Stat 535 C - Statistical Computing & Monte Carlo Methods

Lecture 15 - 7th March 2006

Arnaud Doucet

Email: arnaud@cs.ubc.ca

1.1- Outline

- Mixture and composition of kernels.
- "Hybrid" algorithms.
- Examples

2.1— Mixture of proposals

.

• If K_1 and K_2 are π -invariant then the mixture kernel

$$K(\theta, \theta') = \lambda K_1(\theta, \theta') + (1 - \lambda) K_2(\theta, \theta')$$

is also π -invariant.

• If K_1 and K_2 are π -invariant then the composition

$$K_1 K_2 (\theta, \theta') = \int K_1 (\theta, z) K_2 (z, \theta') dz$$

is also π -invariant.

2.1—Mixture of proposals

• Important: It is not necessary for either K_1 or K_2 to be irreducible and aperiodic

to ensure that the mixture/composition is irreducible and aperiodic.

- For example, ro sample from $\pi(\theta_1, \theta_2)$ we can have
 - the kernel K_1 updates θ_1 and keeps θ_2 fixed whereas
 - the kernel K_2 updates θ_2 and keeps θ_1 fixed.

2.2—Applications of Mixture and Composition of MH algorithms

• For K_1 , we have $\overline{q}_1(\theta, \theta') = q_1((\theta_1, \theta_2), \theta'_1) \delta_{\theta_2}(\theta'_2)$ and

$$r_{1}(\theta, \theta') = \frac{\pi(\theta'_{1}, \theta_{2}) q_{1}((\theta'_{1}, \theta_{2}), \theta_{1})}{\pi(\theta_{1}, \theta_{2}) q_{1}((\theta_{1}, \theta_{2}), \theta'_{1})} = \frac{\pi(\theta'_{1} | \theta_{2}) q_{1}((\theta'_{1}, \theta_{2}), \theta_{1})}{\pi(\theta_{1} | \theta_{2}) q_{1}((\theta_{1}, \theta_{2}), \theta'_{1})}$$

• For K_2 , we have $\overline{q}_2(\theta, \theta') = \delta_{\theta_1}(\theta'_1) q_2((\theta_1, \theta_2), \theta'_2)$ and

$$r_{2}(\theta, \theta') = \frac{\pi(\theta_{1}, \theta'_{2}) q_{2}((\theta_{1}, \theta'_{2}), \theta_{2})}{\pi(\theta_{1}, \theta_{2}) q_{2}((\theta_{1}, \theta_{2}), \theta'_{2})} = \frac{\pi(\theta'_{2} | \theta_{1}) q_{2}((\theta_{1}, \theta'_{2}), \theta_{2})}{\pi(\theta_{2} | \theta_{1}) q_{2}((\theta_{1}, \theta_{2}), \theta'_{2})}$$

• We then combine these kernels through mixture or composition.

2.3— Composition of MH algorithms

Assume we use a composition of these kernels, then the resulting algorithm proceeds as follows at iteration i.

MH step to update component 1

• Sample $\theta_1^* \sim q_1\left(\left(\theta_1^{(i-1)}, \theta_2^{(i-1)}\right), \cdot\right)$ and compute

$$_{1}\left(\left(\theta_{1}^{(i-1)},\theta_{2}^{(i-1)}\right),\left(\theta_{1}^{*},\theta_{2}^{(i-1)}\right)\right) = \min\left(1,\frac{\pi\left(\theta_{1}^{*}|\theta_{2}^{(i-1)}\right)q_{1}\left(\left(\theta_{1}^{*},\theta_{2}^{(i-1)}\right),\theta_{1}^{(i-1)}\right)}{\pi\left(\left(\theta_{1}^{(i-1)}|\theta_{2}^{(i-1)}\right)q_{1}\left(\left(\theta_{1}^{(i-1)},\theta_{2}^{(i-1)}\right),\theta_{1}^{(i-1)}\right)\right)}\right)$$

• With probability $\alpha_1\left(\left(\theta_1^{(i-1)}, \theta_2^{(i-1)}\right), \left(\theta_1^*, \theta_2^{(i-1)}\right)\right)$, set $\theta_1^{(i)} = \theta_1^*$ and otherwise $\theta_1^{(i)} = \theta_1^{(i-1)}$.

2.3— Composition of MH algorithms

MH step to update component 2

• Sample $\theta_2^* \sim q_2\left(\left(\theta_1^{(i)}, \theta_2^{(i-1)}\right), \cdot\right)$ and compute

$$\alpha_{2}\left(\left(\theta_{1}^{(i)}, \theta_{2}^{(i-1)}\right), \left(\theta_{1}^{(i)}, \theta_{2}^{*}\right)\right) = \min\left(1, \frac{\pi\left(\theta_{2}^{*} | \theta_{1}^{(i)}\right) q_{2}\left(\left(\theta_{1}^{(i)}, \theta_{2}^{*}\right), \theta_{2}^{(i-1)}\right)}{\pi\left(\theta_{2}^{(i-1)} | \theta_{1}^{(i)}\right) q_{2}\left(\left(\theta_{1}^{(i)}, \theta_{2}^{(i-1)}\right), \theta_{2}^{*}\right)}\right)$$

• With probability $\alpha_2\left(\left(\theta_1^{(i)}, \theta_2^{(i-1)}\right), \left(\theta_1^{(i)}, \theta_1^*\right)\right)$, set $\theta_2^{(i)} = \theta_2^*$ otherwise $\theta_2^{(i)} = \theta_2^{(i-1)}$.

2.4 Properties

- It is clear that in such cases both K_1 and K_2 are NOT irreducible and aperiodic.
- ⇒ Each of them only update one component!!!!
- However, the composition and mixture of these kernels can be irreducible and aperiodic because then all the components are updated.

2.5—Back to the Gibbs sampler

• Consider now the case where

$$q_1\left(\left(\theta_1,\theta_2\right),\theta_1'\right) = \pi\left(\left.\theta_1'\right|\theta_2\right).$$

then

$$r_{1}(\theta, \theta') = \frac{\pi(\theta'_{1}|\theta_{2}) q_{1}((\theta'_{1}, \theta_{2}), \theta_{1})}{\pi(\theta_{1}|\theta_{2}) q_{1}((\theta_{1}, \theta_{2}), \theta'_{1})} = \frac{\pi(\theta'_{1}|\theta_{2}) \pi(\theta_{1}|\theta_{2})}{\pi(\theta_{1}|\theta_{2}) \pi(\theta'_{1}|\theta_{2})} = 1$$

- Similarly if $q_2((\theta_1, \theta_2), \theta'_2) = \pi(\theta'_2 | \theta_1)$ then $r_2(\theta, \theta') = 1$.
- If you take for proposal distributions in the MH kernels the full conditional distributions then you have the Gibbs sampler!

2.6— General hybrid algorithm

- Generally speaking, to sample from $\pi(\theta)$ where $\theta = (\theta_1, ..., \theta_p)$, we can use the following algorithm at iteration i.
- Iteration i; $i \ge 1$:

For
$$k = 1 : p$$

ullet Sample $heta_k^{(i)}$ using an MH step of proposal distribution

$$q_k\left(\left(\theta_{-k}^{(i)}, \theta_k^{(i-1)}\right), \theta_k'\right)$$
 and target $\pi\left(\left.\theta_k\right| \theta_{-k}^{(i)}\right)$.

where
$$\theta_{-k}^{(i)} = \left(\theta_1^{(i)},...,\theta_{k-1}^{(i)},\theta_{k+1}^{(i-1)},...,\theta_p^{(i-1)}\right)$$
 .

2.6— General hybrid algorithm

- If we have $q_k(\theta_{1:p}, \theta'_k) = \pi(\theta'_k | \theta_{-k})$ then we are back to the Gibbs sampler.
- We can update some parameters according to $\pi(\theta'_k|\theta_{-k})$ (and the move is automatically accepted) and others according to different proposals.
- **Example**: Assume we have $\pi(\theta_1, \theta_2)$ where it is easy to sample from $\pi(\theta_1 | \theta_2)$ and then use an MH step of invariant distribution $\pi(\theta_2 | \theta_1)$.

2.6— General hybrid algorithm

At iteration i.

- ullet Sample $heta_1^{(i)} \sim \pi\left(\left. heta_1
 ight| heta_2^{(i-1)}
 ight)$.
- Sample $\theta_2^{(i)}$ using one MH step of proposal distribution $q_2\left(\left(\theta_1^{(i)}, \theta_2^{(i-1)}\right), \theta_2\right)$ and target $\pi\left(\left.\theta_2\right| \theta_1^{(i)}\right)$.

Remark: There is NO NEED to run the MH algorithm multiple steps to ensure that $\theta_2^{(i)} \sim \pi \left(\theta_2 | \theta_2^{(i-1)} \right)$.

3.1– Alternative acceptance probabilities

• The standard MH algorithm uses the acceptance probability

$$\alpha(\theta, \theta') = \min \left(1, \frac{\pi(\theta') q(\theta', \theta)}{\pi(\theta) q(\theta, \theta')} \right).$$

• This is not necessary and one can also use any function

$$\alpha (\theta, \theta') = \frac{\delta (\theta, \theta')}{\pi (\theta) q (\theta, \theta')}$$

which is such that

$$\delta(\theta, \theta') = \delta(\theta', \theta) \text{ and } 0 \le \alpha(\theta, \theta') \le 1$$

• Example (Baker, 1965):

$$\alpha (\theta, \theta') = \frac{\pi (\theta') q (\theta', \theta)}{\pi (\theta') q (\theta', \theta) + \pi (\theta) q (\theta, \theta')}.$$

3.1– Alternative acceptance probabilities

• Indeed one can check that $K(\theta, \theta') = \alpha(\theta, \theta') q(\theta, \theta') + \left(1 - \int \alpha(\theta, u) q(\theta, u) du\right) \delta_{\theta}(\theta')$ is π -reversible.

• We have

$$\pi(\theta) \alpha(\theta, \theta') q(\theta, \theta') = \pi(\theta) \frac{\delta(\theta, \theta')}{\pi(\theta) q(\theta, \theta')} q(\theta, \theta')$$

$$= \delta(\theta, \theta')$$

$$= \delta(\theta', \theta)$$

$$= \pi(\theta') \alpha(\theta', \theta) q(\theta', \theta).$$

• The MH acceptance is favoured as it increases the acceptance probability.

• In 1986, Challenger exploded; the explosion being the result of an O-ring failure. It was believed to be a result of a cold weather at the departure time: 31°F.

- We have access to the data of 23 previous flights which give for flight i: Temperature at flight time x_i and $y_i = 1$ failure and zero otherwise (Robert & Casella, p. 15).
- We want to have a model relating Y to x. Obviously this cannot be a linear model $Y = \alpha + x\beta$ as we want $Y \in \{0, 1\}$.

• We select a simple logistic regression model

$$\Pr(Y = 1 | x) = 1 - \Pr(Y = 0 | x) = \frac{\exp(\alpha + x\beta)}{1 + \exp(\alpha + x\beta)}.$$

• Equivalently we have

$$\log it = \log \left(\frac{\Pr(Y = 1 | x)}{\Pr(Y = 0 | x)} \right) = \alpha + x\beta.$$

• This ensures that the response is binary.

• We follow a Bayesian approach and select

$$\pi(\alpha, \beta) = \pi(\alpha|b) \pi(\beta) = b^{-1} \exp(\alpha) \exp(-b^{-1} \exp(\alpha));$$

i.e. exponential prior on $\exp(\alpha)$ and flat prior on β .

- b is selected as the data-dependent prior such that $E(\alpha) = \widehat{\alpha}$ where $\widehat{\alpha}$ is the MLE of α (Robert & Casella).
- As a simple proposal distribution, we use

$$q((\alpha, \beta), (\alpha', \beta')) = \pi(\alpha'|b) \mathcal{N}(\beta'; \beta^{(i-1)}, \widehat{\sigma}_{\beta}^{2})$$

where $\widehat{\sigma}_{\beta}^2$ is the associated variance at thr MLE $\widehat{\beta}$.

The algorithm proceeds as follows at iteration i

• Sample $(\alpha^*, \beta^*) \sim \pi(\alpha|b) \mathcal{N}(\beta; \beta^{(i-1)}, \widehat{\sigma}_{\beta}^2)$ and compute

$$\zeta\left(\left(\alpha^{(i-1)},\beta^{(i-1)}\right),\left(\alpha^{*},\beta^{*}\right)\right) = \min\left(1,\frac{\pi\left(\alpha^{*},\beta^{*}|\operatorname{data}\right)\pi\left(\alpha^{(i-1)}|b\right)}{\pi\left(\alpha^{(i-1)},\beta^{(i-1)}|\operatorname{data}\right)\pi\left(\alpha^{*}|b\right)}\right)$$

• Set $(\alpha^{(i)}, \beta^{(i)}) = (\alpha^*, \beta^*)$ with probability $\zeta((\alpha^{(i-1)}, \beta^{(i-1)}), (\alpha^*, \beta^*))$, otherwise set $(\alpha^{(i)}, \beta^{(i)}) = (\alpha^{(i-1)}, \beta^{(i-1)})$.

Plots of $\frac{1}{k} \sum_{i=1}^{k} \alpha^{(k)}$ (left) and $\frac{1}{k} \sum_{i=1}^{k} \beta^{(i)}$ (right).

Histogram estimates of $p(\alpha|data)$ (left) and $p(\beta|data)$ (right).

Predictive $\Pr(Y = 1 | x) = \int \Pr(Y = 1 | x, \alpha, \beta) \pi(\alpha, \beta | \text{data})$, predictions of failure probability at 65°F and 45°F.

4.2—Probit Regression Example

- We consider the following example: we take 4 measurements from 100 genuine Swiss banknotes and 100 counterfeit ones.
- \bullet The response variable y is 0 for genuine and 1 for counterfeit and the explanatory variables are
- x_1 : the length,
- x_2 : the width of the left edge
- x_3 : the width of the right edge
- x_4 : the bottom margin witdth All measurements are in millimeters.

Left: Plot of the status indicator versus the bottom margin width.

Right: Boxplots of the bottom margin wifth for both counterfeit status.

4.2– Probit Regression Example

• Instead of selecting a logistic link, we select a probit one here

$$\Pr(Y = 1 | x) = \Phi(x^1 \beta_1 + ... + x^4 \beta_4)$$

where

$$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\left(-\frac{v^2}{2}\right) dv$$

 \bullet For n data, the likelihood is then given by

$$f(y_{1:n}|\beta, x_{1:n}) = \prod_{i=1}^{n} \Phi(x_i^T \beta)^{y_i} (1 - \Phi(x_i^T \beta))^{1-y_i}.$$

4.2—Probit Regression Example

- We assume a vague prior where $\beta \sim \mathcal{N}(0, 100I_4)$ and we use a simple random walk sampler with $\widehat{\Sigma}$ the covariance matrix associated to the MLE (estimated using simple deterministic method).
- \bullet The algorithm is thus simply given at iteration i by
 - Sample $\beta^* \sim \mathcal{N}\left(\beta^{(i-1)}, \tau^2 \widehat{\Sigma}\right)$ and compute

$$\alpha\left(\beta^{(i-1)}, \beta^*\right) = \min\left(1, \frac{\pi\left(\beta^* | y_{1:n}, x_{1:n}\right)}{\pi\left(\beta^{(i-1)} | y_{1:n}, x_{1:n}\right)}\right).$$

- Set $\beta^{(i)} = \beta^*$ with probability $\alpha(\beta^{(i-1)}, \beta^*)$ and $\beta^{(i)} = \beta^{(i-1)}$ otherwise.
- Best results obtained with $\tau^2 = 1$.

4.2- Probit Regression Example

Traces (left), Histograms (middle) and Autocorrelations (right) for $(\beta_1^{(i)}, ..., \beta_4^{(i)})$.

4.2—Probit Regression Example

• One way to monitor the performance of the algorithm of the chain $\{X^{(i)}\}$ consists of displaying $\rho_k = cov\left[X^{(i)}, X^{(i+k)}\right]/var\left(X^{(i)}\right)$ which can be esti-

mated

from the chain, at least for small values of k.

• Sometimes one uses an effective sample size measure

$$N^{\text{ess}} = N \left(1 + 2 \sum_{k=1}^{N_0} \widehat{\rho}_k \right)^{-1/2}.$$

This represents approximately the sample size of an equivalent i.i.d. samples.

• One should be very careful with such measures which can be very misleading.

4.2—Probit Regression Example

• We found for $E(\beta|y_{1:n}, x_{1:n}) = (-1.22, 0.95, 0.96, 1.15)$ so a simple plug-in estimate of the predictive probability of a counterfeit bill is

$$\widehat{p} = \Phi \left(-1.22x^1 + 0.95x^2 + 0.96x^3 + 1.15x^4 \right)$$

For x = (214.9, 130.1, 129.9, 9.5), we obtain $\hat{p} = 0.59$.

• A better estimate is obtained by

$$\int \Phi \left(\beta_1 x^1 + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4\right) \pi \left(\beta | y_{1:n}, x_{1:n}\right) d\beta$$

- It is impossible to use Gibbs to sample directly from $\pi(\beta|y_{1:n},x_{1:n})$.
- Introduce the following unobvserved latent variables

$$Z_i \sim \mathcal{N}\left(x_i^{\mathrm{T}}\beta, 1\right),$$

$$Y_i = \begin{cases} 1 & \text{if } Z_i > 0 \\ 0 & \text{otherwise.} \end{cases}$$

• We have now define a joint distribution

$$f(y_i, z_i | \beta, x_i) = f(y_i | z_i) f(z_i | \beta, x_i).$$

• Now we can check that $f(y_i = 1 | x_i, \beta) = \int f(y_i, z_i | \beta, x_i) dz_i = \int_0^\infty f(z_i | \beta, x_i) dz_i = \Phi(x_i^T \beta).$

- \Rightarrow We haven't changed the model!
- We are now going to sample from $\pi(\beta, z_{1:n} | x_{1:n}, y_{1:n})$ instead of $\pi(\beta | x_{1:n}, y_{1:n})$ because the full conditional distributions are simple

$$\pi(\beta|y_{1:n}, x_{1:n}, z_{1:n}) = \pi(\beta|x_{1:n}, z_{1:n})$$
 (standard Gaussian!),

$$\pi(z_{1:n}|y_{1:n},x_{1:n},\beta) = \prod_{i=1}^{n} \pi(z_k|y_k,x_k,\beta)$$

where

$$z_k | y_k, x_k, eta \sim \left\{ egin{array}{ll} \mathcal{N}_+ \left(x_k^{\mathrm{T}} eta, 1
ight) & ext{if } y_k = 1 \ \\ \mathcal{N}_- \left(x_k^{\mathrm{T}} eta, 1
ight) & ext{if } y_k = 0. \end{array}
ight.$$

Traces (left), Histograms (middle) and Autocorrelations (right) for $(\beta_1^{(i)}, ..., \beta_4^{(i)})$.

• The results obtained through Gibbs are very similar to MH.

• We can also adopt an Zellner's type prior and obtain very similar results.

• Very similar were also obtained using a logistic fonction using the MH (Gibbs is feasible but more difficult).