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1.1— Outline

e More about the Metropolis-Hastings algorithm.

e Mixture and composition of kernels.

o “Hybrid” algorithms.

e Eixamples
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2.1— Metropolis-Hastings algorithm

e Initialization:
e Select deterministically or randomly 6(9).
e lteration 7; 7 > 1:

e Sample 6* ~ ¢ (0U"~1),-) and compute

(9(7,—1)) q (6)(72—1)7 6)*)

* x n(i—1)
Q (9(%’—1)’9*) — min (1, ™ (0 >q(9 0 ) ) :
T

e With probability a (0¢~1),6*), set (9 = 6*; otherwise set (9 = g(i=1),

— Review of Last Lecture Page 3



2.1— Metropolis-Hastings algorithm

e The transition kernel associated to the MH algorithm can be rewritten

as

K (0,0)=a(0,0)q(0,0") + (1 — /a(@,u)q(é’,u)du) o (6') .
e The MH kernel is m-reversible hence m-invariant

7 (0)K (0,0') =7 (0") K (0,0 ;»/ 0')do = 7 (9

e It is irreducible and aperiodic under very weak assumptions.
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2.1— Metropolis-Hastings algorithm

e Independent proposal ¢ (0,0") = ¢ (0") then

0.01=m (1 (G )/ (@)

e If we use an independent proposal, one should ensure

T (0)
— - < (' for all 6.
q(0) —
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2.1— Metropolis-Hastings algorithm

e Random walk ¢ (0,60") = f (0’ —0) = f (60 — 0') then

o If we use a random walk, one should ensure that the tails of distribution

of the random walk increments are thick enough.

= In all cases, the selection of ¢ (6, 0") is tricky and is getting more difficult as

the dimension of the parameter space is increasing.
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2.2— Using gradient information to build the proposal

e We usually wants to sample candidates in regions of high probability masses.

e We can use

2
0 =0+ %Vlogw(é’) + oV where V.~ N (0,1)

2

where o“ is selected such that the acceptance ratio is approximately 0.57.

e The motivation is that, we know that in continuous-time

1
do; = §V10g7r (0) + odW;

admits 7 has an invariant distribution.
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2.3— Local optimization

e To build ¢ (0,6’), you can use complex deterministic strategies.

Assume you are in # and you want to propose

H’N./\/'(gp(ﬁ),aZ).

e You do not need to have an explicit form for the mapping ¢!
As long as ¢ is a deterministic mapping, then it is fine. For example
¢ (0) could be the local maximum of 7 closest to 6 that has been

determined using a gradient algorithm.

e To compute the acceptance probability of the candidate ', you will

need to compute ¢ (6') and then you can compute the MH acceptance ratio.
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3.1— Mixture of proposals

e In practice, random walk proposals can be used to explore locally
the space whereas independent walk proposals can be used to jump

into the space.

e So a good strategy can be to use a proposal distribution of the form

q (‘97 9/) = Aq1 (‘9/) —+ (1 - )‘) q2 (‘97 0/)

where 0 < \ < 1.

e This algorithm is definitely valid as it is just a particular case of the MH
algorithm.
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4.1— Mixture of MH kernels

e An alternative achieving the same purpose is to use a transition

kernel

K (0,0") =\K1(0,0") + (1 —X\)K5(0,0"
where K7 (resp. K3) is an MH algorithm of proposal g1 (resp. ¢2).

e This algorithm is different from using ¢ (6,60") = Aq1 (6') + (1 — A\) g2 (6, 6").
It is computationally cheaper and still valid as

/W(@)K(é’,@')dé’ = )\/W(H)Kl (6’,9')d6’—|—(1—)\)/7r(¢9)K2(9,6”)d6’
= @)+ 1Q-X7(0)

= ()
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4.1— Mixture of MH kernels

e A sufficient condition to ensure that K is irreducible and aperiodic is

to have either K; or K5 irreducible and aperiodic.

e You do NOT need to have both kernels to be irreducible and aperiodic.
In the limiting case, you could have K5 (6,6") = §p (") and the total
kernel K would still be irreducible and aperiodic if K is irreducible

and aperiodic.

e None of the kernels have to be irreducible and aperiodic

to ensure that K is irreducible and aperiodic.
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4.2— Composition of MH kernels

e Alternatively we can apply at each iteration of the algorithm first the kernel
K, then the kernel K5, i.e. in this case where have at iteration ¢

7 ~ K, (9“—1), ) and 09 ~ Ky (Z,-).

e The composition of these kernels corresponds to

e This algorithm admits the right invariant distribution as

/w(@)K(@,é”)dé’ - /(/w(é’)Kl(@,z)dé’) Ky (2,0') dz

— /w(z)Kg (2,0")dz

= 7 (0)
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4.2— Composition of MH kernels

e A sufficient condition to ensure that K is irreducible and aperiodic is

to have either K4 or K5 irreducible and aperiodic.

e You do NOT need to have both kernels to be irreducible and aperiodic
to have K irreducible and aperiodic, e.g. take K7 irreducible and

aperiodic and Ks (0,60") = dy (0') .

e None of the kernels have to be irreducible and aperiodic

to ensure that K is irreducible and aperiodic.
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4.2— Composition of MH kernels

e The MH algorithm is a simple and very general algorithm to sample from

a target distribution 7 ().

e In practice, the performance of the algorithm are choice of the proposal dis-

tribution is absolutely crucial
on the performance of the algorithm.

e In high dimensional problems, a simple MH algorithm will be useless.
It will be necessary to use a combination of MH kernels.
.... However for the time being you might not have realized the

power of the mixture and composition of kernels.
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4.3— Applications of Mixture and Composition of MH algorithms

e Consider the target distribution 7 (61,62).
e We use two MH kernels to sample from this distribution,

e the kernel K updates 61 and keeps 0, fixed whereas
e the kernel Ky updates 65 and keeps 60; fixed.

e We then combine these kernels through mixture or composition.
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4.4— Description of transition kernels

e The proposal g, (6,0’) associated to K7 (6,0’) is given by
q,(0,0") =g, ((61,02) , (01,05)) = q1 ((01,02) ,01) G, (63) -

e The acceptance probability is given by a; (6,60") = min (1,71 (6,6")) where

r(0,0) = =
TC

e This move is also equivalent to an MH step of invariant distribution w (61| 65).
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4.4— Description of transition kernels

e The proposal g, (6, 0’) associated to K5 (6,0’) is given by
q> (0, 9,) = q3 ((01,62), ( ,17 95)) = 0p, (9/1> g2 ((01,02), 9,2) :

e The acceptance probability is given by as (6,0") = min (1,72 (6,6")) where

r(0,0) = =
TC

(
_ 7 (01,05) g2 ((61,05) ,65)
7 (01,02) g2 ((01,02) ,05)
_ 7 (05]01)q2((61,05) ,65)
m (62]01) g2 ((61,62),65)

e This move is also equivalent to an MH step of invariant distribution w (62| 61).
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4.5— Composition of MH algorithms

Assume we use a composition of these kernels, then the resulting algorithm
proceeds as follows at iteration i.

MH step to update component 1

e Sample 07 ~ q; ((9?‘”, Qéi_l)) ,-) and compute

m (1108 ) au (07,0877 60 Y)

(i—1) ,(i—1) x« gl—1)\) _ -
R e O e P Y (C )

e With probability aq ((9?—1), 9§i_1)) : (6”{, 95@'—1))> , set 6’?) = 07 and

otherwise 9@ = 9?_1).
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4.5— Composition of MH algorithms

MH step to update component 2

e Sample 05 ~ ¢ ((9@, 9§i_1)) ,-) and compute

m(031017) g2 ((017,03) 057"
(o) (7))

o ((9?%9&"”) | (9@,9;)) — min | 1,

e With probability Q2 (((9%%)7 6)51—”) ) (‘9%@)7 9?)) ) set (9;%) — (9>2k otherwise Qéz) —

oy .
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4.6— Mixture of MH algorithms

Assume we use a even mixture of these kernels, then the resulting algorithm
proceeds as follows at iteration 7.

e Sample the index of the component to update J ~ U {1, 2}.
o Set 9 =gl

e Sample 0% ~ q; ((9§i_1), 9§i_1>) ,-) and compute

PR " w(ej;\eﬂi?]) W((e;,e%),@y—n)
ay ((0579,6879), (05,6%))) = min | 1, — " —
w(057]6%)) ax ((6577.60%%) . 65)

e With probability oy ((9?_1),9?_1)) : (93,982)) , set 9?) = 07 otherwise

0 =60
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4.7— Properties

e It is clear that in such cases both K; and Ko are NOT irreducible

and aperiodic.
= Each of them only update one component!!!!

e However, the composition and mixture of these kernels can
be irreducible and aperiodic because then all the components are updated.
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4.8— Back to the Gibbs sampler

e Consider now the case where
q1((01,02),07) =7 (01]02).

then

_ m(01]02) a1 ((01,02) ,01) _ m(01]02) 7 (0:]02) _

T1 ((9,(9)— 7T((91|(92)Q1 ((91’92)76”1) - 7T((91‘(92)7T((9/1|92) —

® Similarly if q2 ((91, 92) ,95) =T (9’2| 91) then ) (9, 9’) = 1.

e If you take for proposal distributions in the MH kernels the full conditional
distributions then you have the Gibbs sampler!
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4.9— General hybrid algorithm

e Generally speaking, to sample from 7 () where 8 = (64, ...,0,),

we can use the following algorithm at iteration <.
e lteration 7; 7 > 1:
Fork=1:p
e Sample 9,(5) using an MH step of proposal distribution

0, (01, 0577),0;,) and target = (0] 0"} ).

where 98’2@ = (6’5’&'), e (9,(21,9,8;1), ...,9](97;_1)) .
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4.9— General hybrid algorithm

o If we have gy (01.p,0;) = 7 (6;| 0_1) then we are back to the Gibbs sampler.

e We can update some parameters according to 7 (6, |6_x) (and the move

is automatically accepted) and others according to different proposals.

e Example: Assume we have 7 (01, 62) where it is easy to sample from
7 (61| 62) and then use an MH step of invariant distribution 7 (62| 61) .
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4.9— General hybrid algorithm

At iteration 7.

e Sample (9@ ~ T (91| (95%'—1)) .

e Sample Qéi) using one MH step of proposal distribution
q2 ((9%7’),6’;2_1)) ,92) and target 7 (92| 9%2)) .

Remark: There is NO NEED to run the MH algorithm multiple steps
to ensure that 957’) ~ T (92| 6’;2_1)) .
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4.10— Alternative acceptance probabilities

e The standard MH algorithm uses the acceptance probability

N (1 T(0)q(6,0)
a(6,0") = min (1, 7r(6’)q(6’,0’)>'

e This is not necessary and one can also use any function
6(0,6")
m(0)q(6,0)

a(0,0") =

which is such that
§(0,0')=6(0,0) and 0 < (6,6) <1

e Example (Baker, 1965):
m(0') q(60',6)

.9 = T F740.0) +7(0)q6,0)

— Mixture and Composition of Kernels Page 26



4.10— Alternative acceptance probabilities

e Indeed one can check that
K(0.0) = a0.0)00.0)+ (1~ [ a.0)q0.0)du) 60 (0)

is m-reversible.

e We have

50,6
(0)q(0,0)

(@) (0,6q(0,67) = 7(0) - q(0,0')

5(0,0)

= 5(0,0)

= 7(0)a(0,0)q(0,0).

e The MH acceptance is favoured as it increases the acceptance probability.
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4.11— Discussion

e In practice, we divide the parameter space 6 = (01, ...,0,).
e We update each parameter 0, according to an MH step
of propsal distribution g (01.p,0}) = qx ((0—k,0k) ,0).) and

invariant distribution 7 (6;|0_x) .

e You are now equipped to fit advanced statistical models...
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