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1.1— Outline

e Mixture and composition of kernels.

e “Hybrid” algorithms.

e Eixamples
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2.1— Mixture of proposals

o If K1 and K5 are m-invariant then the mixture kernel

K (0,0) = \K1(0,0") + (1 — \) Ko (6,0

is also m-invariant.

o If i and Ky are mw-invariant then the composition

K1K5(0,0") = /K1 (0,2) K3 (2,0") dz

is also m-invariant.
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2.1— Mixture of proposals

e Important: It is not necessary for either Ky or K5 to be irreducible and
aperiodic
to ensure that the mixture/composition is irreducible and aperiodic.

e For example, ro sample from 7 (A1, 02) we can have

e the kernel K; updates 6; and keeps 05 fixed whereas
e the kernel K5 updates 65 and keeps 6, fixed.
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2.2— Applications of Mixture and Composition of M H algorithms

e For Kl, we have ql (9, 9/) = ({1 ((91, 92) ,9/1) 592 (9’2> and

m (01,02) g1 ((01,62),601) _ w(61]02) qu ((63,02),61)
m(01,02) q1 ((01,02),07)  m(01]02)q1 ((01,02),07)

1 (97 9,) —

e For KQ, we have 62 (9, 9/) = 591 (9’1) q2 ((91, 92) ,Hé> and

r (9 9/) _ n (917 9/2) q2 ((917 95) 792) _ m (95‘ 91) q2 ((917 95) , 92)
’ T (01,02) q2 ((01,02) ,05)  m(02]01)q2 ((01,02),05)

e We then combine these kernels through mixture or composition.
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2.3— Composition of MH algorithms

Assume we use a composition of these kernels, then the resulting algorithm
proceeds as follows at iteration i.

MH step to update component 1

e Sample 07 ~ q; ((9?‘”, Qéi_l)) ,-) and compute

m (1108 ) au (07,0877 60 Y)

(i—1) ,(i—1) x« gl—1)\) _ -
R e O e P Y (C )

e With probability aq ((9?—1), 9§i_1)) : (6”{, 95@'—1))> , set 6’?) = 07 and

otherwise 9@ = 9?_1).
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2.3— Composition of MH algorithms

MH step to update component 2

e Sample 05 ~ ¢ ((9@, 9§i_1)) ,-) and compute

m(031017) g2 ((017,03) 057"
(o) (7))

o ((9?%9&"”) | (9@,9;)) — min | 1,

e With probability Q2 (((9%%)7 6)51—”) ) (‘9%@)7 9?)) ) set (9;%) — (9>2k otherwise Qéz) —

oy .
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2.4— Properties

e It is clear that in such cases both K; and Ko are NOT irreducible

and aperiodic.
= Each of them only update one component!!!!

e However, the composition and mixture of these kernels can
be irreducible and aperiodic because then all the components are updated.
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2.5— Back to the Gibbs sampler

e Consider now the case where
q1((01,02),07) =7 (01]02).

then

_ m(01]02) a1 ((01,02) ,01) _ m(01]02) 7 (0:]02) _

T1 ((9,(9)— 7T((91|(92)Q1 ((91’92)76”1) - 7T((91‘(92)7T((9/1|92) —

® Similarly if q2 ((91, 92) ,95) =T (9’2| 91) then ) (9, 9’) = 1.

e If you take for proposal distributions in the MH kernels the full conditional
distributions then you have the Gibbs sampler!
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2.6— General hybrid algorithm

e Generally speaking, to sample from 7 () where 8 = (64, ...,0,),

we can use the following algorithm at iteration <.
e lteration 7; 7 > 1:
Fork=1:p
e Sample 9,(5) using an MH step of proposal distribution

0, (01, 0577),0;,) and target = (0] 0"} ).

where 98’2@ = (6’5’&'), e (9,(21,9,8;1), ...,9](97;_1)) .
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2.6— General hybrid algorithm

o If we have gy (01.p,0;) = 7 (6;| 0_1) then we are back to the Gibbs sampler.

e We can update some parameters according to 7 (6, |6_x) (and the move

is automatically accepted) and others according to different proposals.

e Example: Assume we have 7 (01, 62) where it is easy to sample from
7 (61| 62) and then use an MH step of invariant distribution 7 (62| 61) .
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2.6— General hybrid algorithm

At iteration 7.

e Sample (9@ ~ T (91| (95%'—1)) .

e Sample Qéi) using one MH step of proposal distribution
q2 ((9%7’),6’;2_1)) ,92) and target 7 (92| 9%2)) .

Remark: There is NO NEED to run the MH algorithm multiple steps
to ensure that 957’) ~ T (92| 6’;2_1)) .
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3.1— Alternative acceptance probabilities

e The standard MH algorithm uses the acceptance probability

N (1 T(0)q(6,0)
a(6,0") = min (1, 7r(6’)q(6’,0’)>'

e This is not necessary and one can also use any function
6(0,6")
m(0)q(6,0)

a(0,0") =

which is such that
§(0,0')=6(0,0) and 0 < (6,6) <1

e Example (Baker, 1965):
m(0') q(60',6)

.9 = T F740.0) +7(0)q6,0)
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3.1— Alternative acceptance probabilities

e Indeed one can check that
K(0.0) = a0.0)00.0)+ (1~ [ a.0)q0.0)du) 60 (0)

is m-reversible.

e We have

50,6
(0)q(0,0)

(@) (0,6q(0,67) = 7(0) - q(0,0')

5(0,0)

= 5(0,0)

= 7(0)a(0,0)q(0,0).

e The MH acceptance is favoured as it increases the acceptance probability.
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4.1— Logistic Regression Example

e In 1986, Challenger exploded; the explosion being the result of an
O-ring failure. It was believed to be a result of a cold weather
at the departure time: 31°F.

e We have access to the data of 23 previous flights which give
for flight ¢: Temperature at flight time x; and y; = 1 failure and
zero otherwise (Robert & Casella, p. 15).

e We want to have a model relating Y to x. Obviously this

cannot be a linear model Y = a4 x( as we want Y € {0, 1}.
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4.1— Logistic Regression Example

e We select a simple logistic regression model

Pr(Y =1]z) =1—Pr(Y =0]z) = - jxfxi)“(;i@m

e Fquivalently we have

= o+ x0.

Pr(Y =1
logitzlog( r |x))

Pr(Y =0|x

N———"

e This ensures that the response is binary.
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4.1— Logistic Regression Example

e We follow a Bayesian approach and select

7 (,8) = 7 (al ) 7 (8) = b~  exp (a) exp (b~ exp (a))

i.e. exponential prior on exp(a) and flat prior on S.

e b is selected as the data-dependent prior such that E (o) = & where
a is the MLE of o (Robert & Casella).

e As a simple proposal distribution, we use

a((a,8), (o, 8)) =7 (o[ D) N (838071, 53)

where 85 is the associated variance at thr MLE 3
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4.1— Logistic Regression Example

The algorithm proceeds as follows at iteration 2

e Sample (a*, %) ~ 7 (a|b) N (ﬁ; ﬁ(i_l),/a\%) and compute

(i—1) p(i—1) A%y ) o T (a”, 3" data) w (a(i_l)} b)
C((Ol 76 ) 7(04 76 )) — 1nin (177r(oz(i1>,ﬁ(i1>}data>7r(oz*b)

e Set (Oé(i),ﬁ(i)) = (o, %) with probability ¢ ((a“‘”,ﬁ“‘”) : (a*,ﬁ*)),
otherwise set (a(i),ﬁ(i)> = (a“‘”,ﬁ“‘”) :
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4.1— Logistic Regression Example
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4.1— Logistic Regression Example
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Histogram estimates of p (a| data) (left) and p (8| data) (right).
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4.1— Logistic Regression Example
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4.2— Probit Regression Example

e We consider the following example: we take 4 measurements from

100 genuine Swiss banknotes and 100 counterfeit ones.

e The response variable y is 0 for genuine and 1 for counterfeit and

the explanatory variables are

x1. the length,

x9: the width of the left edge

x3: the width of the right edge

x4: the bottom margin witdth

All measurements are in millimeters.
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4.2— Probit Regression Example

i p— o —_—
1
1
d — |
(= =) 1 |
[ L
= -~ ]
=
< — —
[ — _—"§ o
o =
= = = —
& = -
(5] = - T 1
= = ! |
— ] =
= ! !
= o> — ! [
1
1
<~ —]
a1 !
oo —] 1
1
1
[ <
> —] —_
T T T T T — T T
7 8 S 10 11 12 o 1
Bottorm margin width (rmm) Status

Left: Plot of the status indicator versus the bottom margin width.
Right: Boxplots of the bottom margin wifth for both counterfeit status.
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4.2— Probit Regression Example

e Instead of selecting a logistic link, we select a probit one here

Pr(Y =1lz) =@ (' +...+2"64)

o= [ eo(-)a

e For n data, the likelihood is then given by

where

f (yrinl B 21:0) = 11 @ (2T (1-® (27B)) ¥,
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4.2— Probit Regression Example

e We assume a vague prior where 8 ~ N (0,10014) and we use a simple random
walk sampler with ¥ the covariance matrix associated to the MLE (estimated
using simple deterministic method).

e The algorithm is thus simply given at iteration 7 by
e Sample 3* ~ N (6(i_1),722) and compute

(i—1) %\ _ .2 ﬂ_(ﬁ*‘ylznaxl:n)
@ (ﬁ 1 ’B ) - (17 T (ﬁ(Z_D} ylznaxlzn)> '

e Set 3 = B* with probability « (5(%’—1)7 ﬁ*) and ) = 30— otherwise.

e Best results obtained with 72 = 1.
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4.2— Probit Regression Example
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Traces (left), Histograms (middle) and Autocorrelations (right) for ( f), . Bﬁ) :
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4.2— Probit Regression Example

e One way to monitor the performance of the algorithm of the chain {X (i)}
consists of displaying pr = cov [X(i),X(Hk)} Jvar (X(i)) which can be esti-

mated
from the chain, at least for small values of k.

e Sometimes one uses an effective sample size measure

No
e <1+2Zﬁk>
This represents approximately the sample size of an equivalent i.i.d. samples.

e One should be very careful with such measures which can be very misleading.
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4.2— Probit Regression Example

e We found for F (8| y1.n, €1.n) = (—1.22,0.95,0.96, 1.15) so a simple plug-in

estimate of the predictive probability of a counterfeit bill is

p=®(-1.222" +0.952° + 0.962° + 1.15z")

For x = (214.9,130.1,129.9,9.5), we obtain p = 0.59.

e A better estimate is obtained by

/<I> (ﬁlxl + Box® + B32° + ﬁ4$4) T (B Y1, T1:0) dB
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4.3— Gibbs sampling for Probit Regression

e It is impossible to use Gibbs to sample directly from 7 ( 3| y1.n, T1:n) -

e Introduce the following unobvserved latent variables

y

0 otherwise.

\

e We have now define a joint distribution

(i, zi| By i) = [ (yil z1) f (2] By i)
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4.3— Gibbs sampling for Probit Regression

e Now we can check that o
flyi =1z, B8) = /f(yiazi‘ﬁaxi)dzi — / f (2] Byxi)dzi = @ (2 B) .
0
= We haven’t changed the model!

e We are now going to sample from 7 ( 3, z1.n| ©1.n, Y1.n ) instead of 7 ( 8| T1.n, Y1:1)

because the full conditional distributions are simple

where

— Examples

7T(ﬁ‘yl:naxl:nazl:n) —

T (21m| Y1in, T1in, B) =

Zk|yk:7xk:76 ~ S

7 (B T1.n, 21.n) (standard Gaussian!),

n

HW(Zk‘ykaxkaﬁ)
1=1
,

Ni (zFB,1) ifye=1

| N (2 8:1)  if g =0,
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4.3— Gibbs sampling for Probit Regression
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4.3— Gibbs sampling for Probit Regression

e The results obtained through Gibbs are very similar to MH.

e We can also adopt an Zellner’s type prior and obtain very similar

results.

e Very similar were also obtained using a logistic fonction using
the MH (Gibbs is feasible but more difficult).
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