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1.1— Outline

e Introduction to Markov chain Monte Carlo

e The Gibbs Sampler

e Eixamples
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2.1-— Summary of Last Lecture

e Rejection Sampling and Importance Sampling are two general
methods but limited to problems of moderate dimensions.

e “Problem”: We try to sample all the components of
a potentially high-dimensional parameter simultaneously.

e There are two ways to implement incremental strategies.

- Iteratively: Markov chain Monte Carlo.

- Sequentially: Sequential Monte Carlo.
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2.2— Motivating Example: Nuclear Pump Data

e Multiple failures in a nuclear plant:

Pump 1 2 3 4 5 6 7 8 9 10
Failures 5) 1 5) 14 3 19 1 1 4 22
Times 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48

e Model: Failures of the :—th pump follow a Poisson process with
parameter \; (1 < i < 10). For an observed time ¢;, the number

of failures p; is thus a Poisson P(\;t;) random variable.

e The unknowns consist of 6 := (A1,..., A0, 8).
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2.3— Bayesian Model for Nuclear Pump Data

e Hierarchical model

1id

Ai ~ Ga(a,3) and § ~ Ga(7,6)
with a = 1.8 and v = 0.01 and 0 = 1.

e The posterior distliiobution is proportional to

] [{(xta)P exp(=Xiti) A3~ exp(—BA:)}8'0%B7 " exp(—353)
=1
10
oo T exp(— (1 + M)} exp(—65).
1=1

e This multidimensional distribution is rather complex. It is not obvious
how the inverse cdf method, the rejection method or importance
sampling could be used in this context.
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2.4— Conditional Distributions

e The conditionals have a familiar form

)\z|(ﬁa t’L:p’L> ~ ga'(pz + a, t; +6) for 1 <1< 107

10
Bl(A1,...,A10) ~ Ga(y + 10, § + Z)‘Z)
i=1
e Instead of directly sampling the vector 6 = (A1,..., A10, ) at once,

one could suggest sampling it iteratively, starting
for example with the \;’s for a given guess of 3, followed by an

update of # given the new samples Aq,... , A\o.
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2.4— Conditional Distributions

e Given a sample, at iteration t, 6" := (AY,... ;] \},, B*) one could

proceed as follows at iteration ¢ + 1,

L. )‘2+1|(ﬁtatiapi) ~ ga(pz + aati + Bt) for 1 < 1 < 107

2. BT LAY ~ Galy 4+ 100, 6 + 37,0, AT,

e Instead of directly sampling in a space with 11 dimensions,

one samples in spaces of dimension 1

e Note that the deterministic version of such an algorithm
would not generally converge towards the global maximum of

the joint distribution.
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2.4— Conditional Distributions

e The structure of the algorithm calls for many questions:

e Are we sampling from the desired joint distribution?

e If yes, how many times should the iteration above be repeated?
e The validity of the approach described here stems from the fact

that the sequence {6'} defined above is a Markov chain and
some Markov chains have very nice properties.
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2.5— Introduction to Markov Chain Monte Carlo

e Markov chain: A sequence of random variables {X,,;n € N} defined
n (X, B (X)) which satisfies the property, for any A € B (X)

]P)(Xn ~ A| Xo, ...,Xn_1> — ]P)(Xn - A| Xn—l) .
and we will write

Pz, A) =P (X, € Al Xn_1).

e Markov chain Monte Carlo: Given a target m, design a transition
kernel P such that asymptotically as n — oo

N

1

NZQO( n / x)dx and/or X,, ~ .
n=1

e It should be easy to simulate the Markov chain even if 7 is complex.
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2.6— Example

e Consider the autoregression for |a| < 1

X, =aX,_1+V,, where V,, ~ N (O, 02) .

e The limiting distribution is
52
= ;0 :
7 (x) N(x, , 1—a2)

e To sample from 7, we could just sample the Markov chain and asymptotically

we would have X,, ~ .

e Obviously, in this case this is useless because we can sample from 7 directly.
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2.7— Example

e Graphically, consider 1000 independent Markov chains run in parallel.

e We assume that the initial distribution of these Markov chains is U 2.

So initially, the Markov chains samples are not distributed according to
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2.7— Example

From top left to bottom right: histograms of 1000 independent
Markov chains with a normal distribution as target distribution.

p
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2.7— Example

e The target normal distribution seems to “attract” the distribution of

the samples and even to be a fixed point of the algorithm.

e This is is what we wanted to achieve, 7.e. it seems that we have produced

1000 independent samples from the normal distribution.

e In fact one can show that in many (all?) situations of interest it is not
necessary to run N Markov chains in parallel in order to obtain 1000
samples, but that one can consider a unique Markov chain, and build
the histogram from this single Markov chain by forming histograms

from one trajectory.
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2.8— Example: Mixture of Normals
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2.8— Example: Mixture of Normals

10000 1terations

0.035 .. -
0.03. .- -
0025 . -

0.02. .-
0.015 . -
001 .S

0.005 | .. -

2000
100

10000 —100

Iterations -

— Summary N



2.9— Markov chain Monte Carlo

e The estimate of the target distribution, through the series of histograms,
improves with the number of iterations.

e Assume that we have stored {X,,1 <n < N} for N large and wish to
estimate [, p(x)m(z)dx.

e In the light of the numerical experiments, one can suggest the estimator
N
1
n=1

which is exactly the estimator that we would use if {X,,,1 <n < N} were
independent.

e In fact, it can be proved, under relatively mild conditions, that such an

estimator is consistent despite the fact that the samples are NOT independent!
Under additional conditions, a CLT also holds with a rate of CV in 1/v/N.
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2.9— Markov chain Monte Carlo

To summarize, we are interested in Markov chains with transition kernel P

which have the following three important properties observed above:

e The desired distribution 7 is a “fixed point” of the algorithm or, in

more appropriate terms, an nvartant distribution of the Markov

chain, i.e. [y m(z)P(z,y)=7(y) .

e The successive distributions of the Markov chains are “attracted”

by m, or converge towards 7.

e The estimator + ij:l ¢©(X,) converges towards F(p(X)) and
asymptotically X,, ~m
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2.9— Markov chain Monte Carlo

e Given m (x), there is an infinite number of kernels P (x,y)

which admits 7 () as their invariant distribution.
e The “art” of MCMC consists of coming up with good ones.

e Convergence is ensured under very weak assumptions;

namely irreducibility and aperiodicity.
e It is usually very easy to establish that an MCMC sampler

converges towards m but very difficult to obtain rates of

convergence.
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2.10— The Gibbs Sampler

e Consider the target distribution 7 (6) such that 6 = (61, 6?) .
Then the 2 component Gibbs sampler proceeds as follows.

Initialization:
e Select deterministically or randomly 6y = (63,63) .
lteration 7; ¢ > 1:

e Sample 0} ~ 7 (6| 67_,).

e Sample 67 ~ 7 (62| 6;).

e Sampling from these conditional is often feasible even
when sampling from the joint is impossible (e.g. nuclear pump data).
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2.11— Invariant Distribution

o Clearly {(6},67?)} is a Markov chain and its transition
(), (0.8)) = (2| 0) < (2] 2).
o Then [ [ (6%,0%) P ((6%,6%) , (0%,6%) ) db*do* satisfies
// (0",0%) 7 (8] 02) = (2] 6" ) ao*ae?
— /W(QQ (8']6%) = (82]6") ao®
= m(6,6%) 7 (6% 0") o>
[ (@) (@[7)
= n(0")x(®0") = (6".07)

mmmmmmmmmmmmmm



2.12— Irreducibility

e This does not ensure that the Gibbs sampler does converge

towards the invariant distribution!
e Additionally it is required to ensure irreducibility: loosely
speaking the Markov chain can move to any set A such that

m(A) > 0 for (almost) any starting point.

e This ensures that

N
Z (6,02) /gp(el,e?)w(el,e?) do*do*

n=1
but NOT that asymptotically (9%7 9%) ~ T
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2.13— Irreducibility

A distribution that can lead to a reducible Gibbs sampler.

Zero density

Zero density
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2.14— Aperiodicity

e Consider a simple example where X = {1,2} and

P(1,2) = P(2,1) = 1. Clearly the invariant distribution

is given by 7 (1) =7 (2) = 3.

e However, we know that if the chain starts in Xy =1,

then X, =1 and X5,11 = 0 for any n.

e We have .
N;wxn)%/@(mw(w)dw

but clearly X,, is NOT distributed according to .

e You need to make sure that you do NOT explore the space
in a periodic way to ensure that X,, ~ m asymptotically.
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2.15— About the Gibbs sampler

Even when irreducibility and aperiodicity are ensured,
the Gibbs sampler can still converge very slowly.
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2.16— More about the Gibbs sampler

o If 0 = (04,...,0,) where p > 2, the Gibbs sampling
strategy still applies.

e Initialization:
e Select deterministically or randomly 6y = (95, e 95) :
e lteration ¢; 7 > 1:
Fork=1:p
o Sample 0% ~ m (0| 9;’“).

where 0;% = (0},...,0F 71 05t 00 ).

v Y1 —1
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2.17- Random Scan Gibbs sampler

e Initialization:

o Select deterministically or randomly 6y = (63, ..., 67) .
e lteration ¢; 7 > 1:

e Sample K ~ Uy, .

o Set ;% =01,

e Sample O ~ 7 (QK‘H,L._K).

where 0; % = (01, ...,0 1 011, . 67).
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2.18— Practical Recommendations

e Iry to have as few “blocks” as possible.
e Put the most correlated variables in the same block.
e If necessary, reparametrize the model to achieve this.

e Integrate analytically as many variables as possible: pretty algorithms
can be much more inefficient than ugly algorithms.

e There is no general result telling strategy A is

better than strategy B in all cases: you need experience.
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2.19— Bayesian Variable Selection Example

e We select the following model

p
Y =) B:X;+0V where V ~ N (0,1)

1=1

where we assume ZG (0?; %2, 22) and for a? << 1

1 1
Bi ~ SN (0, a’0%0?) + SV (0, 5%0?)
e We introduce a latent variable +; € {0, 1} such that

Pr(y; =0)=Pr(y;=1) =

Y

N

Bilvi =0~ N (0,a%6%02), Bi|l7=1~N(0,6%0?).
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2.20— A Bad Gibbs Sampler

e We have parameters (ﬁlzp, Vips 02) and observe n observations D = {x;,y; }._;.

e A potential Gibbs sampler consists of sampling iteratively
from p (ﬁl,p| D, v1.p, 02) (Gaussian), p (02‘ D, 1., ﬁl,p) (inverse-Gamma)
and p (lep‘ D7 61:197 U2> .

e In particular D

p (’Yl:p‘ Daﬁl:pv 0_2) — Hp ("Y@| 6@, 0'2)
1 =1
and

1 eXx ——67’2
2 V2mdo b 26207
p(%=1|ﬁz70): 1 32 1 32 :
V2mdo exXp (_ 25202) T V2mado exXp (_ 2a25202)

e The Gibbs sampler becomes reducible as o goes to zero.
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2.21— Bayesian Variable Selection Example

e This is the result of bad modelling and bad algorithm.
You would like to put a ~ 0 and write

p
Y = Z%ﬁiXi + oV where V ~ N (0,1)
i=1
where v; = 1 if X is included or v; = 0 otherwise. However this suggests that
B; is defined even when ~y; = 0.

e A neater way to write such models is to write
Y= ) BXi+oV=0X +0V
{i:ys=1}
where, for a vector v = (y1,..,7), B8y =1{Bi :vi =1}, Xy ={X; : v = 1}
and n, = >0 Y.
e Prior distributions

oy (ﬁ7,02) =N (57;0,520217%)1'9' ((72; % E)
and 7 () = [[;_y 7 (i) =277
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2.22— A Better Gibbs Sampler

e We are interested in sampling from the trans-dimensional distribution m ('y, B, o’ ‘ D)

e However, we know that
(7, 84,0%| D) = 7w (y| D)7 (B5,0% D7)

where
T (y| D) o< 7 (D]vy) ()

and

7(Dl7) = [ 7(D.6y0%) dddo’

vo + 1 to+ Sy — s\ Y
x F(02 +1)5”v|271/2< 7;“2 v ”) .
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2.23— Bayesian Variable Selection Example

e m (| D) is a discrete probability distribution with 2P potential
values.
e We can use the Gibbs sampler to sample from it.
e Initialization:

e Select deterministically or randomly ~g = (fy&, ...,fyg) :
e lteration 7; 7 > 1:

Fork=1:p

e Sample V¥ ~ m (7*| D,y ").
where 7% = (77, ey YT AL )
e Optional step: Sample (8,,:,07) ~ 7 (85,02 D, ;).

— Summary
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2.23— Bayesian Variable Selection Example

e This very simple sampler is much more efficient than the previous one.

e However, it can also mix very slowly because the components are

updated one at a time.
e Updating correlated components together would increase significantly

the convergence speed of the algorithm at the cost of an increased

complexity.
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2.23— Bayesian Variable Selection Example

e The Gibbs sampler is a generic tool to sample approximately
from high-dimensional distributions.

e Fach time you face a problem, you need to think hard about it

to design an efficient algorithm.

e Eixcept the choice of the partitions of parameters, the Gibbs
sampler is parameter free; this does not mean it is efficient.
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