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1.1— Outline

e Bayesian Model Selection

e Metropolis-Hastings on a General State-Space

e Trans-dimensional Markov chain Monte Carlo.
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2.1— Bayesian Model Selection

e Most Bayesian models discussed until now: prior p (#) and likelihood
p (y|0). Using MCMC, we sample from

b0l = 202010

e We discuss several examples where the model under study is

fully specified.

e In practice, we might have a collection of candidate models.
This class of problems include cases where “the number of unknowns
is something you don’t know” (Green, 1995).
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2.1— Bayesian Model Selection

e Assume we have a (countable) set K of candidate models then
an associated Bayesian model is such that

e k denotes the model and has a prior probability p (k)
e ;. € O is the unknown parameter associated to model k
of prior p (0| k) .
e The likelihood is p (y| k, 0% ) -
e You can think of it as a “standard” Bayesian model of parameter

(k,0r) € Ugex ({k} x Oy).
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2.1— Bayesian Model Selection

e The Bayes’ rule gives the posterior

p(k ) (9k|k) (yl k,0k)
ZszIC f@ p(Ok|k)p(ylk,Ok) dOy

defined on Ugex ({k} X Of) .

p(k,0k|y) =

e From this posterior, we can compute

p(ylk) _ p(kly)p()
p(yli)  »(jly) p(k)

or performing Bayesian model averaging

p(kly) and

p(yy) = Z/@ (y'| k. 0) p (K, Ok| y) dOs

kek
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2.2— Example: Autoregressive Time Series

e The model k € K = {1, ..., knax} is given by an AR of order k
k

Y, =) a;Yn_i+ 0V, where V,, ~ N (0,1)
i=1
and we have 0, = (al:k,a2) c RF x R,

e We need to defined a prior p (k,0;) = p (k) p (0x| k), say
p(k) = k.l forkek,

max

p(O0xlk) = N (a1:4;0,0%0%L) IG (02; % %) |

e One should be careful, the parameters denoted similarly can have a different
“meaning”’ so that computing say p (02} y) does not mean much.

e Some authors favour a more precise notation 6, = (%,1; ks a,%)
but this can be cumbersome.
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2.3— Example: Finite Mixture of Gaussians

e The model k € K = {1, ..., kmax} is given by a mixture of k Gaussians

k
Y, ~ Zm./\/ (,ui,az-2> .
i=1
and we have 0, = (lek,ulzk,a%:k) € S x RF x (R+)k.

e We need to defined a prior p (k,0;) = p (k) p (0x| k), say

p(k) = kgl forkeck,
k Yo Y
. . 2, 0 0
p(O0k|k) = D(mig;l,...,1) J:ll./\/’(uz,a,ﬁ)z—g (UZ 5o ) :

e Some authors favour a more precise notation 0 = (mﬁ,l;k, L 1:ks Os 1:k) :
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2.4— Example: Bayesian Variable Selection

e Assume Y € R, X, € R and

Y= > BXp+oV=0X+0V
{ky=1}

where, for a vector v = (y1,..,7), By =18k v =1}, X, ={ Xk : v = 1}
and ny = Y71 Yk

e Prior distributions
2) — () 5242 2 Y0 0
T~ (ﬁ’yaa ) —N(ﬁfy,(),é o In,y)Ig (0‘ 75’?)
and 7 (7) = [[r 7 (%) = 277.

e In this case we have 2P models (i.e. configurations of ) and the parameter

space associated to any vector v is R™v x RT.
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3.1— General State-Space Metropolis-Hastings Algorithm

e For such problems, we could use the following approach:
For each k£ € IC, one could use MCMC to sample from

p(O,lk)p(ylk,0k)  _ p(Oklk)p(ylk, k)
D (O k) p (ylk,0k) doy, p(ylk) |

p(ek‘yvk) — f
©

e Problem: K can contain a very large/infinite number of models
and many have a very low posterior p (k| y) and so are not relevant

for prediction. Moreover, the calculation of p (y| k) is not direct.
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3.1— General State-Space Metropolis-Hastings Algorithm

e As stated before, Bayesian model selection problems corresponds to the case

where the parameter space is simply Ugex ({k} X Op).

e Can we define MCMC algorithms - i.e. Markov chain kernels with fixed
invariant distribution p (k, 0| y)- ?

e We are going to present a generalization of MH after revisiting first the
MH algorithm.
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3.2— Revisiting the MH algorithm

e Consider the STANDARD case where the target is 7 (dx)
where z € X CRY.
e The MH kernel is given by

K (z,dz') = a (z,2') q (z,dz") + (1 - / a(z,2) g (x,dz)) 5, (dz')

and to ensure its m—invariance we just to ensure its m—reversibility

f(ac,:c’)EAxBﬂ-(dx> K (z,dx") = f(x,x,)eAwa(daz’) K (2',dx)

(:)f(x’m,)eAwa(da:)oz(:z:,a:’)q(a:,dx’) = f(x,x,)eAwa(daz’)oz(:z:’,a:)q(a:’,da:)

as we always have

f(x,x,)eAxB 7 (dx) (1 — [a(x,2)q(x, dz)) 0z (dx')

— f(x,x’)EAXB m(dx') (1 — [a(2/,2)q(a,dz)) 0y (dx)
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3.2— Revisiting the MH algorithm

e We say that a measure v (dz) admits a density with respect to a measure
A (dz) if for any (measurable) set A € B (X)

A(A) =0=~(A) =0

and we call

(dx)
Ndo) f(z)

the density of v (dz) with respect to A (dx).

2

/N

e In 95% of the applications in statistics A (dx) is the Lebesgue measure dz and

we write
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3.2— Revisiting the MH algorithm

e In the case where we have 7 (dx) = 7 () dr and ¢ (x,dx") = q (z,2") dx’ and

w(dr)a(x,x") q(x,dx’) = 7w (dz') a (', z) g (2, dx)
s r(r)a(r,z)q(x,2')dede’ =7 (2")a (2, x) g (2, x) dedx’

sr(r)a(x,2)q(x,2)=n(2")a(x',z)q(x, x)

e This is clearly satisfied if
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3.2— Revisiting the MH algorithm

e In practice, we typically define g (z,dz’) indirectly. Say if X CR? then

we propose u ~ g of dimension r and then define ' = h (x,u) so that
(1) - / 7 (dz) q (z,dx’) a(z,2") = / 7 (x)g(u)a(x,2") dedu.
(x,x")EAXB (x,x’)EAXB

e We propose to define the reverse transition by x = b’ (', u") where u' ~ ¢’

and

(2) - / 7 (dx') q (2, dx) a (2, z) = / (") g () (2, z)ds du’.
(x,x’')EAXB (x,x')EAXB

e We want to ensure reversibility i.e. (1)=(2).
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3.2— Revisiting the MH algorithm

e (1)=(2) if (loosely speaking!)

m(x)g(u)a(x,2)dedu =7 (2') ¢ (v')a (2, z)dx’du’

e If the transformation (z, u) to (z’,u’) is a diffeomorphism (the transformation
and its inverse are differentiable) then this equality is satisfied if

0 (x',u)
O(x,u) |

e It follows that a choice ensuring w-reversibility is given by
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o (z,2') = min (1, ™ (@) g’ () ‘a (2! )

m(z)g(u) | O(z,u)




3.3— Revisiting the Random-Walk Metropolis

e This presentation appears (and is!) unnecessarily complex when X CRY.

o Assume z = (x1,72) € R? and u ~ g € R and we have

/ / /
1 =1 +U, To =T2, U = —U

and we propose the reverse move where v’ ~ g € R

/ / / /
T1 =T +U, Ta =Ty, U= —U

and the acceptance probability is simply

o= (1 TR )

e The main benefit of this approach is that it can also be used whatever the
dimension of z in different parts of X when X = Ugexc ({k} x R™).
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4.1— Trans-dimensional MCMC

e Suppose the dimensions of x, z’, u and u' are respectively

d,d’,r and r’ then we have functions
h:RYx R —RY and b/ :R?Y xR — R?
used respectively for #’ = h (z,u) and x = h' (', u’).

e To ensure that we have a diffeomorphism between (x,u) and (z’,u"), we need
the so-called matching condition d +r = d’ + r’.

e Then we can also used exactly the same reasoning to build the moves.
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4.2— Example: Birth/Death Moves

e Assume we have a distribution defined on {1} x RU {2} x R x R. We want

to propose some moves to go from (1,0) to (2,601,02).

e We can propose u ~ g € R and set

(01,05) = h (0,u) = ().

Its inverse is given by

(9,%) = h/ (91, 92) = (91,92) .

e The acceptance probability for this “birth” move is given by
. 7T (27 917 92) )
= min | 1, :
) ( 77(1791)9(92)
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d (01, 02)
0(0,u)

min (1 7'('(2,91,92) 1
- m(L0) g(u)




4.2— Example: Birth/Death Moves

e The acceptance probability for the associated “death move” is
1,6 v 1,6
( 7 (2, 0,u)

m(2,01,02) 0 (01,02)
e Once the birth move is defined then the death move follows automatically.

In the death move, we do not simulate from g but its expression still

appear in the acceptance probability.
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4.3— Example: Birth/Death Moves

e To simplify notation has in Green (1995) & Robert (2004), we don’t
emphasize that actually we can have the proposal g which is a function

of the current point 6 but it is possible!

e We can propose u ~ g (-|8) € R and set
(01,602) =h(0,u) = (0,u).

Its inverse is given by

((9,%) — h/ ((91, (92) = ((91,(92) .

e The acceptance probability for this “birth” move is given by

) =min (1 i)
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4.3— Example: Birth/Death Moves

e The acceptance probability for the associated “death move” is
1 1
win (1T L0 0@ w) [\ L (16) g (ul6)
( T(2,60,u)

T (2,01,02) 0 (01,02)
e Once the birth move is defined then the death move follows automatically.

In the death move, we do not simulate from g but its expression still
appears in the acceptance probability.

e Clearly if we have g (02| 61) = 7 (62| 2, 01) then the expressions simplify

min (1, W(Ig’)?&zj@l)) = mmn (1 wéig)
(

mm<1,7r(1,9)g(u|9)) _ mm(l m 1,9))

(2,0, u) 7 (2,0)
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4.4— Example: Split/Merge Moves

e Assume we have a distribution defined on {1} x RU {2} x R x R. We want
to propose some moves to go from (1,0) to (2,601,6-).

e We can propose u ~ g € R and set

(01,02) =h(0,u) = (0 —u,0 +u).
Its inverse is given by

(0,u) = h' (61,05) = (

01 +602 0, — 0,
2 7 2 .

e The acceptance probability for this “split” move is given by

) —min 1 7T(2,(91,(92) 2
SR e ()
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0(0,u)

min (1 7T(2,(91,(92) 1
- 7w (L0) g (u)




4.4— Example: Split/Merge Moves

e The acceptance probability for the associated “merge move” is

) =min (1 eI

e Once the split move is defined then the merge move follows automatically.

| 7 (1,6) 3 (6, u)
H (1’ 7(2,601,05)" (u) ‘a (01, 05)

In the merge move, we do not simulate from g but its expression still

appear in the acceptance probability.
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4.5— Mixture of Moves

e In practice, the algorithm is based on a combination of moves to move from

x = (k,0;) to ' = (k’, 0y ) indexed by i € M and in this case we just need

to have

/ 7T(d£l;') 0% (CC,ZI?/) q; (:C,dil?/) — / ﬂ-(dwl) 0% (xlvaj) q; (ajladw)
(x,x’)EAXB (z,x')EAXB

to ensure that the kernel P (x, B) defined for = ¢ B

P (xa B) — Z 873 (337 CIJ,> q; (ZIZ, dl‘/)
1eM
1s 7-reversible.

e In practice, we would like to have
P(z,B) = Z ji (z) a; (z,2") q; (z, dx’)
1eM
where j; (x) is the probability of selecting the move 7 once we are in x
and Z’iEM ]7, (ZIZ) = 1.
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4.5— Mixture of Moves

e In this case reversibility is ensured if

f(a:,:c’)eAxB m(dz) ji (z) a; (z,2") ¢; (z, da’)

— f(a:,:c/)eAxB m (dx') j; (2') i (2, 2) q; (27, dx)

which is satisfied if

e In practice, we will only have a limited number of moves possible from each

point .
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4.6— Summary

e For each point x = (k, 6;), we define a collection of potential moves selected

randomly with probability j; () where i € M.

e To move from x = (k,0;) to ' = (K, 0;/), we build one (or several)

deterministic differentiable and inversible mapping(s)

Ok, e k) = Ty (Ors Ui 1r)

where ug p» ~ gr.r and ug  ~ grr r and we accept the move with proba

)

i (1 m (K, 0k ) gi (K, 0k) g 1k (uir i) | 0Tk iy (Ok, g i)
©ow(k,0k) Ji (K, Ok) gk ke (Uk i) 0 (O, uk k)
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4.7— One minute break

e This brilliant idea is due to P.J. Green, Reversible Jump MCMC' and Bayesian
Model Determination, Biometrika, 1995 although special cases had appeared

earlier in physics.

e This is one of the top ten most cited paper in maths and is used nowadays
in numerous applications including genetics, econometrics, computer graphics,

ecology, etc.
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4.8— Example: Bayesian Model for Autoregressions

e The model k € K = {1, ..., knax} is given by an AR of order k
k

Y, = Z a;Yn_; + oV, where V,, ~ N (0,1)

i=1
and we have 0, = (ak,1;k;, ak) € R* x Rt where
p(k) = kl forkeck,

POk k) = N (an120,086%1) IG (0% 21, 22 )

e For sake of simplicity, we assume here that the initial conditions
Y1—k. .0 = (0,...,0) are known and we want to sample from

p(Ok, k|y1.7).

e Note that this is not very clever as p (k| y1.7) is known up to a normalizing
constant!
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4.8— Example: Bayesian Model for Autoregressions

e We propose the following moves. If we have (/4:, ai.k, 0,%) then with probability
b we propose a birth move if k¥ < k., with proba u; we propose an update

move and with proba dp = 1 — by — u; we propose a death move.
e We have d; = 0 and bg jpax = 0.

e The update move can simply done in a Gibbs step as

v
p(Oc|y1.7, k) =N (akz,lzk;mka U2Zkz> g (‘725 §k7 l;)
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4.8— Example: Bayesian Model for Autoregressions

e Birth move: We propose to move from k£ to k + 1
2 L 2 h
(a’k—i—l,l:ka ak—i—l,k—i—l? 0k+1) — (a’k,lzka u, O-k) where u ~ gk,k—i—l

and the acceptance probability is

min (1, p (ak,l:ka u, U]%a k + 1} ylzT) dk—|—1 ) .

p(ak1:k,0%, k|l y1.7) bkgk k+1 ()

e Death move: We propose to move from k to k — 1
2 2
(ak—1,1:k—1,U,0k_1> = (ak,l:k—laak,kaak)

and the acceptance probability is

. D (afk,lzkz—la ok — 1} y1:T> bk—19k—1.k (Qk k)
min | 1, 5
p(ar:k, 0%, k|l yi1) di
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4.8— Example: Bayesian Model for Autoregressions

e The performance are obviously very dependent on the selection of the proposal

distribution. We select whenever possible the full conditional distribution, i.e.

_ 2
we have u = ag41 k41 ~ P <ak+1,k+1‘ Y1:T, Ok 1:k, Ok, K + 1) and

. p (ak,lzka u, O_lza k + 1‘ yl:T) dk—i—l
min | 1, 5 5
p (a’k,l:ka O k‘ yl:T) bkp (U| Y1:17,0k 1:k, 0, k + 1)

. p(ak,lzkaalzak+ 1‘y1:T> dk—i—l
= min | 1, 5 .
p(ak1:k, 05, k| y1.1) b

e In such cases, it is actually possible to reject a candidate before sampling it!
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4.8— Example: Bayesian Model for Autoregressions

e We simulate 200 data with k& = 5 and use 10,000 iterations of RIMCMUC.
e The algorithm output is (k(i), 6’,(;)) ~ p(0k, k| y) (asymptotically).

e The histogram of (k) yields an estimate of p (k|y).

e Histograms of (9,(:)) for which k(¥ = kq yields estimates of p (0, |y, ko).

e The algorithm provides us with an estimate of p (k|y) which matches
analytical expressions.
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4.9— Summary

e Trans-dimensional MCMC allows us to implement numerically problems with

Bayesian model uncertainty.

e Practical implementation is relatively easy, theory behind not so easy...

e Designing efficient trans-dimensional MCMC algorithms is still a research

problem.

e On thursday, we will detail several non-trivial examples.
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