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1.1– Outline

• More about the Metropolis-Hastings algorithm.

• Mixture and composition of kernels.

• “Hybrid” algorithms.

• Examples
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2.1– Metropolis-Hastings algorithm

• Initialization:

• Select deterministically or randomly θ(0).

• Iteration i; i ≥ 1:

• Sample θ∗ ∼ q
(
θ(i−1), ·) and compute

α
(
θ(i−1), θ∗

)
= min

(
1,

π (θ∗) q
(
θ∗, θ(i−1)

)
π
(
θ(i−1)

)
q
(
θ(i−1), θ∗

)
)

.

• With probability α
(
θ(i−1), θ∗

)
, set θ(i) = θ∗; otherwise set θ(i) = θ(i−1).
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2.1– Metropolis-Hastings algorithm

• The transition kernel associated to the MH algorithm can be rewritten
as

K (θ, θ′) = α (θ, θ′) q (θ, θ′) +
(

1 −
∫

α (θ, u) q (θ, u) du

)
δθ (θ′) .

• The MH kernel is π-reversible hence π-invariant

π (θ)K (θ, θ′) = π (θ′)K (θ′, θ) ⇒
∫

π (θ)K (θ, θ′) dθ = π (θ′)

• It is irreducible and aperiodic under very weak assumptions.
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2.1– Metropolis-Hastings algorithm

• Independent proposal q (θ, θ′) = q (θ′) then

α (θ, θ′) = min
(

1,

(
π (θ′)
q (θ′)

)
/

(
π (θ)
q (θ)

))

• If we use an independent proposal, one should ensure

π (θ)
q (θ)

≤ C for all θ.

– Review of Last Lecture Page 5



2.1– Metropolis-Hastings algorithm

• Random walk q (θ, θ′) = f (θ′ − θ) = f (θ − θ′) then

α (θ, θ′) = min
(

1,
π (θ′)
π (θ)

)
.

• If we use a random walk, one should ensure that the tails of distribution
of the random walk increments are thick enough.

⇒ In all cases, the selection of q (θ, θ′) is tricky and is getting more difficult as
the dimension of the parameter space is increasing.

– Review of Last Lecture Page 6



2.2– Using gradient information to build the proposal

• We usually wants to sample candidates in regions of high probability masses.

• We can use

θ′ = θ +
σ2

2
∇ log π (θ) + σV where V ∼ N (0, 1)

where σ2 is selected such that the acceptance ratio is approximately 0.57.

• The motivation is that, we know that in continuous-time

dθt =
1
2
∇ log π (θ) + σdWt

admits π has an invariant distribution.
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2.3– Local optimization

• To build q (θ, θ′), you can use complex deterministic strategies.
Assume you are in θ and you want to propose

θ′ ∼ N (
ϕ (θ) , σ2

)
.

• You do not need to have an explicit form for the mapping ϕ!
As long as ϕ is a deterministic mapping, then it is fine. For example
ϕ (θ) could be the local maximum of π closest to θ that has been
determined using a gradient algorithm.

• To compute the acceptance probability of the candidate θ′, you will
need to compute ϕ (θ′) and then you can compute the MH acceptance ratio.
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3.1– Mixture of proposals

• In practice, random walk proposals can be used to explore locally
the space whereas independent walk proposals can be used to jump
into the space.

• So a good strategy can be to use a proposal distribution of the form

q (θ, θ′) = λq1 (θ′) + (1 − λ) q2 (θ, θ′)

where 0 < λ < 1.

• This algorithm is definitely valid as it is just a particular case of the MH
algorithm.
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4.1– Mixture of MH kernels

• An alternative achieving the same purpose is to use a transition
kernel

K (θ, θ′) = λK1 (θ, θ′) + (1 − λ) K2 (θ, θ′)

where K1 (resp. K2) is an MH algorithm of proposal q1 (resp. q2).

• This algorithm is different from using q (θ, θ′) = λq1 (θ′) + (1 − λ) q2 (θ, θ′).
It is computationally cheaper and still valid as

∫
π (θ)K (θ, θ′) dθ = λ

∫
π (θ)K1 (θ, θ′) dθ + (1 − λ)

∫
π (θ)K2 (θ, θ′) dθ

= λπ (θ′) + (1 − λ) π (θ′)

= π (θ′)
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4.1– Mixture of MH kernels

• A sufficient condition to ensure that K is irreducible and aperiodic is
to have either K1 or K2 irreducible and aperiodic.

• You do NOT need to have both kernels to be irreducible and aperiodic.
In the limiting case, you could have K2 (θ, θ′) = δθ (θ′) and the total
kernel K would still be irreducible and aperiodic if K1 is irreducible
and aperiodic.

• None of the kernels have to be irreducible and aperiodic
to ensure that K is irreducible and aperiodic.
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4.2– Composition of MH kernels

• Alternatively we can apply at each iteration of the algorithm first the kernel
K1 then the kernel K2, i.e. in this case where have at iteration i

Z ∼ K1

(
θ(i−1), ·

)
and θ(i) ∼ K2 (Z, ·) .

• The composition of these kernels corresponds to

K (θ, θ′) =
∫

K1 (θ, z)K2 (z, θ′) dz.

• This algorithm admits the right invariant distribution as

∫
π (θ) K (θ, θ′) dθ =

∫ (∫
π (θ) K1 (θ, z) dθ

)
K2 (z, θ′) dz

=
∫

π (z)K2 (z, θ′) dz

= π (θ′)
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4.2– Composition of MH kernels

• A sufficient condition to ensure that K is irreducible and aperiodic is
to have either K1 or K2 irreducible and aperiodic.

• You do NOT need to have both kernels to be irreducible and aperiodic
to have K irreducible and aperiodic, e.g. take K1 irreducible and
aperiodic and K2 (θ, θ′) = δθ (θ′) .

• None of the kernels have to be irreducible and aperiodic
to ensure that K is irreducible and aperiodic.
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4.2– Composition of MH kernels

• The MH algorithm is a simple and very general algorithm to sample from
a target distribution π (θ).

• In practice, the performance of the algorithm are choice of the proposal dis-

tribution is absolutely crucial
on the performance of the algorithm.

• In high dimensional problems, a simple MH algorithm will be useless.
It will be necessary to use a combination of MH kernels.
.... However for the time being you might not have realized the
power of the mixture and composition of kernels.
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4.3– Applications of Mixture and Composition of MH algorithms

• Consider the target distribution π (θ1, θ2) .

• We use two MH kernels to sample from this distribution,

• the kernel K1 updates θ1 and keeps θ2 fixed whereas
• the kernel K2 updates θ2 and keeps θ1 fixed.

• We then combine these kernels through mixture or composition.
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4.4– Description of transition kernels

• The proposal q1 (θ, θ′) associated to K1 (θ, θ′) is given by

q1 (θ, θ′) = q1 ((θ1, θ2) , (θ′1, θ
′
2)) = q1 ((θ1, θ2) , θ′1) δθ2 (θ′2) .

• The acceptance probability is given by α1 (θ, θ′) = min (1, r1 (θ, θ′)) where

r1 (θ, θ′) =
π (θ′) q1 (θ′, θ)
π (θ) q1 (θ, θ′)

=
π (θ′1, θ

′
2) q1 ((θ′1, θ

′
2) , θ1) δθ′

2
(θ2)

π (θ1, θ2) q1 ((θ1, θ2) , θ′1) δθ2 (θ′2)

=
π (θ′1, θ2) q1 ((θ′1, θ2) , θ1)
π (θ1, θ2) q1 ((θ1, θ2) , θ′1)

=
π (θ′1| θ2) q1 ((θ′1, θ2) , θ1)
π (θ1| θ2) q1 ((θ1, θ2) , θ′1)

.

• This move is also equivalent to an MH step of invariant distribution π (θ1| θ2).
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4.4– Description of transition kernels

• The proposal q2 (θ, θ′) associated to K2 (θ, θ′) is given by

q2 (θ, θ′) = q2 ((θ1, θ2) , (θ′1, θ
′
2)) = δθ1 (θ′1) q2 ((θ1, θ2) , θ′2) .

• The acceptance probability is given by α2 (θ, θ′) = min (1, r2 (θ, θ′)) where

r (θ, θ′) =
π (θ′) q2 (θ′, θ)
π (θ) q2 (θ, θ′)

=
π (θ′1, θ

′
2) δθ′

1
(θ1) q2 ((θ′1, θ

′
2) , θ2)

π (θ1, θ2) δθ1 (θ′1) q2 ((θ1, θ2) , θ′2)

=
π (θ1, θ

′
2) q2 ((θ1, θ

′
2) , θ2)

π (θ1, θ2) q2 ((θ1, θ2) , θ′2)

=
π (θ′2| θ1) q2 ((θ1, θ

′
2) , θ2)

π (θ2| θ1) q2 ((θ1, θ2) , θ′2)
.

• This move is also equivalent to an MH step of invariant distribution π (θ2| θ1).

– Mixture and Composition of Kernels Page 17



4.5– Composition of MH algorithms

Assume we use a composition of these kernels, then the resulting algorithm
proceeds as follows at iteration i.
MH step to update component 1

• Sample θ∗1 ∼ q1

((
θ
(i−1)
1 , θ

(i−1)
2

)
, ·
)

and compute

1

((
θ
(i−1)
1 , θ

(i−1)
2

)
,
(
θ∗1 , θ

(i−1)
2

))
= min

⎛
⎝1,

π
(

θ∗1 | θ(i−1)
2

)
q1

((
θ∗1 , θ

(i−1)
2

)
, θ

(i−1)
1

)
π
(

θ
(i−1)
1

∣∣∣ θ(i−1)
2

)
q1

((
θ
(i−1)
1 , θ

(i−1)
2

)
, θ∗1
)
⎞
⎠

• With probability α1

((
θ
(i−1)
1 , θ

(i−1)
2

)
,
(
θ∗1 , θ

(i−1)
2

))
, set θ

(i)
1 = θ∗1 and

otherwise θ
(i)
1 = θ

(i−1)
1 .
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4.5– Composition of MH algorithms

MH step to update component 2

• Sample θ∗2 ∼ q2

((
θ
(i)
1 , θ

(i−1)
2

)
, ·
)

and compute

α2

((
θ
(i)
1 , θ

(i−1)
2

)
,
(
θ
(i)
1 , θ∗2

))
= min

⎛
⎝1,

π
(

θ∗2 | θ(i)
1

)
q2

((
θ
(i)
1 , θ∗2

)
, θ

(i−1)
2

)
π
(

θ
(i−1)
2

∣∣∣ θ(i)
1

)
q2

((
θ
(i)
1 , θ

(i−1)
2

)
, θ∗2
)
⎞
⎠

• With probability α2

((
θ
(i)
1 , θ

(i−1)
2

)
,
(
θ
(i)
1 , θ∗1

))
, set θ

(i)
2 = θ∗2 otherwise θ

(i)
2 =

θ
(i−1)
2 .
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4.6– Mixture of MH algorithms

Assume we use a even mixture of these kernels, then the resulting algorithm
proceeds as follows at iteration i.
• Sample the index of the component to update J ∼ U {1, 2} .

• Set θ
(i)
−J = θ

(i−1)
−J .

• Sample θ∗J ∼ qJ

((
θ
(i−1)
1 , θ

(i−1)
2

)
, ·
)

and compute

αJ

((
θ
(i−1)
1 , θ

(i−1)
2

)
,
(
θ∗J , θ

(i)
−J

))
= min

⎛
⎝1,

π
(

θ∗J | θ(i)
−J

)
qJ

((
θ∗J , θ

(i)
−J

)
, θ

(i−1)
J

)
π
(

θ
(i−1)
J

∣∣∣ θ(i)
−J

)
qK

((
θ
(i−1)
J , θ

(i)
−J

)
, θ∗J
)
⎞
⎠ .

• With probability αJ

((
θ
(i−1)
J , θ

(i−1)
J

)
,
(
θ∗J , θ

(i)
−J

))
, set θ

(i)
J = θ∗J otherwise

θ
(i)
J = θ

(i−1)
J .
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4.7– Properties

• It is clear that in such cases both K1 and K2 are NOT irreducible
and aperiodic.

⇒ Each of them only update one component!!!!

• However, the composition and mixture of these kernels can
be irreducible and aperiodic because then all the components are updated.
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4.8– Back to the Gibbs sampler

• Consider now the case where

q1 ((θ1, θ2) , θ′1) = π (θ′1| θ2) .

then

r1 (θ, θ′) =
π (θ′1| θ2) q1 ((θ′1, θ2) , θ1)
π (θ1| θ2) q1 ((θ1, θ2) , θ′1)

=
π (θ′1| θ2)π (θ1| θ2)
π (θ1| θ2)π (θ′1| θ2)

= 1

• Similarly if q2 ((θ1, θ2) , θ′2) = π (θ′2| θ1) then r2 (θ, θ′) = 1.

• If you take for proposal distributions in the MH kernels the full conditional
distributions then you have the Gibbs sampler!
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4.9– General hybrid algorithm

• Generally speaking, to sample from π (θ) where θ = (θ1, ..., θp) ,

we can use the following algorithm at iteration i.

• Iteration i; i ≥ 1:

For k = 1 : p

• Sample θ
(i)
k using an MH step of proposal distribution

qk

((
θ
(i)
−k, θ

(i−1)
k

)
, θ′k
)

and target π
(

θk| θ(i)
−k

)
.

where θ
(i)
−k =

(
θ
(i)
1 , ..., θ

(i)
k−1, θ

(i−1)
k+1 , ..., θ

(i−1)
p

)
.
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4.9– General hybrid algorithm

• If we have qk (θ1:p, θ
′
k) = π (θ′k| θ−k) then we are back to the Gibbs sampler.

• We can update some parameters according to π (θ′k| θ−k) (and the move
is automatically accepted) and others according to different proposals.

• Example: Assume we have π (θ1, θ2) where it is easy to sample from
π (θ1| θ2) and then use an MH step of invariant distribution π (θ2| θ1) .
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4.9– General hybrid algorithm

At iteration i.

• Sample θ
(i)
1 ∼ π

(
θ1| θ(i−1)

2

)
.

• Sample θ
(i)
2 using one MH step of proposal distribution

q2

((
θ
(i)
1 , θ

(i−1)
2

)
, θ2

)
and target π

(
θ2| θ(i)

1

)
.

Remark: There is NO NEED to run the MH algorithm multiple steps
to ensure that θ

(i)
2 ∼ π

(
θ2| θ(i−1)

2

)
.
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4.10– Alternative acceptance probabilities

• The standard MH algorithm uses the acceptance probability

α (θ, θ′) = min
(

1,
π (θ′) q (θ′, θ)
π (θ) q (θ, θ′)

)
.

• This is not necessary and one can also use any function

α (θ, θ′) =
δ (θ, θ′)

π (θ) q (θ, θ′)

which is such that

δ (θ, θ′) = δ (θ′, θ) and 0 ≤ α (θ, θ′) ≤ 1

• Example (Baker, 1965):

α (θ, θ′) =
π (θ′) q (θ′, θ)

π (θ′) q (θ′, θ) + π (θ) q (θ, θ′)
.

– Mixture and Composition of Kernels Page 26



4.10– Alternative acceptance probabilities

• Indeed one can check that
K (θ, θ′) = α (θ, θ′) q (θ, θ′) +

(
1 −

∫
α (θ, u) q (θ, u) du

)
δθ (θ′)

is π-reversible.

• We have

π (θ)α (θ, θ′) q (θ, θ′) = π (θ)
δ (θ, θ′)

π (θ) q (θ, θ′)
q (θ, θ′)

= δ (θ, θ′)

= δ (θ′, θ)

= π (θ′) α (θ′, θ) q (θ′, θ) .

• The MH acceptance is favoured as it increases the acceptance probability.
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4.11– Discussion

• In practice, we divide the parameter space θ = (θ1, ..., θp) .

• We update each parameter θk according to an MH step
of propsal distribution qk (θ1:p, θ

′
k) = qk ((θ−k, θk) , θ′k) and

invariant distribution π (θk| θ−k) .

• You are now equipped to fit advanced statistical models...
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