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1.1— Outline

e More on the probit model

e Conditional prior proposals for time series.

e Advanced proposals for time series.
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2.1— General hybrid algorithm

e Generally speaking, to sample from 7 () where 8 = (64, ...,0,),

we can use the following algorithm at iteration <.
e lteration 7; 7 > 1:
Fork=1:p
e Sample 9,(5) using an MH step of proposal distribution

0, (01, 0577),0;,) and target = (0] 0"} ).

where 98’2@ = (6’5’&'), e (9,(21,9,8;1), ...,9](97;_1)) .

— Summary Page 3



3.1— Probit model

e Banknotes data modelled using a probit regression model

Pr(Y:Hx)=<I>(51:151+...+51:4ﬁ4)

o= [ oo 2)a

e For n data, the likelihood is then given by

where

F (gl ) = [[@ (T9)" (1— @ (T 3)' ™"
1=1

— Probit model example
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3.1— Probit model

e One can use the MH algorithm where ¢ (8, 6') = N (ﬁ’; B, T2§]) or
use the Gibbs sampler by introducing additional latent variables.

e “Fxtended” model

0 otherwise.

\

e We are now going to sample from 7 ( 3, z1.n| T1.n, Y1.n) instead of 7 (8| 1., Y1:1)
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3.2— Gibbs Sampler for Probit model

e The full conditional distributions are simple

T (Bl yin, 1, 21:n) = 7 (0| T1n, 21.n) (standard Gaussian!),
mn
7T(Zl:n‘yl:naxl:naﬁ) — Hﬂ-(zk‘ykaxkvﬁ)
i=1
where .

Ni (zFB,1) ifye=1
2k| Yk, Ty B~ 4

N_ (z;B,1) ifyp =0.

\
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3.2— Gibbs Sampler for Probit model

(W) - —]
1 - == —
= _| = =
] -— -
— = —
(W) [ =4
=1 = —
c}i —
— g '.- P P ‘A_" - -
T T T T T T e T —1 T
o 2000 Ss000 10000 —1.0 —0.5 o 200 400 s00 800 1000
o — = —_ H1 ]
=1 < _J
—] =
o~ -
- —]
= |
— — — =
= —]
- - = _] g At gy tgrmiBig ¥ PN T N
T T T T T T e T — 1 T
o 2000 Ss000 10000 1 2 3 o 200 400 [Slele] 800 1000
o> = — _ —
=) — <= _4
o~ = — ~ =
= - = A:rﬂ‘rrﬂ-ﬂr -
=1 -t —
=g
= — -~  _]
— —
~— =1 e P Aa,
1 - = — 5 v vV vww ‘v i,
T T T T T T = = T T T T T
o 2000 Ss000 10000 2 3 o 200 400 [Slele] 800 1000
=< —] - —
‘_ = h o
—] = = -
- — —
. = =
= — A —
— = 4
=y = =
= T T T T T T = T T T 1 T T T T T T
o 2000 6000 10000 oO.6 o.8 1.0 1.2 1.4 1.6 1.8 o 200 400 [Slele] 800 1000

Traces (left), Histograms (middle) and Autocorrelations (right) for ( f), . Bﬁ) :
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3.2— Gibbs Sampler for Probit model

e The results obtained through Gibbs are very similar to MH.

e We can also adopt an Zellner’s type prior and obtain very similar

results.

e Very similar were also obtained using a logistic fonction using
the MH (Gibbs is feasible but more difficult).
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3.3— Gibbs sampling and Hybrid algorithm for Probit Regression

e Although the introduction of latent variables can be attractive, it can be also

very inefficient.

e It is not because you can use the Gibbs sampler that everything works well!

e Consider the following simple generalization of the previous model

Zi NN<:C’L'570-2)7 1/2 —

9

0O otherwise.

\

e We complete the model by 02 ~ ZG (1.5,1.5) and 3| o2 ~ N (0, 100).

— Probit model example
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3.3— Gibbs sampling and Hybrid algorithm for Probit Regression

Samples of (ﬁ(i), a(i)) obtained by the Gibbs sampler plotted with some

contours of the posterior.
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3.3— Gibbs sampling and Hybrid algorithm for Probit Regression

e Not only the data Z; and (6, 02) are very correlated but we have

o

Pr(Y; =1|2;,5,0%) = ® (W)

e The likelihood only depends on (3/c and the parameters 8 and o

are not identifiable.
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3.3— Gibbs sampling and Hybrid algorithm for Probit Regression

e One way to improve the mixing consists of using an additional MH step
that proposes to randomly rescale the current value.

e We use a proposal distribution such that

(8.0") = A(B,0) with A~ Exp (1)

that proposes to randomly rescale the current value.
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3.3— Gibbs sampling and Hybrid algorithm for Probit Regression

Samples of (ﬁ(i), a(i)) obtained by the Gibbs sampler+MH step plotted

with some contours of the posterior.
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4.1— Back to Hidden Markov Models

e Consider the following hidden Markov model

Xi| (Xp—1 =2xp-1) ~ fo(|lzp—1), X1 ~p

Yol (Xp=21) ~ go(-|zk),

and we set a prior 7 (#) on the unknown hyperparameters 6.

e Given n data, we are interested in the joint posterior

7T (97 xl:n' y1:n> .

e There is no closed-form expression for this joint distribution even in the model

is linear Gaussian or for finite state-space model.
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4.1— Back to Hidden Markov Models

e In previous lectures, we propose sampling from 7 (0, x1.,| y1.n) using the Gibbs
sampler where the variables are updated according to

Xk ~ T (Zlfk;‘ ylznax—kzae)

with for 2 < k < n

7T(afk|ylznax—k79> X 7T(aflzfnaylzfn,79>

o< 7 (0) (1) H fo () CUz'—l)H 960 (Yi| 74)

A

“/”

prior likelihood

o< fo(xr|rr—1) fo (Trsr1| k) 90 (yr| zk)

and 0 ~ 7w (0| Y1.n, T1.,) (or by subblocks).
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4.1— Back to Hidden Markov Models

e It is often possible to implement the Gibbs sampler even if this can be
expensive; e.g. if you use Accept/Reject to sample from 7 (zg|y1.n, T—k, 0)

using the proposal 7 (xg|x_k,0) x fo (k| Tr—1) fo (Tra1|Tk) -

e Even if it is possible to implement the Gibbs sampler, one can expect
a very slow convergence of the algorithm is successive variables are

highly correlated.

e Indeed, as you update xy with xr_1 and x4, being fixed, then you cannot

move much into the space.
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4.2— Illustrative Example

e Consider the very simple case where 6 = (ag, aﬁ,)
Xk — Xk—l -+ Vk where Vk i.k’d. (07 012)) y
Yi = Xi+ Wi where Wy bRt (0, 03))

then we have

T (gl vk, 0) o< fo(wr|wr—1) fo(xps1| k)

2
Tk—1 +Tk41 O
— N(:Ek, s v)

2 "2
and
T (Tk| Y1:m, Tk, 0) o< 7(2k| Tk, 0) g0 (Yi| TK)

2 2

Th—1+t Th+1 n Yk 0,0,
o2 o2 )’ o2+ 202
v w v w

2 2
0v0w

— N(lek,

2 2
os + 207,
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4.2— Illustrative Example

e Assume for the time being that instead of sampling from 7 (zg|y1.n, T_k, 6)

directly, we use rejection sampling with 7 (x| z_g, 0) as a proposal distribution.

e In this case we have to bound

1 (Y — z1)° 1
90 (x| ) V2o, P ( 202  \V2moy,

w

*\ 2
e We accept each proposal X* ~ 7 (x| x_g, 0) with probability exp (— (y"’;;g ) ) :

so the (unconditional) acceptance probability is given by

A

L gwexp (1 (12)0% — (zeor + 2440)? )0
/W($k|fﬂ—k,9)eXP ( (W — 21) ) dry = ( - ( ’

204 Vo2 + 202

w
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4.3— Block sampling strategies

e To improve the algorithm, we would like to be able to sample a whole block
of variables simultaneously; i.e. being able to sample for 1 < k< k+ L <n

from
T (kb r] Y1, T— (kb 0):0) = T (Thiktr| Ykt Ly Th1, ThpL11,0)
k+L+1 k+L

< 11 fo(@ilziza) [T 96 (vl i)
1=k 1=k

e In this case, it is typically impossible to sample from 7 (azk;k+L| Ylin> T—(k:k+L) 9)

exactly as L is large, say 5 or 10.
e We are propose to use a MH step of invariant distribution

s (xk;k+L| Ylins T (k:k+L)s 9) instead, hence we need to build
a proposal distribution ¢ ((xlzn, 6) ,:U;:,HL) :
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4.4— Conditional prior proposals

e We first propose to use the conditional prior
q((x1:1:0) s 2hprr) = T (Tkktro| T errr),0) = ™ (Tpktr| Tho—1, Thr41,0)
k+L+1

X H fo (zilzi-1).
i=k

e In this case, the candidate X,;:,HL ~ T (Thkrr| Th—1, Tpap11,0) is accepted
with probability

o[ T (Thorr | Ukikt s Thm1, Thon41,0) T (Tpokt ] Thm1, Tt 41, 0)
T (Tt L Uikt Ly T 1, Thop £41,0) T (& 1| @1, Thg 141, 0)

k+L
) FTh+L '
Hizk 96 (yi| 7i)
e Simple but one cannot expect it to be too efficient when the observations

are very informative compared to the prior.
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4.5— Illustrative example

e Consider the case where

i.i.d.

X, =AX,_1+ BV, where V,, '~ N(O,I) :

e Particular cases include

X =

— Time series

i.i.d.

Xp_1+0Ve, where V, "~ N(O,l),

()

Qg

o)

(0

N0

Xp—1+

()

o

\ )

Vi, where Vi LS N (0,1).
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4.5— Illustrative example

e In this case, it is simple to see that 7 (zg.k1p|Tk_1,Tkr1,0) is a Gaussian
distribution.

e In (Knorr-Held, 1999), one samples from this distribution by computing
directly the parameters of this joint distribution: complexity O (L2> :

e We can derive a simpler method of complexity O (L) based on the
following decomposition (omitting # in the notation)

ktL—1
T (Tpkar| Th—1, Thopr1) = H T (2| Th—1, Tl L41, Tit1) -
ik

k+L—-1

H T (@i Tr—1, Tiy1)

1=k
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4.5— Illustrative example

e Moreover it is easy to establish the expression for 7 (z;| zx_1,z;11)

(2| Th—1, Tig1) X T (25| 2p—1) [ (Tig1| T5)

asS
7 (il ) = / 7 (api| 1) g1 = N (g s (1) 50)

with, for X,, = AX,,_1+ BV, pr—1 (x_1) = xx_1, X1 = 0 and for ¢ > k

122 (flsz—l) = Api (%—1) 3
¥, = AY; 1A' +3 with ¥ = BB".
e To obtain 7 (z;| xx_1,x;11), we combine the prior 7 (x;| zx_1) with the “like-

lihood” f (x;11|x;) .
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4.5— Illustrative example

e We have 7 (x| xx—1) = N (zg; pi (T-1) , Bi) and f (zi41|23) = N (i115 Awi, )
then
77(517'5'|517k:—1733i+1> =N (%;;,uz' (flfk—1,flfz'+1),§i)

where

~

Y o= (S +ATRA)

~

pi (Th—1,Thtr41) = 2 (ATE_lSUz'H + 3 (2r-1)) -

e To sample a realization of 7 (Xk.p4 1| Th—1, Tkar+1) , first compute p; (xx_1) , 24
for e =k, ...,k + L using a forward recursion. Then sample backward

Xivr ~7(xr—1,Cprr+1) s Xirr—1 ~7T (| Tro1, Xitr)s ooy, X ~7 (| =1, Xit1)
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4.6— Application to Tokyo Rainfall Data

Number of occurences of rainfall in Tokyo for each day during 1983-1984
reproduced as relative frequencies between 0, 0.5 and 1 (n = 366)
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4.7— Statistical Model

e Consider the following model

(

=
|

and

Yi| X ~ <

897

\

V(L

L) Lo ) Loy

B(2,m) k60,

B(1,m) k=60 (February 29)

e We also use for 02 ~ G (%, ﬁ) .

— Time series

2

, where 7, =

i.i.d.

Vk, where Vk; ~ N(O, 1)

exp (a)

1+ exp (ak)
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4.8— Sampling strategy

e We use the block sampling strategies discussed before where candidates
are sampled according to 7 (Xg11.k4 1| Tk—1,Trrr+1) and accepted with proba

k+L

k+L
Hi:k g (yi| %;)

e The parameter o2 is updated through a simple Gibbs step

0'2 ~ W(Uz‘xlznaylzn) :7-‘-(0-2}331:”)

_ g (Vo +n—1 v+ ZZZQ (ak — 201 + Oék2)2>
N 2 ’ 2

e For block size L = 1, 5,20 and 40, we compute the average trajectories of 100
parallel chains after 10, 50, 100 and 500 iterations with initialization
z = 0 for all k,02 = 0.1.
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4.9— Simulation Results

Average trajectories over 100 chains for L = 1,5, 20 and 40 from top to bottom.

After 10 Iterations

0 100 200 300
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4.9— Simulation Results

Average trajectories over 100 chains for L = 1,5, 20 and 40 from top to bottom.

After 50 Iterations

0 100 200 300
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4.9— Simulation Results

Average trajectories over 100 chains for L = 1,5, 20 and 40 from top to bottom.

After 100 lterations

0 100 200 300
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4.9— Simulation Results

Average trajectories over 100 chains for L = 1,5, 20 and 40 from top to bottom.

After 500 lterations
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4.9— Simulation Results

Traces of oy, a100, @333 and o2 for L = 1 (left) and L = 20 (right).

Trajectory of alpha_ 1, blocksize 1 Trajectory of alpha_ 1, blocksize 20
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4.9— Simulation Results

e This (naive!) block sampling strategy performs well here because the

likelihood of the observations is fairly flat.

e For a linear Gaussian observation equation, Knorr-Held compares this
strategy to a direct Gibbs sampling implementation. As expected, the
conditional proposal strategy is competitive when the observations are

not very informative compared to the prior.

e For more complex problems, such strategies are inefficient and we will

need to use the observations to build the proposal.
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4.9— Simulation Results

e (Pitt & Shephard, 1999) propose a more efficient strategy... also more
computationally intensive.

e Consider the log full conditional distribution
+L+1
108 7 ( TkskL| Yhiht L The1, Th1) = gz log g (yil ws) + X1 log f (wiga| @)

=Y logg (il @) — 5 20000 (win — Awy) T 271 (g0 — Awy)

which is not quadratic in x; hence 7 (Tp.por| Yg:kaL, Th—1, Thr1)
is not Gaussian.

e The idea is to expand the log-likelihood part around some point estimates
log g (yilwi) =~ logg(yi|@i)+ Viegg (yi| @) . (i —T)

1 R - ~
+3 (z; — 2)" VZ1ogg (| Ti) (zi — T3)
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4.9— Simulation Results

e By doing this, we have a Gaussian approximation of the log-likelihood and

then we obtain a Gaussian proposal ¢ (xl:n, x;{;:,ﬁLL) =q (x_(k:kJrL), x;{;:,ﬁLL)
k+L . ~
l0g q (T_ (kekt L) Thopor) = St Viogg (vil T0) - (z — 7)
+3 (2 = 2)" V2logg (yil ) (vi — Bi) — 5 2 (wie1 — Axy)” 571 (24 — Az;)
e (Pitt & Shepard, 1999) propose to select

Lk:k+1 = Argmaxm (xk:k:JrL\ ykz:k+L,iI3k—1,CI3k+1)

and a scheme to sample from ¢ (x_(k:kJrL), x;ﬂkJrL) which is of complexity O (L) .
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4.9— Simulation Results

e This algorithm is applied to the SV model where

Xk = ¢Xk 1‘|‘O'Vk, lldN(O 1)
Yi = Bexp(Xu/2) Wi, Wi =" N (0,1).

e Prior are set to ¢ ~U [—1,1], 02 ~IG (¥2,22) and 8 ~ IG (22, 2).
e Full conditional distributions of the parameters given x7.,,y1., are standard.

e Compared to standard single move strategies, the authors report significant

improvement.
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4.9— Simulation Results

Autocorrelation plots for (qb, o2, ﬁ) with L =1

h) fly [ o,y
g |
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4.9— Simulation Results

Autocorrelation plots for (qb, o2, ﬁ) with L = 50 on average

) (b) ply ] o[y
LT [ f [

0. 0- 0.

| | | | | | | ! | I | 1 | | ) ] | ] y ]

0 130 300 450 0 10 300 450 0 150 300 450
Lags Lags Lags

Page 38



