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Al~straet 

This paper is concerned with finite mixture models in which the populations from one 
observation to the next are selected according to an unobserved Markov process. A new, 
full Bayesian approach based on the method of Gibbs sampling is developed. Calculations 
are simplified by data augmentation, achieved by introducing a population index variable 
into the list of unknown parameters. It is shown that the latent variables, one for each 
observation, can be simulated from their joint distribution given the data and the remaining 
parameters. This result serves to accelerate the convergence of the Gibbs sample. Modal 
estimates are also computed by stochastic versions of the EM algorithm. These provide an 
alternative to a lull Bayesian approach and to existing methods of locating the maximum 
likelihood estimate. The ideas are applied in detail to Poisson data, mixtures of rnultivariate 
normal distributions, and autoregressivc time series. 
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I. Introduction 

1.1. Model 

This paper is concerned with the Bayesian analysis of a class of tinite mix- 
ture distributions in which the component populations, fi'om one observation to 
the next, arc selected according to an unobserved Markov process. This model 
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generalizes the situation in which the populations are selected hulependently ac- 
cording to a discrete probability mass function. A complete discussion of the 
latter class of models is provided by Everitt and Hand (1981) and Titterington, 
Smith, and Makov (1985). 

In contrast to the classical mixture model, the Markov mixture model (MMM) 
is especially useful for modeling persistence, i.e., serial correlation in time series 
data. The general model can be described in terms of a sequence of unobservabh, 
finite state random variables, st E { I , . . . ,  m}, which evolve according to a Markov 
process: 

s t ls t - I  ~ Markov(P, rt0 ), (1) 

where P--{ P,i } is the one-step transition probability matrix of the chain, i.e., P0-- 
P r ( s t = j  J s t - i  =i) ,  and nl is the probability distribution at t =  !. For identifiability 
reasons, assume that this chain is time-homogeneous, irreducible, and aperiodic. 
At each observation point t, a realization of the state occurs. Then, given that s t - -  

k, the observation Yt is drawn from the population given by the conditional density 

y, I f ( y ,  I ), k = I , . . . , m ,  (2) 

where Yt-I  = ( ) ' l , . . . ,  )'t-n ), .f is a density (or mass) function with respect to a 
a finite measure, and 0~ is the parameter vector of the kth population. Thus, the 
observation ~,t t is drawn fi'om the finite mixture distribution 

.I'(.~',IY, .... i , s ,  ..... 1, 0 )  ~ 

~ . f ( Y t l Y ,  vo~,O~)rcm(st=k), t =  i, 
II1 

~ . f ( ) ' , J Y ,  ........ ~,0~ ) l,(s, =~: ~..!.~'.: t ) ,  ¢ ~ 2, 
(3) 

where 

flit 1 

It is possible to obtain a number of important models as special cases of 
this structure. For exarnple, the classical finite mixture model is obtained if st is 
distributed independently and identically across time. Single and multiple change- 
point models can be also be obtained it" suitable restrictions are placed on the off 
diagonal elements of P. The Markov switching regression model of Goldfeid and 
Quandt (1973) and Markov switching autoregressive time series models are also 
particular cases of (3). Even the atttoregressive models considered by ttamilton 
(1989) and Albert and Chib (1993), in which the conditional density in (2) 
depends on lagged values of st, can be put in tiffs thmily by redelining the 
states (ltamiltorh, 1994, p. 691). However, in the lattcr case the support of the 
distribution of the states can become quite large. 

in recent years, such models have attracted considerable attention in economet- 
rics, biometrics, and engin.,:cring. These models are referred to as hidden Markov 
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models although the terminology Markov mixture models is more appropriate. 
A major problem with MMM's is that the likelihood function of the parameters 
is not available in simple form. Much earlier. Baum, Petrie, Soules, and Weiss 
(1970) addressed this problem and proposed a recursive algorithm, now called 
the forward-backward algorithm, to compute the likelihood function. Even so, 
Leroux and Puterman (1992) note that the algorithm is often not stable to small 
perturbations of the dat~. Leroux (1992) in an important paper has established 
the asymptotic properties of the maximum likelihood estimator. 

A quite different approach to the estima.ion of mixture models is possible 
from the Bayesian Markov chain simulation perspective. Basically, the point is 
that the computation of the likelihood function can be avoided if the population 
index variable {& } is treated as an unknown parameter and simulated along side 
the other parameters of the model by Gibbs sampling methods. Such an approach 
is used by Diebolt and Robert (1993) to estimate the classical mixture model. 
For the Marker mixture model, Albert and Chib (1993) and McCulloch and Tsay 
(1994), beth in the context of Gaussian lime series models, exploit this idea to 
simulate the posterior distribution. 

The first main contribution of this paper is to show that it is possible to 
simulate the latent data S,, = ( s l , s2 , . . . , s , , )  from the joint distribution 

s l . s2 ,  . . . . .  s,, I },,, O, &, E .'1' = { 1,2,. . . ,  m}", (4) 

rather than the sequence of full conditional distributions st Y,,,si, .j 74. t. This 
new result is extremely signiticant. Instead of n additiot:ai blocks in the Gibbs 
sample' (the number required if each state is sampled f,o:~.~ its full conditional 
dislribulior~), truly one addJ~.ional block is required. This dramatically improves 
the convergcnce of the Markov chain induced by the Gibbs sampling algorithm. 

Second, it is shown how the Markov chain Monte Carlo approach can bc 
moditied slightly to obtain modal estimates, or alternatively maximum likelihood 
estimates if diffuse priors are adopted. These modal estimates are obtained using 
stochastic versions of the EM algorithm such as the stochastic EM (SEM), and 
the Monte Carlo EM. The pertbrmance of these procedures is contrasted with the 
lull Bayesian approach. 

Third, the ideas are applied to both Gaussian and non-Gaussian discrete data, 
and more than two component problems. The examples involve the Poisson dis- 
tribution, multivariate Gaussian distributions, and autoregressive time series. 

1.2. Gihbs sanq~ling 

The approach taken in this paper is motivated by the Gibbs sampling aigo- 
rithn3. The idea in Gibbs sampling is to simulate, in turn, the distribution of 
each parameter vector conditioned on the data and the remaining parameters (the 
so-called full conditional distribution). This process generates a Markov chain, 
which under mild conditions converges under the L i norm to the desired posterior 
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distribution. The output of the Markov chain, once it has passed its transient stage, 
is taken as a sample from the posterior distribution for purposes of computing mo- 
ments and marginal densities. Briefly, the systematic form of the Gibbs sampler 
for a parameter vector tp (which may include the missing data), with blocking 
( ~ t , . . . , ~ d )  and full conditional distributions {~,j ] (Y,,,I]/_j), 1 ~< j ~< d}, is given 
by the following steps: 

Step I" Specify starting values q/0= (q to . . . .  ~,~) and s e t / =  1. 

Step 2: Simulate 

¢,;-+~ from i 
¢,i+l, from 
¢,i+ I from 3 

+2 l +' ¢,,; 
~'31 y,,, ~ i,+ , ~ i,+ , ~]' ;4 ~b ; 

i + I from 
" I " " ' q ' d - I "  

Step 3: Set i = i + !, and i,,o to 2. 

The above cycle is repea'cd a large number of times and the simulated 
values {~'. i I> T}, where T is a number sufficiently large so that the sampler has 
converged, is used as a sample fi'om the joint distribution ~'1Y,,. Full details are 
provided in Gelland and Smith (1990). If the full conditional distributions are 
readily sampled, this method is quite easy to implement. Note, that the sampler 
is dcti~cd b) ~hc c',,,icc ~;[" ~p amt the cl:oice of b!ockip.g (i,e., the cb,~ice of ,/,,i) 
Due to the tact that we include {st } in lit, there is a considerable prolit'cration in 
the number ot" parameters if each st is treated individually. A technique to avoid 
this problem, by treating all the states as one block and sampling the states from 
their joint distribution, is developed next. 

2. Full conditional distributions 

2. I. S#mdat ion  o f  the states 

The key feature of the new Bayesian Markov chain Monte Carlo approach is 
the simulation of the states (tile population index) l'ronl the distribution p(S,,] Y,,, 
0), which is the joint posterior mass function of all the states given 0. This 
silnulation might seem to be intractable because the range space is .'/, the n-fold 
product of the set { !, 2, . . . .  m}. However, it is possible to develop a quite simple 
expression ['or the joint distribution that leads to a recursive simulation procedure. 
At each step, starting with the terminal state, s,,, only a single state has to be 
drawn. To simplit~, the notation and the discussion it is convenient to adopt the 
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following conventions: 

S, = (,¢,,.. .  ,s,),  S H i = ( s t+t , . . . ,  s,,), 

with a similar convention applying to Yt and y,+l.  In words, St is the history of  
the states up to time t, and S t+~ is the future from t + 1 to n. N o w  write the 
joint density (4)  in the following manner: 

p ( S , , I Y , , , O ) - -  p(s,, Y,,,O) x . . .  x p(s ,  lY, , ,S '+~,O) × . . .  × p ( s~ lY , , , sZ ,  o),  

(5) 

in which the typical term, excluding the terminal point, is given by 

p(s, I Y,,,S'+I, 0). (6) 

By Bayes theorem, 

p(s, I Y,, ,S'+l,0) ~ p(s, Y,,O) x .f(Y'~,S'+~lYt,s,,O) 

p(s, lY,,O) x p(s,+l st, O) x .f(Y'+l,St+2 l y,,st,sHl,O) 

,:x p(s, t Y,,O) x p(s,~l s,,O), (7) 

since the term . f(Yt~l,St ~2ly,,s,,st~l,O) is independent of s,. Thus, the required 
mass function in (6) is the product of two terms, one of which is the mass 
ftmction of  st, given (Y,,O), and the other is the transition probability of going 
from st to St,l, given 0. The normalizing constant of this mass function is the 
sum ot' the numbers obtained in (7) as st runs from I 1o m. 

The rest of the calculation is concerned with determining the lirst mass function 
in (7). it can be determined recursively for all t starting with period !. The 
objective is to lind p(s, lYt, O) and this is obtained as foilows. Assume that the 
function p(s,_ I I Y,-i, O) is available. Then, repeat the following steps. 

Prediction stcT: Determination of p(s, I Y,_ I, 0). By the law of tolal probability, 

in 

p(s, I Y ,_ I ,O)=  ~ p(s, Is,_l = k,O) x p(st- I  = k l Yt- i ,O), 

where the fact that p( s t lY t - l , s , - i ,O)=  p(s, Is , - i ,O) has been utilized. 

Ulnhm' sttT" Determination of p(stj )), 0). 
of the state given information up to time t is now 

By Bayes theorem, the mass function 

where the nom]alizing constant is the sum or all the terms over st from 1 to m, 

(8) p(s, I Y,,O),-x p(s, I Y, ..... . ,0 )  × . f (y,  I Y,_.,O.,., ), 
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These steps can be initialized at t = 1 by setting p(sl I Yo, O) to be the stationary 
distribution of the chain (the left eigenvector corresponding to the eigenvalue 
of !); the prediction step is thus not required at the start of these recursions. 

Based on these results, the states can be simulated from their joint distribution 
(5) in a very simple manner. (Note that if the prior on all the parameters is 
proper, it is not necessary to reject a particular S;, that does not ascribe at least 
one observation to each population). 

First run the prediction and updale steps recursively to comoute the mass func- 
tions p(stl  Yt, 0). [These mass functions are obtained by defining a n × m storage 
matrix, say F. Given the t -  1 row F t - i ,  the next row is Ft which is proportional 
to (Ft t_ lP)  ', dr, where dt is a row vector consisting of.f(YtiYt-i,O,.,)  and ~-~ is 
the eiement-by-eie~,el:~ n~ultiplication operator.] The last row of F i~, d~n used 
to simulate s,,. After s, is simulated, the remaining ';rates (beginning with s,,_l) 
are simulated using the probability mass function that emerges from (7). Note 
that the calculation of the latter distribution requires the numbers in the tth row 
of F, and those in the column of P corresponding to the simulated value of st+l. 

2.2. S#mthttion o.f P 

Given the states, it is rather straightl'orward to determine the full conditional 
distribution of the unique element of the transition matrix P. This is because 
P becomes independent of()",, I1'" 0/,), given S,,. Thus, the full ,'onditiona! ' k .J / ,  I 

tiistriixmon of tl~e transition matrix can be derived without regard to the sampling 
model. 

Suppose the ith row o t ' P  is denoted by p, = (pil . . . . .  Pi,,,)', and let the prior 
distribution of Pi, independently of Pi, .I ~ i, be a Dirichlet on the m-dimensional 
simplex, i.e., 

P i  " "  ~ ( : z i l , . . . ,  ~t;,,, ). (9) 

Then, multiplying the prior by the likelihood function of PIS,, immediately gives 
the result that tire updated distribution is also Dirichlet. In particular, 

p; I S,, '~ ~ ( ~ ; i  + n;l . . . . .  :¢;I + hi,,,). i --= I . . . . .  m,  ( I 0 )  

where n,~ is the total nunlber of om,-stt7~ transitions from state i ~o state k in the 
vector S,. The vector p, (! :~. i <~ m) can now be simulated from (l 0) by letting 

X I Xm 

P i i  - -  m . . . . .  i )ira :~  m 

i l  I I  

x i ~, Gamma(2u + n!j, ! ). 
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3. Modal estimates 

An important implication of the above result on the simulation of the states 
is that it can be directly used to compute the maximizer of the likelihood fianc- 
tion, or the maximizer of the posterior, through the Monte Carlo EM (MCEM) 
algorithm proposed by Wei and Tanner (1990). The latter algorithm is a stochas- 
tic modification of the original Dcrnpster, Laird, and Rubin (1977) EM 
algorithm. 

Suppose that, given the current guess of the maximizer, it is of interest to eval- 
uate the E-step of the EM algorithm. In the Bayesian formulation that amounts 
to an evaluation of the integral 

Q(o, o = ./" log (rr  01 }",,, s,, )) d[S,, I Y,,, 0 1, 
S, 

where the integral is a sum with integrating measure given by the mass function 
in (5). As this is an intractable calculation, consider the evaluation of the Q 
function by Monte Carlo. Given the current pararneter value 0 ~, one can take a 
large number of draws of S,, as per the approach described above. Suppose the 
draws are denoted by S,,.i, .j = ! , . . . ,  N. Then the Q function can be approximated 
via the average 

Q( 0, 0 i ) = N - I ~--~ log(  rt( 0 1 Y,,. S,,.i ) ). 
,/:1 

In the M-step, the Q timction can be maximized over 0 to obtain ~he new 

is negligible. In producing the iterate sequence {01,0 2 . . . .  ,0 i ...} via the above 
strategy, it is best to begin with a small value o t ' N  and then let the num- 
ber of replications of S,, increase as one moves closer to the 
maximizer. 

This procedure provides a straightforward device to locate the modal estimates 
due to the fact that the Q function is additive in the respective parameters. For 
example, to obtain the updated estimate of { p~l} under the Dirichlet prior (9), 
each row can be treated separately of all the other rows and tile 0/,'s. From 
~-~,i log(n( pklY,, S,.i), which is proportional to 

j:::-:l k I::I 

(m,/. i  + :z/s - ! )  l o g ( p x / )  

+ (nk,,,i + ~,,, - I) log(l - Pill ..... p~,,-I )}, 
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where nkt, j is the number of transitions from state k to state / in the simulation 
S,,.j, the next iterate is given by 

N 

Z + ,,,..i) 
... j = l  
P~-t = ( 13 ) 

N 1" m \ "  

E ~l~=l(9~kl+tlkl,.J) ) 
[=1 

A modification of the MCEM algorithm leads to another version of the EM 
algorithm (Celeux and Diebolt, 1985). Suppose that instead of taking N draws 
of S,, for each value of 0, only one draw is made. As before, the updated or 
new value of 0 is found by maximizing the posterior density of 0 given (Y,,,S,,). 
However, unlike the MCEM which generates a deterministic sequence of param- 
eter updates, the iterates in this algorithm [bilows a aperiodic, irreducible Markov 
chain. 

4. Examples 

4. !. Poisson fe ta l  &tta 

We begin by considering the fetal movement data analyzed in Leroux and 
Puterman (1992). The data consists of number of movements by a fiztal lamb 
(obscrvcd by ultra sound) in 240 consecutive live-second intervals. The number ot' 
co~tnts is modeled as a Poisson process in which the unknown rate parameter, 2, 
can vary fronl one interval to the next according to a Markov chain described by 
(I). In particular, given the state at time t, the count (the number ot' movew,mts) 
during interval t is given by 

" t'r ,~, o -  }.,; 

. f (Y t l / -k  ) - , t = I , , . , . . . ,9  240,  k = I , . . . ,  m. ( 1 4 )  
Yt! 

The data used in the study is given in Fig. I. 
Two models are tit to this data set, one with two components and the second 

with three components. Note that it is convenient to take independent Ganama 
priors on 21, due to the fact that such a distribution is conjugate to the Poisson 
likelihood. Then, under the assumption that 2~ ~ ~.6'(at.b~ ), the full conditional 
distribution of,:.t is 

( " ) 2~ I Y,,, S,,, /" ,,- ~!,' a~ + ~ y ,  I Is, = k l ,  l,t + Nt , 
I - I  

k - l , . . . , m ,  ( 1 5 )  

where /[st = k] is the indicator thnction that takes the value i if s, = k and 0 
otherwise, and Nt is the total nunlber of observations fi'om the kth population. 
Thus, given S,, all the ,;.~'s are simulated t'rom Gamma distributions. The MCMC 
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algorithm is then based on iterating between the simulation of S, from (7), P 
from (10). and ,;.~ from ( 15 ). 

For the MCEM algorithm, the updated iterate of ,:.t is also obtained quitc 
Due to the fact ,--,,=S[N i log(n(;.t, lY,,,S,,, j) is proportional to easily. 

N N 
(Uk.j + a k -  1)log(;.k) - Y](bt. + Nk, i);,h, 

j= l ,j= t 

(16) 

where Ua.j = +..~,=l Y, I [s,,j = k] is the sum of the v values in state k in the ./th 
draw of  &,, the next iterate is obtained as 

A N  

;4, = ~ (Uk, j + aa- -  !) (bk + Nk, i). 
. j - -  i . i  = I 

(17) 

The update value of P is obtained from (13). Finally, the estimates for the SEM 
algorithm are obtained by dropping the summation over .j in (16) and (17). 

Consider the case of two populations. Suppose the prior parameters of ,:,k are 
given by ( a l , b l ) = ( ! , 2 )  and (a2,b2)=(2,  I), which specifies the belief that the 
first population has the lower mean. Also suppose that in the Dirichlet prior on 
P, (~li,:~12)= (3, !) and (~21,~22)=(0.5,0.5). The implied prior moments are 
given in Table I. After initializing the iterations with values chosen from the 
prior distribution, we rtm the MCMC a!gorithl.n in one long streanl till we have 
approximate convergence. Thcn, the first 200 sampled values are discarded and 
the next 6,000 are used to summarize the posterior distributions. The results arc 
reported in Table I, l:ig. ! (the poslerior probability that s, = k) and Fig. 2 
(posterior densities of parameters ). 

Note that here and in examples later, the design of the Gibbs sampler algorithm 
(the number of iterations discarded and the choice of Gibbs sample size) is 
governed by inspecting the autocorrelation function of the sampled draws and 
the numerical standard errors of the estimates. In most cases, the autocorrelations 
in the sampled values decayed to zero by about the I Oth lag. "l-he numerical 
standard errors being small are not reported, in addition, the box plots ,'eproduce 
the minimum and maximum values, and the 25th, 50lh and 751h percentiles. 

Tal Ic I , ")  • 

ML and M('M(" estiilliltes for IMisson two-I'~ormlation Markov model 

Prior Posterior 

MLE Mean Std. dcv. Mean Std. dev. Lower IJpl~er 

,;-I 11.256 0.5011 11.500 tl.219 0.1150 0.115 I).319 
,;,2 3. I{11 2.0110 1.414 2.291 11.776 I .I)85 4.001) 

I,'22 0.692 0.500 0.354 0.664 1). 158 I).322 0.924 
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Table 2 
Final five iterates in combined SEM-MCEM algorithm for Poisson two-population Markov model; 
in computing (12), N = 1000 

i =  I01 i =  102 i =  103 i =  104 i = 1 0 5  

,;,I 0.258 0.259 0.258 0.259 0.259 
22 2.933 2.948 2.960 2.953 2.955 
P l I 0.989 0.990 0.990 0.990 0.990 
P2", 0.715 0.720 0.720 0.72 i 0.720 

¢.D 

C'M 

O 
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¢5 

Q 
ci 

1 
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lambda_l lambda_2 lambda_3 

" - - ' t - - "  

m 

m - ~ - * 

m 

p__11 p__12 p__13 p__21 p__22 p__23 p__31 p__32 p__33 

Fig. 3. Posterior box plots in thrcc-i~Ol~tdalion Poisson mixture q'op: ,;,, bottum: P. 

The results indicate that obscrvations in excess ot '2 are classified as belonging 
to the high mean population. For two observations that are exactly 2 (.1'23, y24), 
either population is about as likely. Parameter estimates are precise and tile model 
appears to be a good lit to tile data. Note that tile maximunl likelihood estimates 
are taken fi'om Leroux and Puterman (1992). They are similar to the Bayes point 
estimates and seem to differ mainl) in tile case ~,~ ;.2. 

Point estimates are also obtained by the Monte kar!o EM. We decided to 
combine the SEM and MCEM algorithms in the following manner. First, during 
the burn-in period, the SEM algorithm was employed, and then after the values 
appeared to settle down, a switch was made to the MCEM algorithm. Specifically, 
the SEM algorithm was used tbr the first 100 iterations, then the MCEM for the 
last live iterations. The Q function in the MCEM steps was approximated using 
I000 d~a~.  The evolution of the iterate ,sequence in those last live iterations is 
contained in Table 2. It appears that the algorithm has converge, ' to thc posterior 
mode. An average of the estimates, or the final iterate values, c~l be used as thc 
output of the Monte Carlo algorithm. 

Rc.~ult;; are also obtained for a three-pepulafion mixt~'.r¢. Tile re.~-;u!|ing [~n~te- 
rior densities are summarized in Fig. 3 while the posterior probabilities of the 
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populations are presented in Fig. 4. In this case only six obse,'vations appeal to 
arise from the third population while the rest of the data is evenly distribu:ed 
among the first two populations. We have presented the Ml estimates and the tall 
Bayes results in Table 3 but have suppressed the MCEM estimates to conser~'e 
space. They are all in close agreement with the lull Bayes results. 

4.2..,lutorc~lressive GNI' ~hota 

Now consider tl~c data set oll quarterly U.S. real GNP that has been analyzed 
earlier by Hamilton (1989) and Albert and Chib (1993) using a two-population 
model with a fourth-order stationary autoregression. Tlic variable of" interest is the 
percentage change (multiplied by 100) in the postwar real GNP tbr the period 
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Table 3 
ML and MCMC estimates for Poisson three-population Markov model. 

Prior Posterior 

MLE Mean Std. dev. Mean Std. dev. Lower Upper 

2~ 0.045 0.500 0.500 0.063 0.043 0.004 0.167 
2:, 0.509 2.000 1.414 0.510 0.099 0.345 0.743 
23 3.414 3.000 !.732 3.267 0.727 1.972 4.814 
Pll 0.947 0.732 0.196 0.933 0.038 0.842 0.986 
Pl 2 0.043 0.244 0.190 0.062 0.038 0.0 i 0 O. ! 56 
P21 0.042 0.333 0.298 0.051 0.041 0.002 0.158 
P22 0.958 0.333 0.298 0.934 0.043 0.824 0.986 
p3~ O. 184 0.244 O. ! 90 0.228 O. 131 0.034 0.520 
P33 0.816 0.732 O. ! 96 0.757 O. 132 0.466 0.956 

1951.2 to 1984.4. The objective is to fit autoregressive models in which the 
intercept can be drawn from one of four populations but all other parameters are 
constant across the populations. This is flexible structure that can capture Markov 
shifts in the level of the r~rocess. McCulloch and Tsay (1994) consider a similar 
model but they restrict attention to two populations and use a Gibbs sampler in 
which the population indices are not drawn jointly. 

Specitically, let the conditional density of yt, given J)--i and st- i ,  be given 

by 

4 
, ~ ,  . ~' 0-2 . l ' ( . ~ , l y t  .... i , S ,_ l ,~ , , )=  ~ p ( s , = k s ,  ...... t ) . l ' (v ,  Y ~ - I , z q , , ,  ), 

k : l  

where ~ = (~l ~4), ~' = (~'l " ) and . . . . .  , . . . , ~ p  

f ( y ,  I Y,_ ~. ~k.~,.a" ) = 4~(.v, I~ ,  + 7~y,-  ~ + . . . .  F 7 , y , _ p , a -  ). (18)  

Hence, at time t, the data is drawn t'ronl one of four Gaussian populations with 

(respective) conditional mean E(yt I Yt--I,2,7,a 2) - ~¢t + 713'l-t + . . . .  t- 7p.Vt-t, 
and conditional variance that is constant across the populations. Note that this 
specification differs from that used by Hamilton (1989) and Albert and Chib 
(1993), where in the context of two populations, the conditional mean of y~ 
depends on realizations of the states at previous time points. 

The MCMC algorithm is again quite easily implemented, provided the analysis 
is conditioned on the first p observations. As before, the states and the transition 
nrobabilitv matrix are simulated according ~o (8) and ( i l ) .  Then, given S,,, the 
other parameters, namely (2, [I, :r ~-), arc simulated fi'om distributions that are easily 
derived based on results presented in Chib (1993). In particular, under" the prior 
~ ~ . I  i(~ok,A~-~)),  ~- is simulated from the distribution 

~k l Y,,.S,,. 7. :." 
( " ) i ,  

l i  V~(Ao~oA + 'r " ~ z ,  1 is, = k]) ,  Vk , 
t--I 
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~)-I where :, = y, - 5'1 y t - i  . . . . . .  7t, Y,- v and I,% = (A0~. + Nk a - "  . Next, under 
a . t t,(;.'0. F~ -I ) prior on 7 restricted to the stationary region, ,' is simulated from 
the distribution 

,, ) ") • 9 

:.]Y,,,S,,,x,a- V(Coz 'o+a-"  x , ( y , - x , ) ) ,  V , 
t= p+ I / 

where x, = ( v , _ i  .. y , -p ) ' ,  ~, =~k ,  when s , = k  and V =(F~,  + a - 2 ~  '' 
- ' " ' ' t : p + l  

-'~t-~t) A drawing from this distribution is accepted only if all the roots of the 
polynomial I - " , ' I L  . . . . .  ;'nL t' lie outside the unit circle. Finally, under the 
inverse-gamma prior .¢~/;(v0/2, ~'i0,/2), a-' is simulated fi'om 

tl 

,% + x,/;)- 

2 ' 2 " 

These results are applied to the GNP data set for different values of p under 
weak priors on the parameters. For brevity, consider the case of a fourth-order 
autoregression ( p  = 4).  The Gibbs sampler is run for 7,000 iterations and the last 
6,000 draws are used for purposes of summarizing the posterior distribution. The 
results on (~, , ' ,a  2) are presented in Table 4 while those on P are in Table 5. 

The posterior moments o1"~ relative to the prior moments appears to provide 
support tbr more than two populations, in addition, it is noted that the marginal 
posterior distributions ot" ,'~ and 74 are quite concentrated around 0. This suggests 
that an AR(2) specilicalion with I'our populations is a parsimonious description 
Ibr the data. 

From the posterior distribution of the elements ot" tile transition matrix it may 
* e t ." be noted that tl~e data is not inlormattv¢ about some elements of tl~e i,la,tlx but 

that there is considerable evidence for switching between the populations. 

Table 4 

M('M(." csmnatcs of  ( ~ , ; ' , a : )  in the AR(4)  four-population Markov model 

Prior l)o,st~rior 

Mean Std. dcv. Mean Std. dcv. Lower Upper  

~ I),0(l() I ,414 ...... 0.153 0.185 ..... 11.522 0.198 
~, 1t.4t111 I .414 11,344 11.249 ....... 0.133 11.857 

~ I ,lll)ll I ,414 11,81111 11.26-1 11.283 1.342 

:~.~ 1,51111 I 414 1.251"I 1!.348 I).57 i 1.954 

;'l 11.111111 2,111111 11,398 11.11911 11.219 11.5711 

72 O,lllli) 2,1lll() O,2U(~ 11.1192 11.1)24 I).382 

;'~ 11.01111 2,111111 ...... 0.0(,7 11.1195 ...... I).258 O, I 19 

74 1),0111) 2,0111) 11.11113 11.1)85 .... O. 16~ 11. 168 

a 2 1,333 11,943 11.841 1). 134 I).602 I, 129 
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Table 5 
MCMC estimates of P in AR(4) four-population Markov model 

93 

Prior Posterior 

Mean Std. dev. Mean Std. dev. Lo~,er Upper 

Ptl O. 143 O. ! 24 0.379 0. ! 84 0.043 0.7 !0 
P l2 0.286 0.160 0.295 O. 171 0.042 O.6:s l 
Pt 3 0.286 0.160 O. 196 0. ! i 9 0.028 0.484 
P21 O. 143 O. 124 0.287 O. ! 78 0.0 ! 7 0.669 
P22 0.286 0.160 0.3 i 2 0.163 0.061 0.668 
P23 0.286 0.160 0.231 0.145 0.029 0.575 
P31 0.200 0.163 0.424 0.209 0.034 0.790 
P32 0.200 0.163 0.193 0. ! 67 0.005 0.624 
P33 0.400 0,200 0.283 O. i 45 0.056 0.603 
P4i 0.201,) O, 163 0.341 0.204 0.017 0.750 
P42 0.200 0. ! 63 0.218 0.171 0.007 0.625 
P43 0.200 O. 163 O. 172 0. ! 50 0.005 0.551 

4.3. Bivarhtte Gausshm ~ktta 

Next the model in the previous two sections is generalized to a three-component 
mixture of  multivariate normal distributions, in particular, consider a bivariate 
normal distribution and let 

3 

. f (3 ' ,  Is ,  = p ( s ,  = I ), 
I, i 

where 0.' is tile den.,dty function of  a biwlriatc normal distribution, .~'~ is a 2 
vector, and ~2~ is a 2 x 2 positive dclinitc matrix. Tittcrington. Smith, and Makov 
(1985) contain a treatment of the work done on such models in the classical 
mixture set-up. 

We generate 300 observations li"om tiffs model under the Ibllowing specilica- 
tions: Itl = ( I, 2 )', f12 = (3, 0 )', It3 = ( 5 ,  4)', vec(~2t ) = ( 1.5, 0.5, 0.5, I )', vec( 02 ) = 
(2.0, 0.6, 0.6, !.0 )', vec(f23 ) = (I.5, --0.5, -0.5,  2.0)'. For the transition probability 
matrix, values are specified that imply some persistence in the choice or the 
populations: 

p = 

0.3 0.3 (1.4) 

0.4 0.5 O. I 

0.3 0.4 0.3 

It should be noted that each of the components of yt satisl~, different order 
relations in the mean and variance. The data used in the study is reproduced ill 

Fig. 5. 
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Fig. 5. Ili~,m'ialc ihrcc°l~Ol'~ulation (iau~ian mi,,turc lop: vi~, middle: t':t, boltOlll: trtlc ~. 

The t'ull conditional distribution of ll~ is casi!y derived. Under a bivariate 
normal prior given by lt~ '~ t ~.(lt~,Aiix I ), the updated distribution Ibr It~ is 

( ( ,, ) ) I "~ (,'1o~ -t- N~ ~2-I  ) - I  .4o1~o~ -t- ~.-,) ..... I ~-:.y,l  [s, =/~1 . (.4(v,. + N/, I ) ..... I . 
t l  

(19) 

Also ,  it' ~'2~ I is g i ven  a W i s h a r t  pr ior ,  say /1 ( v .~ ,Do~  ), ~2 .... I is s imu la ted  f rom 

( , ) )  .... 
Y/  rq~/, + N,~, Dc;X I + ~ (.1',/I,,', - / , l  .... m ) ( y , / I , ~ ,  :::::/~l ..... m )' • 

t I 

Tile SEM and MCEM updates are tile sample mean and sample covariance it" 
the prior is fully diffuse, l"hcsc are easy to modil'y lbr the above priors. The 
ffdi Bayes results tbr this model are obtained under a fairly diffuse specilication. 
The resuils in Table 6 (relating to l~t), are not sensitive to the specilication of 
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Table 6 

M('M(" estimates for lO, in bivariatc (iattssian thrcc-r)opulatiorl Markov rnodel 
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Prior Posterior 

True SEM Mean Std. dcv. Mean Std. dev. 

ttlt i .0 !.718 0.500 2.000 0.929 0.161 

1~12 2.1) 2.656 1.000 2.000 !.958 O. 150 

It21 3.0 2.286 3.500 2.000 2.922 0.01 ! 
,H22 0.0 0.376 1.000 2.000 - O. 274 0.006 

14~ 5.0 5.071) 4.000 2.1)00 4.684 0.0 ! 2 

I~2 4.0 3.188 2.001) 2.000 3.383 0.016 

the prior, it should be noted that the Bayes estimates are more accurate than the 
SEM estimates. 

The posterior probabilities in Fig. 6 are able to correctly tmcover the mem- 
bership tbr most of the observations. An interesting feature is observed in the 
simulation. Since there are no order relations between the population parameters 
and the numbering of the states is arbitrary, we find that st = 2 corresponds to 
the third population as detined above. The same feature is observed with the 
SEM results. In summary, we find that the Bayes results are very accurate, and 
they show clearly that even in this quite difficult problem, the MCMC approach 
developed in this paper is able to learn about the component densities and the 
component parameters. 

5. Concluding remarks 

This paper has developed a new Markov chain Monte Carlo method to es- 
timate an important class o1' linite mixture distributions. For models described 
by ( I ) ( 3 ) ,  a approach is developed that relies, lirst, on data atlgmentation and, 
second, on the simulation of the unobserved population index fi'om its joint dis- 
tribution given the data and the remaining parameters. The paper also shows 
the value of stochastic versions of the EM algorithm in tinding modal estimates 
and includes comparisons with results obtained from the full Bayesian approach. 
The ideas arc illustrated with Poisson data, bivariate Gaussian data, and an auto- 
regressive time series model applied to U.S. GNP data. In all the examples, the 
methods perform extremely well. 

In future work, it will be of interest to consider the issue of model selection in 
this setting. Recently, Carlin and Chib (1995) have developed simulation based 
approaches to model selection in regression models and classical finite mixture 
models. Similar results on the model selection problem in Markov mixture models 

will be presented elsewhere. 
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