Stat 535 C - Statistical Computing & Monte Carlo Methods

Lecture 15 - 9th March 2006

Arnaud Doucet

Email: arnaud@cs.ubc.ca

1.1- Outline

- More on the probit model
- Conditional prior proposals for time series.
- Advanced proposals for time series.

2.1—General hybrid algorithm

- Generally speaking, to sample from $\pi(\theta)$ where $\theta = (\theta_1, ..., \theta_p)$, we can use the following algorithm at iteration i.
- Iteration i; $i \ge 1$:

For
$$k = 1 : p$$

ullet Sample $heta_k^{(i)}$ using an MH step of proposal distribution

$$q_k\left(\left(\theta_{-k}^{(i)}, \theta_k^{(i-1)}\right), \theta_k'\right)$$
 and target $\pi\left(\left.\theta_k\right| \theta_{-k}^{(i)}\right)$.

where
$$\theta_{-k}^{(i)} = \left(\theta_1^{(i)},...,\theta_{k-1}^{(i)},\theta_{k+1}^{(i-1)},...,\theta_p^{(i-1)}\right)$$
 .

3.1– Probit model

• Banknotes data modelled using a probit regression model

$$\Pr(Y = 1 | x) = \Phi(x^1 \beta_1 + ... + x^4 \beta_4)$$

where

$$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\left(-\frac{v^2}{2}\right) dv$$

 \bullet For n data, the likelihood is then given by

$$f(y_{1:n}|\beta, x_{1:n}) = \prod_{i=1}^{n} \Phi(x_i^T \beta)^{y_i} (1 - \Phi(x_i^T \beta))^{1-y_i}.$$

3.1- Probit model

- One can use the MH algorithm where $q(\beta, \beta') = \mathcal{N}\left(\beta'; \beta, \tau^2 \widehat{\Sigma}\right)$ or use the Gibbs sampler by introducing additional latent variables.
- "Extended" model

$$Z_i \sim \mathcal{N}\left(x_i^{\mathrm{T}}\beta, 1\right), \ Y_i = \left\{ egin{array}{ll} 1 & ext{if } Z_i > 0 \\ 0 & ext{otherwise.} \end{array} \right.$$

• We are now going to sample from $\pi(\beta, z_{1:n} | x_{1:n}, y_{1:n})$ instead of $\pi(\beta | x_{1:n}, y_{1:n})$

3.2– Gibbs Sampler for Probit model

• The full conditional distributions are simple

$$\pi(\beta|y_{1:n}, x_{1:n}, z_{1:n}) = \pi(\beta|x_{1:n}, z_{1:n})$$
 (standard Gaussian!),

$$\pi(z_{1:n}|y_{1:n},x_{1:n},\beta) = \prod_{i=1}^{n} \pi(z_k|y_k,x_k,\beta)$$

where

$$z_k | y_k, x_k, \beta \sim \begin{cases} \mathcal{N}_+ \left(x_k^{\mathrm{T}} \beta, 1 \right) & \text{if } y_k = 1 \\ \\ \mathcal{N}_- \left(x_k^{\mathrm{T}} \beta, 1 \right) & \text{if } y_k = 0. \end{cases}$$

Traces (left), Histograms (middle) and Autocorrelations (right) for $(\beta_1^{(i)}, ..., \beta_4^{(i)})$.

3.2– Gibbs Sampler for Probit model

• The results obtained through Gibbs are very similar to MH.

• We can also adopt an Zellner's type prior and obtain very similar results.

• Very similar were also obtained using a logistic fonction using the MH (Gibbs is feasible but more difficult).

3.3 Gibbs sampling and Hybrid algorithm for Probit Regression

- Although the introduction of latent variables can be attractive, it can be also very inefficient.
- It is not because you can use the Gibbs sampler that everything works well!
- Consider the following simple generalization of the previous model

$$Z_i \sim \mathcal{N}(x_i\beta, \sigma^2), Y_i = \begin{cases} 1 & \text{if } Z_i > 0 \\ 0 & \text{otherwise.} \end{cases}$$

• We complete the model by $\sigma^2 \sim \mathcal{IG}(1.5, 1.5)$ and $\beta | \sigma^2 \sim \mathcal{N}(0, 100)$.

3.3—Gibbs sampling and Hybrid algorithm for Probit Regression

Samples of $(\beta^{(i)}, \sigma^{(i)})$ obtained by the Gibbs sampler plotted with some contours of the posterior.

3.3- Gibbs sampling and Hybrid algorithm for Probit Regression

• Not only the data Z_i and (β, σ^2) are very correlated but we have

$$\Pr(Y_i = 1 | x_i, \beta, \sigma^2) = \Phi\left(\frac{x_i\beta}{\sigma}\right)$$

• The likelihood only depends on β/σ and the parameters β and σ are not identifiable.

3.3 Gibbs sampling and Hybrid algorithm for Probit Regression

• One way to improve the mixing consists of using an additional MH step that proposes to randomly rescale the current value.

• We use a proposal distribution such that

$$(\beta', \sigma') = \lambda(\beta, \sigma)$$
 with $\lambda \sim \mathcal{E}xp(1)$

that proposes to randomly rescale the current value.

3.3—Gibbs sampling and Hybrid algorithm for Probit Regression

Samples of $(\beta^{(i)}, \sigma^{(i)})$ obtained by the Gibbs sampler+MH step plotted with some contours of the posterior.

4.1- Back to Hidden Markov Models

• Consider the following hidden Markov model

$$X_k | (X_{k-1} = x_{k-1}) \sim f_\theta (\cdot | x_{k-1}), X_1 \sim \mu$$

$$Y_n | (X_k = x_k) \sim g_\theta (\cdot | x_k),$$

and we set a prior $\pi(\theta)$ on the unknown hyperparameters θ .

 \bullet Given n data, we are interested in the joint posterior

$$\pi\left(\theta,x_{1:n}|y_{1:n}\right)$$
.

• There is no closed-form expression for this joint distribution even in the model is linear Gaussian or for finite state-space model.

4.1- Back to Hidden Markov Models

• In previous lectures, we propose sampling from $\pi(\theta, x_{1:n}|y_{1:n})$ using the Gibbs sampler where the variables are updated according to

$$X_k \sim \pi \left(\left. x_k \right| y_{1:n}, x_{-k}, \theta \right)$$

with for 2 < k < n

$$\pi\left(\left.x_{k}\right|y_{1:n},x_{-k},\theta\right) \propto \pi\left(x_{1:n},y_{1:n},\theta\right)$$

$$\propto \pi(\theta) \mu(x_1) \prod_{i=2}^{n} f_{\theta}(x_i | x_{i-1}) \prod_{i=1}^{n} g_{\theta}(y_i | x_i)$$
prior likelihood

$$\propto f_{\theta}(x_k|x_{k-1}) f_{\theta}(x_{k+1}|x_k) g_{\theta}(y_k|x_k)$$

and $\theta \sim \pi \left(\theta | y_{1:n}, x_{1:n} \right)$ (or by subblocks).

4.1– Back to Hidden Markov Models

- It is often possible to implement the Gibbs sampler even if this can be expensive; e.g. if you use Accept/Reject to sample from $\pi(x_k|y_{1:n}, x_{-k}, \theta)$ using the proposal $\pi(x_k|x_{-k}, \theta) \propto f_{\theta}(x_k|x_{k-1}) f_{\theta}(x_{k+1}|x_k)$.
- Even if it is possible to implement the Gibbs sampler, one can expect a very slow convergence of the algorithm is successive variables are highly correlated.
- Indeed, as you update x_k with x_{k-1} and x_{k+1} being fixed, then you cannot move much into the space.

4.2— Illustrative Example

• Consider the very simple case where $\theta = (\sigma_v^2, \sigma_w^2)$

$$X_k = X_{k-1} + V_k \text{ where } V_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_v^2\right),$$

$$Y_k = X_k + W_k \text{ where } W_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \sigma_w^2\right)$$

then we have

$$\pi(x_k|x_{-k},\theta) \propto f_{\theta}(x_k|x_{k-1}) f_{\theta}(x_{k+1}|x_k)$$

$$= \mathcal{N}\left(x_k; \frac{x_{k-1} + x_{k+1}}{2}, \frac{\sigma_v^2}{2}\right)$$

and

$$\pi\left(\left.x_{k}\right|y_{1:n},x_{-k},\theta\right) \propto \pi\left(\left.x_{k}\right|x_{-k},\theta\right)g_{\theta}\left(\left.y_{k}\right|x_{k}\right)$$

$$= \mathcal{N}\left(x_k; \frac{\sigma_v^2 \sigma_w^2}{\sigma_v^2 + 2\sigma_w^2} \left(\frac{x_{k-1} + x_{k+1}}{\sigma_v^2} + \frac{y_k}{\sigma_w^2}\right), \frac{\sigma_v^2 \sigma_w^2}{\sigma_v^2 + 2\sigma_w^2}\right)$$

4.2— Illustrative Example

- Assume for the time being that instead of sampling from $\pi(x_k|y_{1:n}, x_{-k}, \theta)$ directly, we use rejection sampling with $\pi(x_k|x_{-k}, \theta)$ as a proposal distribution.
- In this case we have to bound

$$g_{\theta}(y_k|x_k) = \frac{1}{\sqrt{2\pi}\sigma_w} \exp\left(-\frac{(y_k - x_k)^2}{2\sigma_w^2}\right) \le \frac{1}{\sqrt{2\pi}\sigma_w}.$$

• We accept each proposal $X^* \sim \pi\left(x_k | x_{-k}, \theta\right)$ with probability $\exp\left(-\frac{(y_k - X^*)^2}{2\sigma_w^2}\right)$, so the (unconditional) acceptance probability is given by

$$\int \pi(x_k|x_{-k}, \theta) \exp\left(-\frac{(y_k - x_k)^2}{2\sigma_w^2}\right) dx_k = \frac{\sigma_w \exp\left(-\frac{1}{2}\left(y_k^2/\sigma_w^2 - (x_{k-1} + x_{k+1})^2/\sigma_v^2\right)\right)}{\sqrt{\sigma_v^2 + 2\sigma_w^2}}$$

4.3– Block sampling strategies

ullet To improve the algorithm, we would like to be able to sample a whole block of variables simultaneously; i.e. being able to sample for 1 < k < k + L < n from

$$\pi \left(x_{k:k+L} | y_{1:n}, x_{-(k:k+L)}, \theta \right) = \pi \left(x_{k:k+L} | y_{k:k+L}, x_{k-1}, x_{k+L+1}, \theta \right)$$

$$\propto \prod_{i=k}^{k+L+1} f_{\theta} \left(x_{i} | x_{i-1} \right) \prod_{i=k}^{k+L} g_{\theta} \left(y_{i} | x_{i} \right).$$

- In this case, it is typically impossible to sample from $\pi\left(x_{k:k+L}|y_{1:n},x_{-(k:k+L)},\theta\right)$ exactly as L is large, say 5 or 10.
- We are propose to use a MH step of invariant distribution $\pi\left(x_{k:k+L}|y_{1:n},x_{-(k:k+L)},\theta\right)$ instead, hence we need to build a proposal distribution $q\left(\left(x_{1:n},\theta\right),x'_{k:k+L}\right)$.

4.4— Conditional prior proposals

• We first propose to use the conditional prior

$$q((x_{1:n}, \theta), x'_{k:k+L}) = \pi(x_{k:k+L} | x_{-(k:k+L)}, \theta) = \pi(x_{k:k+L} | x_{k-1}, x_{k+L+1}, \theta)$$

$$\propto \prod_{i=k}^{k+L+1} f_{\theta}(x_i | x_{i-1}).$$

• In this case, the candidate $X'_{k:k+L} \sim \pi\left(x_{k:k+L} | x_{k-1}, x_{k+L+1}, \theta\right)$ is accepted with probability

$$\min \left(1, \frac{\pi\left(x'_{k:k+L} \middle| y_{k:k+L}, x_{k-1}, x_{k+L+1}, \theta\right) \pi\left(x_{k:k+L} \middle| x_{k-1}, x_{k+L+1}, \theta\right)}{\pi\left(x_{k:k+L} \middle| y_{k:k+L}, x_{k-1}, x_{k+L+1}, \theta\right) \pi\left(x'_{k:k+L} \middle| x_{k-1}, x_{k+L+1}, \theta\right)}\right)$$

$$= \min \left(1, \frac{\prod_{i=k}^{k+L} g_{\theta}\left(y_{i} \mid x_{i}'\right)}{\prod_{i=k}^{k+L} g_{\theta}\left(y_{i} \mid x_{i}\right)}\right).$$

• Simple but one cannot expect it to be too efficient when the observations are very informative compared to the prior.

4.5— Illustrative example

• Consider the case where

$$X_k = AX_{k-1} + BV_k$$
, where $V_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I)$.

• Particular cases include

$$X_k = X_{k-1} + \sigma V_k$$
, where $V_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$,

$$X_{k} = \begin{pmatrix} \alpha_{k} \\ \alpha_{k-1} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} X_{k-1} + \begin{pmatrix} \sigma \\ 0 \end{pmatrix} V_{k}, \text{ where } V_{k} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1).$$

4.5— Illustrative example

- In this case, it is simple to see that $\pi(x_{k:k+L}|x_{k-1},x_{k+1},\theta)$ is a Gaussian distribution.
- In (Knorr-Held, 1999), one samples from this distribution by computing directly the parameters of this joint distribution: complexity $O(L^2)$.
- We can derive a simpler method of complexity O(L) based on the following decomposition (omitting θ in the notation)

$$\pi (x_{k:k+L} | x_{k-1}, x_{k+L+1}) = \prod_{i=k}^{k+L-1} \pi (x_i | x_{k-1}, x_{k+L+1}, x_{i+1}).$$

$$= \prod_{i=k}^{k+L-1} \pi (x_i | x_{k-1}, x_{i+1})$$

4.5– Illustrative example

• Moreover it is easy to establish the expression for $\pi(x_i|x_{k-1},x_{i+1})$

$$\pi(x_i|x_{k-1},x_{i+1}) \propto \pi(x_i|x_{k-1}) f(x_{i+1}|x_i)$$

as $\pi(x_{i}|x_{k-1}) = \int \pi(x_{k:i}|x_{k-1}) dx_{k:i-1} = \mathcal{N}(x_{k}; \mu_{i}(x_{k-1}), \Sigma_{i})$ with, for $X_{n} = AX_{n-1} + BV_{n}$, $\mu_{k-1}(x_{k-1}) = x_{k-1}$, $\Sigma_{k-1} = 0$ and for $i \geq k$ $\mu_{i}(x_{k-1}) = A\mu_{i-1}(x_{k-1}),$

 $\Sigma_i = A\Sigma_{i-1}A^{\mathrm{T}} + \Sigma \text{ with } \Sigma = BB^{\mathrm{T}}.$

• To obtain $\pi(x_i|x_{k-1},x_{i+1})$, we combine the prior $\pi(x_i|x_{k-1})$ with the "like-lihood" $f(x_{i+1}|x_i)$.

4.5– Illustrative example

• We have $\pi(x_i|x_{k-1}) = \mathcal{N}(x_k; \mu_i(x_{k-1}), \Sigma_i)$ and $f(x_{i+1}|x_i) = \mathcal{N}(x_{i+1}; Ax_i, \Sigma)$ then

$$\pi(x_i | x_{k-1}, x_{i+1}) = \mathcal{N}(x_i; \mu_i(x_{k-1}, x_{i+1}), \widetilde{\Sigma}_i)$$

where

$$\widetilde{\Sigma}_i = \left(\Sigma_i^{-1} + A^{\mathrm{T}} \Sigma^{-1} A\right)^{-1},$$

$$\mu_i(x_{k-1}, x_{k+L+1}) = \widetilde{\Sigma}_i(A^{\mathrm{T}}\Sigma^{-1}x_{i+1} + \Sigma_i^{-1}\mu_i(x_{k-1})).$$

• To sample a realization of π ($x_{k:k+L} | x_{k-1}, x_{k+L+1}$), first compute μ_i (x_{k-1}), Σ_i for i = k, ..., k+L using a forward recursion. Then sample backward

$$X_{k+L} \sim \pi\left(\cdot | x_{k-1}, x_{k+L+1}\right), \ X_{k+L-1} \sim \pi\left(\cdot | x_{k-1}, X_{k+L}\right), ..., \ X_k \sim \pi\left(\cdot | x_{k-1}, X_{k+1}\right)$$

4.6– Application to Tokyo Rainfall Data

Number of occurrences of rainfall in Tokyo for each day during 1983-1984 reproduced as relative frequencies between 0, 0.5 and 1 (n = 366)

4.7- Statistical Model

• Consider the following model

$$X_{k} = \begin{pmatrix} \alpha_{k} \\ \alpha_{k-1} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} X_{k-1} + \begin{pmatrix} \sigma \\ 0 \end{pmatrix} V_{k}, \text{ where } V_{k} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$$

and

$$Y_k \mid X_k \sim \begin{cases} B(2, \pi_k) & k \neq 60, \\ B(1, \pi_k) & k = 60 \text{ (February 29)} \end{cases}$$
, where $\pi_k = \frac{\exp(\alpha_k)}{1 + \exp(\alpha_k)}$.

• We also use for $\sigma^2 \sim \mathcal{IG}\left(\frac{\nu_0}{2}, \frac{\gamma_0}{2}\right)$.

4.8– Sampling strategy

• We use the block sampling strategies discussed before where candidates are sampled according to $\pi(x_{k+1:k+L}|x_{k-1},x_{k+L+1})$ and accepted with proba

$$\min\left(1, \frac{\prod_{i=k}^{k+L} g\left(y_{i} \mid x_{i}'\right)}{\prod_{i=k}^{k+L} g\left(y_{i} \mid x_{i}\right)}\right).$$

• The parameter σ^2 is updated through a simple Gibbs step

$$\sigma^2 \sim \pi \left(\sigma^2 | x_{1:n}, y_{1:n} \right) = \pi \left(\sigma^2 | x_{1:n} \right)$$

$$= \mathcal{IG}\left(\frac{\nu_0 + n - 1}{2}, \frac{\gamma_0 + \sum_{k=2}^{n} (\alpha_k - 2\alpha_{k-1} + \alpha_{k-2})^2}{2}\right)$$

• For block size L = 1, 5, 20 and 40, we compute the average trajectories of 100 parallel chains after 10, 50, 100 and 500 iterations with initialization $x_k = 0$ for all $k, \sigma^2 = 0.1$.

Average trajectories over 100 chains for L=1,5,20 and 40 from top to bottom.

After 10 Iterations

Average trajectories over 100 chains for L=1,5,20 and 40 from top to bottom.

After 50 Iterations

Average trajectories over 100 chains for L=1,5,20 and 40 from top to bottom.

After 100 Iterations

Average trajectories over 100 chains for L=1,5,20 and 40 from top to bottom.

Traces of $\alpha_1, \alpha_{100}, \alpha_{333}$ and σ^2 for L = 1 (left) and L = 20 (right).

- This (naive!) block sampling strategy performs well here because the likelihood of the observations is fairly flat.
- For a linear Gaussian observation equation, Knorr-Held compares this strategy to a direct Gibbs sampling implementation. As expected, the conditional proposal strategy is competitive when the observations are not very informative compared to the prior.
- For more complex problems, such strategies are inefficient and we will need to use the observations to build the proposal.

- (Pitt & Shephard, 1999) propose a more efficient strategy... also more computationally intensive.
- Consider the log full conditional distribution

$$\log \pi (x_{k:k+L} | y_{k:k+L}, x_{k-1}, x_{k+1}) = \sum_{i=k}^{k+L} \log g (y_i | x_i) + \sum_{i=k}^{k+L+1} \log f (x_{i+1} | x_i)$$

$$\equiv \sum_{i=k}^{k+L} \log g(y_i|x_i) - \frac{1}{2} \sum_{i=k}^{k+L+1} (x_{i+1} - Ax_i)^{\mathrm{T}} \Sigma^{-1} (x_{i+1} - Ax_i)$$

which is not quadratic in x_i hence $\pi\left(x_{k:k+L} | y_{k:k+L}, x_{k-1}, x_{k+1}\right)$ is not Gaussian.

• The idea is to expand the log-likelihood part around some point estimates

$$\log g(y_i|x_i) \simeq \log g(y_i|\widehat{x}_i) + \nabla \log g(y_i|\widehat{x}_i) \cdot (x_i - \widehat{x}_i)$$

$$+\frac{1}{2} (x_i - \widehat{x}_i)^{\mathrm{T}} \nabla^2 \log g (y_i | \widehat{x}_i) (x_i - \widehat{x}_i)$$

• By doing this, we have a Gaussian approximation of the log-likelihood and then we obtain a Gaussian proposal $q(x_{1:n}, x'_{k:k+L}) = q(x_{-(k:k+L)}, x'_{k:k+L})$

$$\log q \left(x_{-(k:k+L)}, x'_{k:k+L} \right) \equiv \sum_{i=k}^{k+L} \nabla \log g \left(y_i | \widehat{x}_i \right) . \left(x_i - \widehat{x}_i \right)$$

$$+ \frac{1}{2} \left(x_i - \widehat{x}_i \right)^{\mathrm{T}} \nabla^2 \log g \left(y_i | \widehat{x}_i \right) \left(x_i - \widehat{x}_i \right) - \frac{1}{2} \sum_{i=k}^{k+L+1} \left(x_{i+1} - Ax_i \right)^{\mathrm{T}} \sum_{i=1}^{k-1} \left(x_{i+1} - Ax_i \right)$$

• (Pitt & Shepard, 1999) propose to select

$$\widehat{x}_{k:k+1} = \arg\max\pi(x_{k:k+L}|y_{k:k+L}, x_{k-1}, x_{k+1})$$

and a scheme to sample from $q\left(x_{-(k:k+L)}, x'_{k:k+L}\right)$ which is of complexity $O\left(L\right)$.

• This algorithm is applied to the SV model where

$$X_k = \phi X_{k-1} + \sigma V_k, \ V_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$

$$Y_k = \beta \exp(X_k/2) W_k, W_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1).$$

- Prior are set to $\phi \sim \mathcal{U}[-1,1]$, $\sigma^2 \sim \mathcal{IG}\left(\frac{\nu\sigma}{2},\frac{\gamma_\sigma}{2}\right)$ and $\beta \sim \mathcal{IG}\left(\frac{\nu_\beta}{2},\frac{\gamma_\beta}{2}\right)$.
- Full conditional distributions of the parameters given $x_{1:n}, y_{1:n}$ are standard.
- Compared to standard single move strategies, the authors report significant improvement.

Autocorrelation plots for (ϕ, σ^2, β) with L = 1

Autocorrelation plots for (ϕ, σ^2, β) with L = 50 on average

