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Abstract

This paper is concerned with finite mixture models in which the populations from one
observation to the next are selected according to an unobserved Markov process. A new,
full Bayesian approach based on the method of Gibbs sampling is developed. Calculations
arc simplified by data augmentation, achieved by introducing a population index variable
into the list of unknown parameters. It is shown that the latent variables, one for cach
observation, can be simulated from their joint distribution given the data and the remaining
parameters. This result serves to accelerate the convergence of the Gibbs sample. Modal
cstimates are also computed by stochastic versions of the EM algorithm. These provide an
alternative to a full Bayesian approach and to existing methods of locating the maximum
likelihood estimate. The ideas are applied in detail to Poisson data, mixtures of multivariate
normal distributions, and autorcgressive time serics.

Kev words: Autoregressive time series; Finite mixture distributions; Gibbs sampling; Hid-
den Markov models; Markov chain Monte Carlo; Markov switching models; Multivariate
normal mixtures; Poisson distribution; Stochastic EM algorithm

JEL classification: Ci1; C12; C22

1. Introduction
1.1. Model
This paper is concerned with the Bayesian analysis of a class of finite mix-

ture distributions in which the component populations, from one observation to
the next, are selected according to an unobserved Markov process. This model
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generalizes the situation in which the populations are selected independently ac-
cording to a discrete probability mass function. A complete discussion of the
latter class of models is provided by Everitt and Hand (1981) and Titterington,
Smith, and Makov (1985).

In contrast to the classical mixture model, the Markov mixture model (MMM)
is especially useful for modeling persistence, i.e., serial correlation in time series
data. The general model can be described in terms of a sequence of unobservable
finite state random variables, s, € {1,...,m}, which evolve according to a Markov
process:

5|8~ ~ Markov(P, m;), (1)

where P={p;;} is the one-step transition probability matrix of the chain, i.e., p;;=
Pr(s,=j|s,—1=i), and m; is the probability distribution at = 1. For identifiability
reasons, assume that this chain is time-homogeneous, irreducible, and aperiodic.
At each observation point ¢, a realization of the state occurs. Then, given that s, =
k, the observation y, is drawn from the population given by the conditional density

.vllyl—lw()k N.f.(,vllyt——ls()/\')ﬁ k: l,--.,’n, (2)

where Y,y =(»1...., % -1), f is a density (or mass) function with respeci to a
o finite measure, and () is the parameter vector of the kth population. Thus, the
observation at ¢ is drawn from the finite mixture distribution

f m

S LSYi— )y (s, = k), t=1,
FlY sy 10y =4 A0 3)
L/(‘r' i 00y pls; = kls.y), €22,
\ A

where
m
() = {Ullk} U{ppl <0 j<m— 1},
AA

It is possible to obtain a number of important models as special cases of
this structure. For example, the classical finite mixture model is obtained if s, is
distributed independently and identically across time. Single and multiple change-
point models can be also be obtained if suitable restrictions are placed on the ofi-
diagonal elements of P. The Markov switching regression model of Goldfeld and
Quandt (1973) and Markov switching autoregressive time series models are also
particular cases of (3). Even the autoregressive models considered by Hamilton
(1989) and Albert and Chib (1993), in which the conditional density in (2)
depends on lagged values of s, can be put in this family by redefining the
states (Hamilton, 1994, p. 691). However, in the latter case the support of the
distribution of the states can become quite large.

In recent years, such models have attracted considerable attention in economet-
rics, biometrics, and engir. ering. These models are referred to as hidden Markov
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models although the terminology Markov mixture models is more appropriate.
A major problem with MMM’s is that the likelihood function of the parameters
is not available in simple form. Much earlier, Baum, Petrie, Soules, and Weiss
(1970) addressed this problem and proposed a recursive algorithm, now called
the forward-backward algorithm, to compute the likelihood function. Even so,
Leroux and Puterman (1992) note that the algorithm is often not stable to small
perturbations of the datr. Leroux (1992) in an important paper has established
the asymptotic properties of the maximum likelithood estimator.

A quite different approach to the estimu.ion of mixture models is possible
from the Bayesian Markov chain simulation perspective. Basically, the point is
that the computation of the likelihood function can be avoided if the population
index variable {s,} is treated as an unknown parameter and simulated along side
the other parameters of the model by Gibbs sampling methods. Such an approach
is used by Diebolt and Robert (1993) to estimate the classical mixture model.
For the Markev mixture model, Albert and Chib (1993) and McCulloch and Tsay
(1994), beth in the context of Gaussian time series modcls, exploit this idea to
simulate the posterior distribution.

The first main contribution of this paper is to show that it is possible to
simulate the latent data S, = (s1.,52,...,s,) from the joint distribution

S1.5%, 0028, | Yo 0, S,y ={1,2,....,m}", (4)

rather than the sequence of full conditional distributions s, |Y,.s;, j # 1. This
new result is extremely significant. Instead of n additional blocks in the Gibbs

distribution), only one additional block is rcquired. This dramaitcally improves
the convergence of the Markov chain induced by the Gibbs sampling algorithm.

Second, it is shown hiow the Markov chain Monte Carlo approach can be
modified slightly to obtain modal estimates, or alternatively maximum likelihood
estimates if diffuse priors arc adopted. These modal estimates are obtained using
stochastic versions of the EM algorithm such as the stochastic EM (SEM), and
the Monte Carlo EM. The performance of these procedures is contrasted with the
full Bayesian approach.

Third, the ideas are applied to both Gaussian and non-Gaussian discrete data,
and more than two component problems. The examples involve the Poisson dis-
tribution, multivariate Gaussian distributions, and autoregressive time series.

1.2. Gibbs sampling

The approach taken in this paper is motivated by the Gibbs sampling aigo-
rithm. The idea in Gibbs sampling is to simulate, in turn, the distribution of
cach parameter vector conditioned on the data and the remaining parameters (the
so-called full conditional distribution). This process generates a Markov chain,
which under mild conditions converges under the L' norm to the desired posterior
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distribution. The output of the Markov chain, once it has passed its transient stage,
is taken as a sample from the posterior distribution for purposes of computing mo-
ments and marginal densities. Briefly, the systematic form of the Gibbs sampler
for a parameter vector Y (which may include the missing data), with blocking
(Y1,..., W) and full conditional distributions {y/; | (Y,,¥;),1 < j < d}, is given
by the following steps:

Step 1: Specify starting values Y% = (¢¥,....¢¥Y) and set i = 1.

Step 2: Simulate

'l’lﬁl from v l Ymd’é*‘/’é*j"vwflﬁ_
l/li‘_‘+: from dlZI )/Il»l//l!+:s‘/li39'l'-awfjs '
U from W | Vel )

. i1 . + | 41
it from g | YWl
Step 3: Seti=i+ 1, and 70 to 2.

The above cycle is repea‘ed a large number of times and the simulated
values {Y'.i = T}, where T is a number sufficiently large so that the sampler has
converged, is uscd as a sample from the joiut distribution |Y,. Full details are
provided in Gelfand and Smith (1990). If the full conditional distributions arc
readily sampled, this method is quite casy to implement. Note, that the sampler
is defined by the chivice of i and the chotce of blocking (e, the choice of i )
Duc to the fact that we include {s,} in i, there is a considerable proliferation in
the number of parameters if cach s, is treated individually. A technique to avoid
this problem, by treating all the states as one block and sampling the states from
their joint distribution, is developed next.

2. Full conditional distributions
2.1. Simulation of the states

The key feature of the new Bayesian Markov chain Monte Carlo approach is
the simulation of the states (the population index) from the distribution p(S,,]Y,.
(1), which is the joint posterior mass function of all the states given (. This
sitnulation might scem to be intractable because the range space is &, the n-fold
product of the set {1,2,....m}. However, it is possible to develop a quite simple
expression for the joint distribution that leads to a recursive simulation procedure.
At cach step, starting with the terminal state, s,, only a single state has to be
drawn. To simplify the notation and the discussion it is convenient to adopt the
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following conventions:
— (v . r+1 , :
S’—(:ll,.-.,bt), S :(;St+|,.-.,b"),

with a similar convention applying to ¥, and Y'*!. In words, S, is the history of
the states up to time £, and S’*! is the future from ¢ + 1 to #. Now write the
joint density (4) in the following manner:

p(SnIYm()) = p(Snlylh 0) XX p(sllyllsSt+ls()) X X P(Sl|YnsSZa ())’

(5)
in which the typical ierim, excluding the terminal point, is given by
p(s; | Y. 0). (6)
By Bayes theorem,

p(si| Y 8™ 0) o plsi| Y, 0) x f(Y'L S Y,,s5,0)
x p(si| Yo 0) X p(spsrse, ) x f(YHL S Y, 50,8041,0)
X (s Y 0) X p(seiy |50, 0), (7)

since the term f(Y'''. 82| Y, 8,.5.,1.0) is independent of s,. Thus, the required
mass function in (6) is the product of two terms, one of which is the mass
function of s,, given (Y,,0), and the other is the transition probability of going
from s, 10 5. given (.. The normalizing constant of this mass function is the
sum of the numbers obtained in (7) as s, runs from | to m.

The rest of the caleulation is concerned with determining the first mass function
in (7). It can be determined recursively for all ¢ starting with period 1. The
objective is to find p(s, | Y,.0) and this is obtained as foilows. Assume that the
function p(s,_|Y,;-1.0) is available. Then, rcpecat the following steps.

Prediction step: Determination of p(s,|Y,-1.0). By the law of total probability,

nm

P Y M= plsy |51 =k 0)x plsi—y =k | Y,—1,0),
ko

where the fact that p(s,| Y, -1,8,1.0) = p(s;|s,-1.0) has been utilized.

Update step: Determination of p(s, | ¥,.0). By Bayes theorem, the mass function
of the state given information up to time f is now

pLs; | Y, 0) x p(s, | Y. 0) < f(v | Yio1.05), (8)

where the normalizing constant is the sum of all the terms over s, from 1 to .
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These steps can be initialized at t=1 by setting p(s) | Yo, 0) to be the stationary
distribution of the chain (the left eigenvector corresponding to the eigenvalue
of 1); the prediction step is thus not required at the start of these recursions.

Based on these results, the states can be simulated from their joint distribution
(5) in a very simple manner. (Note that if the prior on all the parameters is
proper, it is not necessary to reject a particular S, that does not ascribe at least
one observation to each population).

First run the prediction and update steps recursively to compute the mass func-
tions p(s,|Y;,0). [These mass functions are obtained by defining a n x m storage
matrix, say F. Given the ¢t — 1 row F,_;, the next row is F; which is proportional
to (F/_,P) d,, where d, is a row vector consisting of f(v|Y,—;.0,) and - is
the elemeni-dby-¢icimer: muiiiplication operator.] The last row of 7 is tiicn used
to simulate s,. After s, is simulated, the remaining states (beginning with s,_)
are simulated using the probability mass function that emerges from (7). Note
that the calculation of the latter distribution requires the numbers in the tth row
of F, and those in the column of P corresponding to the simulated value of s,,.

2.2. Simulation of P

Given the states, it is rather straightforward to determine the full conditional
distribution of the unique clement of the transition matrix P. This is because
P becomes independent of (Y,,J;" | 0k). given S,. Thus, the full conditional
aistribution ol tke transition matrix can be derived without regard to the sampling
model.

Suppose the ith row of P is denoted by p; = (pir..... pin). and let the prior
distribution of p;, independently of p;, j # i, be a Dirichlet on the m-dimensional
simplex, i.c., |

Pi~ (/(’xilw--wxim)- (9)

Then, multiplying the prior by the likelihood function of P|S, immediately gives
the result that the updated distribution is also Dirichlet. In particular,

PilSu~ (i + i 2+ ) i=1....m, (10)

where 1, is the total number of one-step transitions from state i io state & in the
vector §,. The vector p; (1 <@ < m) can now be simulated from (10) by letting

X Xm

Pil =~ oos Pim = vy~ Gammaiy; + n;j, 1),

PIRY E"/
/-1 ;o)
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3. Modal estimates

An important implication of the above result on the simulation of the states
is that it can be directly used to compute the maximizer of the likelihood func-
tion, or the maximizer of the posterior, through the Monte Carlo EM (MCEM)
algorithm proposed by Wei and Tanner (1990). The latter algorithm: is a stochas-
tic modification of the original Dcinipster, Laird, and Rubin (i977) EM
algorithm.

Suppose that, given the current guess of the maximizer, it is of interest to eval-
uate the E-step of the EM algorithm. In the Bayesian formulation that amounts
to an evaluation of the integral

Q(()s U') = ’ |Og(7T“) | Y,.8:))d[S, | Yo, ()i]’ (11)
S,

where the integral is a sum with integrating measure given by the mass function
in (5). As this is an intractable calculation, consider the evaluation of the QO
function by Monte Carlo. Given the current parameter value (/, one can take a
large number of draws of S, as per the approach described above. Suppose the
draws are denoted by S, ;, j=1....,N. Then the Q function can be approximated
via the average

~ s N
00,0 = N~'Y" log(m(0] Y. S0)). (12)

.I.:t:. I

In the M-step. the O function can be maximized over 0 to obtain the new
parameter (''. The algorithm can be terminated once the diflerence |(l” b
is negligible. In producing the iterate sequence {0',0%,...,0" ...} via the above
strategy, it is best to begin with a small value of N and then let the num-
ber of replications of S, increase as one moves closer to the
maximizer.

This procedure provides a straightforward device to locate the modal estimates
due to the fact that the O function is additive in the respective parameters. For
example, to obtain the updated estimate of {p} under the Dirichlet prior (9),
cach row can be treated separately of all the other rows and the 0;’s. From
Z./ log(m( px|Yu.Su. ;). which is proportional to

N m—1
Z{ ST (ke + g — 1) log(par)

j=1 U

+ ("km.j + g — i) IOg(l — Prt — 7 Phkm—1 )}-»
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where ny, ; is the number of transitions from state & to state / in the simulation
Su.j» the next iterate is given by
N N
> (ows + )
~ j=1
Prl = N m ) (]3)
Y (Z(Dﬁu + Ay ))
j=1 \I=I

A modification of the MCEM algorithm leads to another version of the EM
algorithm (Celeux and Diebolt. 1985). Suppose that instead of taking N draws
of S, for each value of (), only one draw is made. As before, the updated or
new value of ) is found by maximizing the posterior density of () given (V,,S,).
However, unlike the MCEM which generates a deterministic sequence of param-
eter updates, the iterates in this algorithm follows a aperiodic, irreducible Markov
chain.

4. Examples
4.1. Poisson fetal data

We begin by considering the fetal movement data analyzed in Leroux and
Putcrman (1992). The data consists of number of movements by a fetal lamb
(observed by ultra sound) in 240 consecutive five-second intervals. The number of
counts is modeled as a Poisson process in which the unknown rate parameter, £,
can vary from onc interval to the next according to a Markov chain described by
(1). In particular, given the state at time ¢, the count (the number of movema:nts)
during interval ¢ is given by

)."lc“ /;.,:
. Py vk
flag) = =——,
V!

t=1,2,...,240, k=1,....m. (14)

The data used in the study is given in Fig. 1.

Two models are fit to this data sct, one with two components and the second
with threc components. Note that it is convenient to take independent Gamma
priors on /4; due to the fact that such a distribution is conjugate to the Poisson
likelihood. Then, under the assumption that 2, ~ %(a;.b;), the full conditional
distribution of /4 is

"
A\ Y Sy P~ 4 (aA + > vills=kl.by + Nk) . k=1,....m, (15)
11
wherc [ [s; = k] is the indicator function that takes the value 1 if s, =k and 0

otherwise, and Ny is the total number of observations from the kth population.
Thus, given §,, all the 4, s are simulated from Gamma distributions. The MCMC
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algorithm 1s then based on iterating between the simulation of S, from (7), P
from (10), and 4, from (15).

For the MCEM algorithm, the updated iterate of ~; is also obtained quitc
easily. Due to the fact Z];/:] log(m(4x | Yy, S, ;) is proportional to

N N
_Z‘ (Ur.j+ ar — 1) log(4k) — Z(bk + Nk j )k, (16)
j=

Jj=1

where Uy j = >0 w1 [s,; = k] is the sum of the y values in state & in the jth
draw of 3,, the next iterate 1s obtained as

j=1

~ N N
Ak = Z (U/‘vqh,' + ay — ]) Z (bA + N/\/) (17)
J=1

The update value of P is obtained from (13). Finally, the estimates for the SEM
algorithm are obtained by dropping the summation over j in (16) and (17).

Consider the case of two populations. Suppose the prior parameters of /; are
given by (a;,b)=(1.2) and (a2.b2) = (2, 1), which specifies the belief that the
first population has the lower mean. Also suppose that in the Dirichlet prior on
P, (%1,%2) = (3. 1) and (%3, %2:) = (0.5,0.5). The implied prior moments are
given in Table 1. After initializing the iterations with values chosen from the
prior distribution, we run the MCMC algorithm in one long stream till we have
approximate convergence. Then, the first 200 sampled values are discarded and
the next 6,000 arc used to summarize the posterior distributions. The results are
reported in Table 1, Fig. 1 (the posterior probability that s, = £) and Fig. 2
(posterior densitics of parameters).

Note that here and in examples later, the design of the Gibbs sampler algorithm
(the number of iterations discarded and the choice of Gibbs sample size) is
governed by inspecting the autocorrelation function of the sampled draws and
the numerical standard errors of the estimates. In most cases, the autocorrelations
in the sampled values decayed to zero by about the 10th lag. The numerical
standard errors being small are not reported. In addition, the box plots reproduce
the minimum and maximum values, and the 25th, 50th and 75th percentiles.

Table |
ML and MCMC estimates for Poisson two-population Markov model
Prior Posterior
MLE Mean Std. dev. Mcan Std. dev. Lower Upper
/1 0.256 0.500 0.500 0.219 0.050 0.115 0.319
/2 3.101 2.000 1.414 2.291 0.776 1.08S 4.000
~ UK n 780 D10 67 0025 0.905.

B
i

P 0.692 0.500 0.354 0.664 0.158 0.322 0.924
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Table 2
Final five iterates in combined SEM-MCEM algorithm tfor Poisson two-population Markov model;
in computing (12), N = 1000

i =101 i=102 i =103 i=104 i = 105
2 0.258 0.259 0.258 0.259 0.259
/2 2.933 2.948 2.960 2.953 2.955
P 0.989 0.990 0.990 0.990 0.990
f 25.%] 0.715 0.720 0.720 0.721 0.720
© =
1 —_—
< ] H
o :
O [ ]
lambda_1 lambda_2 lambda_3
= = -
© T — a
c | - T :
== = = =
= &= me o= = i

p_11 p_12 p_13 p_21 p_22 p_23 p_31 p_32 p_33

Fig. 3. Posterior box plots in three-population Poisson mixture - Top: 4, bottom: P.

The results indicate that observations in excess of 2 are classified as belonging
to the high mean population. For two obscrvations that are exactly 2 (123, va4),
cither population is about as likely. Parameter estimates are precise and the model
appears to be a good fit to the data. Note that the maximum likelihood estimates
are taken from Leroux and Puterman (1992). They are similar to the Bayes point
estimates and seem to differ mainiy in the case ot 4.

Point estimates are also obtained by the Monte Carlo EM. We decided to
combine the SEM and MCEM algorithms in the following manner. First, during
the burn-in period, the SEM algorithm was employed, and then after the values
appeared to settle down, a switch was made to the MCEM algorithm. Specifically,
the SEM algorithm was used for the first 100 iterations, then the MCEM for the
last five iterations. The Q function in the MCEM steps was approximated using
1000 draws. The evolution of the iterate sequence in those last five itcrations is
contained in Table 2. It appears that the algorithm has converged to the posterior
mode. An average of the estimates, or the final iterate values, cen be used as the
output of the Monte Carlo algorithm.

Results are also obtained for a three-population mixture.

T“\L\ L'
rior densities are summarized in Fig. 3 while the posterior probabilities of the
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Fig. 4. Three-population Poisson mixture - Top: data Y, second: Pris; = 1] ¥,), third: Pr(s, = 2| ¥,
tottom: Pr(s, = 3| ¥,).

populations arc presented in Fig. 4. In this case only six observations appeai to
arisc from the third population while the rest of the data is cvenly distribu-ed
among the first two populations. We have presented the ML cstimates and the tull
Bayes results in Table 3 but have suppressed the MCEM estimates to conserve
space. They are all in close agreement with the tull Bayes results.

4.2, Autoregressive GNP dara

Now consider tiwe data set on quarterly U.S. real GNP that has been analyzed
carlier by Hamilton (1989) and Albert and Chib (1993) using a two-population
model with a tourth-order stationary autoregression. The variable of interest is the
percentage change (multiplied by 100) in the postwar real GNP for the period
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Table 3
ML and MCMC estimates for Poisson three-population Markov model.
Prior Posterior

MLE Mean Std. dev. Mean Std. dev. Lower Upper
Al 0.045 0.500 0.500 0.063 0.043 0.004 0.167
£2 0.509 2.000 1.414 0.510 0.099 0.345 0.743
/3 3.414 3.000 1.732 3.267 0.727 1.972 4814
P 0.947 0.732 0.196 0.933 0.038 0.842 0.986
P12 0.043 0.244 0.190 0.062 0.038 0.010 0.156
P 0.042 0.333 0.298 0.051 0.041 0.002 0.158
p2 0.958 0.333 0.298 0.934 0.043 0.824 0.986
3 0.184 0.244 0.190 0.228 0.131 0.034 0.520
P33 0.816 0.732 0.196 0.757 0.132 0.466 0.956

1951.2 to 1984.4. The objective is to fit autoregressive models in which the
intercept can be drawn from one of four populations but all other parameters arc
constant across the populations. This is flexible structure that can capture Markov
shifts in the level of the orocess. McCulloch and Tsay (1994) consider a similar
model but they restrict attention to two populations and use a Gibbs sampler in
which the population indices are not drawn jointly.
Specifically, let the conditional density of v, given Y, and s,_, be given
by
. 4 . 2
FOr Y nsenay) =2 pls=kls ) f (nlYionmeo7),
kol

where % = (%..... %) 7= (J1....7p) and

v | Yo, asys a2)= (v | + v+ Ve ps a’). (18)

Hence, at time 7, the data is drawn from one of four Gaussian populations with
(respective) conditional mean E(y, | Y10, 6 =0 + V-1 + o Y pViep
and conditional variance that is constant across the populations. Note that this
specification differs from that used by Hamilton (1989) and Albert and Chib
(1993), where in thc context of two populations, the conditional mean of y,
depends on realizations of the states at previous time points.

The MCMC algorithm is again quite vesily implemented, provided the analysis
is conditioned on the first p observations. As before, the states and the transition
probability matrix are simulated according to (8) and (11). Then, given S, the
other parameters, namely (2, [, 52), are simulated from distributions that are casily
derived based on results presented in Chib (1993). In particular, under the prior
o~ .| '|(oc(,k,A()“k' ), % is simulated from the distribution

Ak l Yoo Sua s ¢t~ I (Vk(AOO(()k + (7-221'::! s = k1), Vl\) ,
=1
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—2y—1
where =, = v, — 1V — -+ = Vp¥i-p and Vi = (Ao + Nyo7=)7". Next, under
a 4,01 (,") prior on 7 restricted to the stationary region, ; is simulated from
the distribution

n
7" YrtsSrls1~ 02 xX . ‘}) V(r()"/’O + (‘-“2 E xt(yl - 11))» V) ’

t=p+1 /

. , , / ___ N _ ) -2 n
where x; = (Vi—1,... o Vi=p)s % =%, when s, =k, and V =(I'y +a Z::,m

xx/)7!. A drawing from this distribution is accepted only if all the roots of the
polynomial I — L — --- — 7 ,L" lic outside the unit circle. Finally, under the
inverse-gamma prior ¥ %(vo/2,0¢/2), o is simulated from

n
do+ D (v — % — -\','/)’)2

Vo + 11
g% ) .
( 2 2 )

These results are applied to the GNP data set for different values of p under
weak priors on the parameters. For brevity, consider the case of a fourth-order
autoregression ( p =4). The Gibbs sampler is run for 7,000 iterations and the last
6,000 draws are used for purposes of summarizing the posterior distribution. The
results on (2,7, 4%) are presented in Table 4 while those on P are in Table 5.

The posterior moments of % relative to the prior moments appears to provide
support for more than two populations. In addition, it is noted that the marginal
posterior distributions of 7y and 74 are quite concentrated around 0. This suggests
that an AR(2) specification with four populations is a parsimonious description
for the data.

From the posterior distribution of the clements of the transition matrix it may
be noted that the data is not informative about some clements of the mairix but
that there is considerable cvidence for switching between the populations.

Table 4
MCMC estimates of (x..a%) in the AR(4) tour-population Markov model

Prior Posterior

Mcan Std. dev. Mcan Std. dev. Lower Upper
X 0.000 1.414 ~0.153 0.185 —0.522 0.198
x> 0.400 F414 0.344 0.249 ~0.133 0.887
23 1.000 [414 0.800 0.2¢4 0.283 1.342
14 F.500 I 414 [.258 0. 348 0.571 1.954
N 0.000 2.000 .398 0.090 0.219 0.570
" 0.000 2.000 (1.200 0.092 0.024 0.382
"y 0.000 2.000 -0.067 0.098 -{).258 0119
) 0.000 2.000 0.003 0.085 --0.1606 0.168

a° 1.333 0.943 0.841 0.134 0.602 1.129
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Table §
MCMC cstimates of P in AR(4) four-population Markov model

Prior Posterior

Mean Std. dev. Mecan Std. dev. Lower Upper
i 0.143 0.124 0.379 0.184 0.043 0.710
iz 0.286 0.160 0.295 0.171 0.042 0.681i
Pi3 0.286 0.160 0.196 0.119 0.028 0.484
P2 0.143 0.124 0.287 0.178 0.017 0.669
P2 0.286 0.160 0.3i2 0.163 0.061 0.668
P23 0.286 0.160 0.231 0.145 0.029 0.575
P 0.200 0.163 0.424 0.209 0.034 0.790
P2 0.200 0.163 0.193 0.167 0.005 0.624
Pz 0.400 0.200 0.283 0.145 0.056 0.603
P4 0.200 0.163 0.341 0.204 0.017 0.750
Pa2 0.200 0.163 0.218 0.171 0.007 0.625
P43 0.200 0.163 0.172 0.150 0.005 0.551

4.3. Bivariate Gaussian data

Next the model in the previous two sections is generalized to a three-component
mixture of multivariate normal distributions. In particular, consider a bivariate
normal distribution and let

R}
AR ISI WL P) = Z pls; =k I-\'l»—l Y | 1 €0,
A

where ¢, is the density function of a bivariate normal distribution, v, s a 2
vector, and €24 is a 2 x 2 positive definite matrix. Titterington, Smith, and Makov
(1985) contain a treatment of the work done on such models in the classical
mixture set-up.

We generate 300 observations from this model under the following specilica-
tions: iy =(1,2), 12 =(3,0), j3=(5.,4), vee(2,)=(1.5,0.5,0.5, 1 Y. vee(§2y) =
(2.0,0.6,0.6,1.0), vec(£23) = (1.5,-0.5, —0.5,2.0). For the transition probability
matrix, values are specified that imply some persistence in the choice of the
populations:

03 03 04
P=1}104 05 01
03 04 03

It should be noted that each of the components of v, satisty different order
relations in the mean and variance. The data used in the study is reproduced in
Fig. 5.
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Fig. S, Bvariate three-population Gaussian misture Top: vi,omaddle: v, bottom: true .

The full conditional distribution of yy is casily derived. Under a bivariate

(19)
Also, if Q[' iIs given a Wishart prior, say # (voi. Do ). Q' is simulated from

The SEM and MCEM updates are the sample mean and sample covariance if
the prior is fully diffuse. These are casy to modify tor the above priors. The
full Bayes results for this model are obtained under a fairly diffuse specification.
The results in Table 6 (relating to 14 ). are not sensitive to the specification of
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Table 6
MCMC estimates for g in bivariate Gaussian three-population Markov model
Prior Posterior
True SEM Mean Std. dev. Mean Std. dev.

Ty 1.0 1.718 0.500 2.000 0.929 0.161

I2 2.0 2.656 1.060 2.000 1.958 0.150

Y 3.0 2.286 3.500 2.000 2.922 0.011
12 0.0 0.376 1.000 2.000 -0.274 0.006

13 5.0 5.070 4.000 2.000 4.684 0.012
. 4.0 3188 2.000 2.000 3.383 0.016

the prior. It should be noted that the Bayes estimates are more accurate than the
SEM cstimates.

The posterior probabilities in Fig. 6 arc able to correctly uncover thc mem-
bership for most of the observations. An interesting feature is observed in the
simulation. Since there are no order relations between the population parameters
and the numbering of the states is arbitrary, we find that 5, = 2 corresponds to
the third population as defined above. The same feature is observed with the
SEM results. In summary, we find that the Bayes results are very accurate, and
they show clearly that even in this quite diflicult problem, the MCMC approach
developed in this paper is able to lcarn about the component densities and the
component parameters.

5. Concluding remarks

This paper has developed a new Markov chain Monte Carlo method to ¢s-
timate an important class of finite mixture distributions. For models described
by (1)-(3). a approach is developed that relics, first, on data augmentation and,
second, on the simulation of the unobserved population index from its joint dis-
tribution given the data and the remaining parameters. The paper also shows
the value of stochastic versions of the EM algorithm in finding modal estimates
and includes comparisons with results obtained from the full Bayesian approach.
The ideas are illustrated with Poisson data, bivariate Gaussian data, and an auto-
regressive time series model applied to U.S. GNP data. In all the cxamples, the
methods perform extremely well,

In future work, it will be of interest to consider the issue of model sclection in
this setting. Recently, Carlin and Chib (1995) have developed simulation based
approaches to model selection in regression models and classical finite mixture
models. Similar results on the model selection problem in Markov mixture models
will be presented elsewhere.
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Fig. 6. Three-population bivariate Gaussian mixture ~ Top: true s;, sccond: Pr(s, = 1| ¥,). third:
Pr(s; = 2| Vy), bottom: Pr(s, = 3| VY,).
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