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1.1– Outline

• Introduction to Markov chain Monte Carlo

• The Gibbs Sampler

• Examples
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2.1– Summary of Last Lecture

• Rejection Sampling and Importance Sampling are two general
methods but limited to problems of moderate dimensions.

• “Problem”: We try to sample all the components of
a potentially high-dimensional parameter simultaneously.

• There are two ways to implement incremental strategies.

- Iteratively: Markov chain Monte Carlo.

- Sequentially: Sequential Monte Carlo.
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2.2– Motivating Example: Nuclear Pump Data

• Multiple failures in a nuclear plant:

Pump 1 2 3 4 5 6 7 8 9 10

Failures 5 1 5 14 3 19 1 1 4 22

Times 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48

• Model: Failures of the i−th pump follow a Poisson process with
parameter λi (1 ≤ i ≤ 10). For an observed time ti, the number
of failures pi is thus a Poisson P(λiti) random variable.

• The unknowns consist of θ := (λ1, . . . , λ10, β).
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2.3– Bayesian Model for Nuclear Pump Data

• Hierarchical model

λi
iid∼ Ga(α, β) and β ∼ Ga(γ, δ)

with α = 1.8 and γ = 0.01 and δ = 1.

• The posterior distribution is proportional to
10∏

i=1

{(λiti)pi exp(−λiti)λα−1
i exp(−βλi)}β10αβγ−1 exp(−δβ)

∝
10∏

i=1

{λpi+α−1
i exp(−(ti + β)λi)}β10α+γ−1 exp(−δβ).

• This multidimensional distribution is rather complex. It is not obvious
how the inverse cdf method, the rejection method or importance
sampling could be used in this context.

– Summary Page 5



2.4– Conditional Distributions

• The conditionals have a familiar form

λi|(β, ti, pi) ∼ Ga(pi + α, ti + β) for 1 ≤ i ≤ 10,

β|(λ1, . . . , λ10) ∼ Ga(γ + 10α, δ +
10∑

i=1

λi).

• Instead of directly sampling the vector θ = (λ1, . . . , λ10, β) at once,
one could suggest sampling it iteratively, starting
for example with the λi’s for a given guess of β, followed by an
update of β given the new samples λ1, . . . , λ10.
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2.4– Conditional Distributions

• Given a sample, at iteration t, θt := (λt
1, . . . , λt

10, β
t) one could

proceed as follows at iteration t + 1,

1. λt+1
i |(βt, ti, pi) ∼ Ga(pi + α, ti + βt) for 1 ≤ i ≤ 10,

2. βt+1|(λt+1
1 , . . . , λt+1

10 ) ∼ Ga(γ + 10α, δ +
∑10

i=1 λt+1
i ).

• Instead of directly sampling in a space with 11 dimensions,
one samples in spaces of dimension 1

• Note that the deterministic version of such an algorithm
would not generally converge towards the global maximum of
the joint distribution.
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2.4– Conditional Distributions

• The structure of the algorithm calls for many questions:

• Are we sampling from the desired joint distribution?
• If yes, how many times should the iteration above be repeated?

• The validity of the approach described here stems from the fact
that the sequence {θt} defined above is a Markov chain and
some Markov chains have very nice properties.
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2.5– Introduction to Markov Chain Monte Carlo

• Markov chain: A sequence of random variables {Xn; n ∈ N} defined
on (X,B (X)) which satisfies the property, for any A ∈ B (X)

P (Xn ∈ A|X0, ..., Xn−1) = P (Xn ∈ A|Xn−1) .

and we will write
P (x, A) = P (Xn ∈ A|Xn−1) .

• Markov chain Monte Carlo: Given a target π, design a transition
kernel P such that asymptotically as n → ∞

1
N

N∑
n=1

ϕ (Xn) →
∫

ϕ (x) π (x) dx and/or Xn ∼ π.

• It should be easy to simulate the Markov chain even if π is complex.
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2.6– Example

• Consider the autoregression for |α| < 1

Xn = αXn−1 + Vn, where Vn ∼ N (
0, σ2

)
.

• The limiting distribution is

π (x) = N
(

x; 0,
σ2

1 − α2

)
.

• To sample from π, we could just sample the Markov chain and asymptotically
we would have Xn ∼ π.

• Obviously, in this case this is useless because we can sample from π directly.
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2.7– Example

• Graphically, consider 1000 independent Markov chains run in parallel.

• We assume that the initial distribution of these Markov chains is U[0,20].
So initially, the Markov chains samples are not distributed according to π
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2.7– Example

From top left to bottom right: histograms of 1000 independent
Markov chains with a normal distribution as target distribution.
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2.7– Example

• The target normal distribution seems to “attract” the distribution of
the samples and even to be a fixed point of the algorithm.

• This is is what we wanted to achieve, i.e. it seems that we have produced
1000 independent samples from the normal distribution.

• In fact one can show that in many (all?) situations of interest it is not
necessary to run N Markov chains in parallel in order to obtain 1000
samples, but that one can consider a unique Markov chain, and build
the histogram from this single Markov chain by forming histograms
from one trajectory.
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2.8– Example: Mixture of Normals

1000 iterations
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2.8– Example: Mixture of Normals

10000 iterations
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2.9– Markov chain Monte Carlo

• The estimate of the target distribution, through the series of histograms,
improves with the number of iterations.

• Assume that we have stored {Xn, 1 ≤ n ≤ N} for N large and wish to
estimate

∫
X

ϕ(x)π(x)dx.

• In the light of the numerical experiments, one can suggest the estimator
1
N

N∑
n=1

ϕ(Xn).

which is exactly the estimator that we would use if {Xn, 1 ≤ n ≤ N} were
independent.

• In fact, it can be proved, under relatively mild conditions, that such an
estimator is consistent despite the fact that the samples are NOT independent!
Under additional conditions, a CLT also holds with a rate of CV in 1/

√
N .
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2.9– Markov chain Monte Carlo

To summarize, we are interested in Markov chains with transition kernel P

which have the following three important properties observed above:

• The desired distribution π is a “fixed point” of the algorithm or, in
more appropriate terms, an invariant distribution of the Markov
chain, i.e.

∫
X

π(x)P (x, y) = π(y) .

• The successive distributions of the Markov chains are “attracted”
by π, or converge towards π.

• The estimator 1
N

∑N
n=1 ϕ(Xn) converges towards Eπ(ϕ(X)) and

asymptotically Xn ∼ π
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2.9– Markov chain Monte Carlo

• Given π (x), there is an infinite number of kernels P (x, y)
which admits π (x) as their invariant distribution.

• The “art” of MCMC consists of coming up with good ones.

• Convergence is ensured under very weak assumptions;
namely irreducibility and aperiodicity.

• It is usually very easy to establish that an MCMC sampler
converges towards π but very difficult to obtain rates of
convergence.
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2.10– The Gibbs Sampler

• Consider the target distribution π (θ) such that θ =
(
θ1, θ2

)
.

Then the 2 component Gibbs sampler proceeds as follows.

Initialization:

• Select deterministically or randomly θ0 =
(
θ1
0, θ

2
0

)
.

Iteration i; i ≥ 1:

• Sample θ1
i ∼ π

(
θ1
∣∣ θ2

i−1

)
.

• Sample θ2
i ∼ π

(
θ2
∣∣ θ1

i

)
.

• Sampling from these conditional is often feasible even
when sampling from the joint is impossible (e.g. nuclear pump data).
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2.11– Invariant Distribution

• Clearly
{(

θ1
i , θ2

i

)}
is a Markov chain and its transition

kernel is
P
((

θ1, θ2
)
,
(
θ̃1, θ̃2

))
= π

(
θ̃1
∣∣∣ θ2
)

π
(

θ̃2
∣∣∣ θ̃1
)

.

• Then
∫ ∫

π
(
θ1, θ2

)
P
((

θ1, θ2
)
,
(
θ̃1, θ̃2

))
dθ1dθ2 satisfies∫ ∫

π
(
θ1, θ2

)
π
(

θ̃1
∣∣∣ θ2
)

π
(

θ̃2
∣∣∣ θ̃1
)

dθ1dθ2

=
∫

π
(
θ2
)
π
(

θ̃1
∣∣∣ θ2
)

π
(

θ̃2
∣∣∣ θ̃1
)

dθ2

=
∫

π
(
θ̃1, θ2

)
π
(

θ̃2
∣∣∣ θ̃1
)

dθ2

= π
(
θ̃1
)

π
(

θ̃2
∣∣∣ θ̃1
)

= π
(
θ̃1, θ̃2

)
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2.12– Irreducibility

• This does not ensure that the Gibbs sampler does converge
towards the invariant distribution!

• Additionally it is required to ensure irreducibility: loosely
speaking the Markov chain can move to any set A such that
π (A) > 0 for (almost) any starting point.

• This ensures that

1
N

N∑
n=1

ϕ
(
θ1

n, θ2
n

)→ ∫
ϕ
(
θ1, θ2

)
π
(
θ1, θ2

)
dθ1dθ2

but NOT that asymptotically
(
θ1

n, θ2
n

) ∼ π.
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2.13– Irreducibility

A distribution that can lead to a reducible Gibbs sampler.
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2.14– Aperiodicity

• Consider a simple example where X = {1, 2} and
P (1, 2) = P (2, 1) = 1. Clearly the invariant distribution
is given by π (1) = π (2) = 1

2 .

• However, we know that if the chain starts in X0 = 1,

then X2n = 1 and X2n+1 = 0 for any n.

• We have
1
N

N∑
n=1

ϕ (Xn) →
∫

ϕ (x) π (x) dx

but clearly Xn is NOT distributed according to π.

• You need to make sure that you do NOT explore the space
in a periodic way to ensure that Xn ∼ π asymptotically.
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2.15– About the Gibbs sampler

Even when irreducibility and aperiodicity are ensured,
the Gibbs sampler can still converge very slowly.
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2.16– More about the Gibbs sampler

• If θ = (θ1, ..., θp) where p > 2, the Gibbs sampling
strategy still applies.

• Initialization:

• Select deterministically or randomly θ0 =
(
θ1
0, ..., θ

p
0

)
.

• Iteration i; i ≥ 1:

For k = 1 : p

• Sample θk
i ∼ π

(
θk
∣∣ θ−k

i

)
.

where θ−k
i =

(
θ1

i , ..., θk−1
i , θk+1

i−1 , ..., θp
i−1

)
.
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2.17– Random Scan Gibbs sampler

• Initialization:

• Select deterministically or randomly θ0 =
(
θ1
0, ..., θ

p
0

)
.

• Iteration i; i ≥ 1:

• Sample K ∼ U{1,...,p}.

• Set θ−K
i = θ−K

i−1 .

• Sample θK
i ∼ π

(
θK
∣∣ θ−K

i

)
.

where θ−K
i =

(
θ1

i , ..., θK−1
i , θK+1

i , ..., θp
i

)
.
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2.18– Practical Recommendations

• Try to have as few “blocks” as possible.

• Put the most correlated variables in the same block.

• If necessary, reparametrize the model to achieve this.

• Integrate analytically as many variables as possible: pretty algorithms
can be much more inefficient than ugly algorithms.

• There is no general result telling strategy A is
better than strategy B in all cases: you need experience.
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2.19– Bayesian Variable Selection Example

• We select the following model

Y =
p∑

i=1

βiXi + σV where V ∼ N (0, 1)

where we assume IG (σ2; ν0
2 , γ0

2

)
and for α2 << 1

βi ∼ 1
2
N (

0, α2δ2σ2
)

+
1
2
N (

0, δ2σ2
)

• We introduce a latent variable γi ∈ {0, 1} such that

Pr (γi = 0) = Pr (γi = 1) = 1
2 ,

βi| γi = 0 ∼ N (
0, α2δ2σ2

)
, βi| γi = 1 ∼ N (

0, δ2σ2
)
.
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2.20– A Bad Gibbs Sampler

• We have parameters
(
β1:p, γ1:p, σ

2
)

and observe n observations D = {xi, yi}n
i=1.

• A potential Gibbs sampler consists of sampling iteratively
from p

(
β1:p|D, γ1:p, σ

2
)

(Gaussian), p
(
σ2
∣∣D, γ1:p, β1:p

)
(inverse-Gamma)

and p
(
γ1:p|D, β1:p, σ

2
)
.

• In particular
p
(
γ1:p|D, β1:p, σ

2
)

=
p∏

i=1

p
(
γi|βi, σ

2
)

and

p
(
γi = 1|βi, σ

2
)

=
1√

2πδσ
exp

(
− β2

i

2δ2σ2

)
1√

2πδσ
exp

(
− β2

i

2δ2σ2

)
+ 1√

2παδσ
exp

(
− β2

i

2α2δ2σ2

) .

• The Gibbs sampler becomes reducible as α goes to zero.
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2.21– Bayesian Variable Selection Example

• This is the result of bad modelling and bad algorithm.
You would like to put α 
 0 and write

Y =
p∑

i=1

γiβiXi + σV where V ∼ N (0, 1)

where γi = 1 if Xi is included or γi = 0 otherwise. However this suggests that
βi is defined even when γi = 0.

• A neater way to write such models is to write
Y =

∑
{i:γi=1}

βiXi + σV = βT
γ Xγ + σV

where, for a vector γ = (γ1, ..., γp), βγ = {βi : γi = 1} , Xγ = {Xi : γi = 1}
and nγ =

∑p
i=1 γi.

• Prior distributions

πγ

(
βγ , σ2

)
= N (

βγ ; 0, δ2σ2Inγ

) IG (σ2;
ν0

2
,
γ0

2

)
and π (γ) =

∏p
i=1 π (γi) = 2−p.
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2.22– A Better Gibbs Sampler

• We are interested in sampling from the trans-dimensional distribution π
(
γ, βγ , σ2

∣∣D)
• However, we know that

π
(
γ, βγ , σ2

∣∣D) = π (γ|D)π
(
βγ , σ2

∣∣D, γ
)

where
π (γ|D) ∝ π (D| γ)π (γ)

and

π (D| γ) =
∫

π
(
D, βγ , σ2

∣∣ γ) dβγdσ2

∝ Γ
(

ν0 + n

2
+ 1
)

δ−nγ |Σγ |1/2

(
γ0 +

∑n
i=1 y2

i − μT
γ Σ−1

γ μγ

2

)−( ν0+n
2 +1)

.
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2.23– Bayesian Variable Selection Example

• π (γ|D) is a discrete probability distribution with 2p potential
values.
• We can use the Gibbs sampler to sample from it.
• Initialization:

• Select deterministically or randomly γ0 =
(
γ1
0 , ..., γp

0

)
.

• Iteration i; i ≥ 1:

For k = 1 : p

• Sample γk
i ∼ π

(
γk
∣∣D, γ−k

i

)
.

where γ−k
i =

(
γ1

i , ..., γk−1
i , γk+1

i−1 , ..., γp
i−1

)
.

• Optional step: Sample
(
βγ,i, σ

2
i

) ∼ π
(
βγ , σ2

∣∣D, γi

)
.
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2.23– Bayesian Variable Selection Example

• This very simple sampler is much more efficient than the previous one.

• However, it can also mix very slowly because the components are
updated one at a time.

• Updating correlated components together would increase significantly
the convergence speed of the algorithm at the cost of an increased
complexity.
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2.23– Bayesian Variable Selection Example

• The Gibbs sampler is a generic tool to sample approximately
from high-dimensional distributions.

• Each time you face a problem, you need to think hard about it
to design an efficient algorithm.

• Except the choice of the partitions of parameters, the Gibbs
sampler is parameter free; this does not mean it is efficient.
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