_k, k + 1 \right) \) and

\[
\min \left(1, \frac{p \left(a_{k,1:k}, u, \sigma^2_k, k + 1 \mid y_{1:T} \right) d_{k+1}}{p \left(a_{k,1:k}, \sigma^2_k, k \mid y_{1:T} \right) b_k p \left(u \mid y_{1:T}, a_{k,1:k}, \sigma^2_k, k + 1 \right)} \right) = \min \left(1, \frac{p \left(a_{k,1:k}, \sigma^2_k, k + 1 \mid y_{1:T} \right) d_{k+1}}{p \left(a_{k,1:k}, \sigma^2_k, k \mid y_{1:T} \right) b_k} \right).
\]

• In such cases, it is actually possible to reject a candidate before sampling it!
• We simulate 200 data with $k = 5$ and use 10,000 iterations of RJMCMC.

• The algorithm output is $\left(k^{(i)}, \theta_{k}^{(i)} \right) \sim p(\theta_{k}, k | y)$ (asymptotically).

• The histogram of $(k^{(i)})$ yields an estimate of $p(k | y)$.

• Histograms of $\left(\theta_{k}^{(i)} \right)$ for which $k^{(i)} = k_0$ yields estimates of $p(\theta_{k_0} | y, k_0)$.

• The algorithm provides us with an estimate of $p(k | y)$ which matches analytical expressions.
4.9– Summary

- Trans-dimensional MCMC allows us to implement numerically problems with Bayesian model uncertainty.

- Practical implementation is relatively easy, theory behind not so easy...

- Designing efficient trans-dimensional MCMC algorithms is still a research problem.

- On thursday, we will detail several non-trivial examples.