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Abstract

Since the groundbreaking papers by Huber in the 1960’s, M-estimation methods (estimating
equations) have been increasingly important for asymptotic analysis and approximate inference.
Now with the prevalence of programs like Maple and Mathematica, calculation of asymptotic
variances in complex problems is just a matter of routine manipulation. The intent of this article
is to illustrate the depth and generality of the M-estimation approach and thereby facilitate its

use.
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1. INTRODUCTION

~

M-estimators are solutions of the vector equation Y -, ¥(Y;,0) = 0. That is, the M-estimator 6

satisfies
n o~
Y ¥(Yi,0)=0. (1)
i=1

Here we are assuming that Y1,...,Y, are independent but not necessarily identically distributed,

0 is a p-dimensional parameter, and % is a known (p x 1)-function that does not depend on ¢
or n. In this description Y; represents the ith datum. In some applications it is advantageous
to emphasize the dependence of ¥ on particular components of Y;. For example, in a regression

problem Y; = (2;, Y;) and (1) would typically be written

n

S 4(Vi,2:,0) = 0. (2)

=1

where x; is the ith regressor.

Huber (1964, 1967) introduced M-estimators and their asymptotic properties, and they were
an important part of the development of modern robust statistics. Liang and Zeger (1986) helped
popularize M-estimators in the biostatistics literature under the name generalized estimating equa-
tions (GEE). Obviously, many others have made important contributions. For example, Godambe
(1960) introduced the concept of an optimum estimating function in an M-estimator context, and

that paper could be called a forerunner of the M-estimator approach.

However, our goal is not to document the development of M-estimators or to give a bibliog-
raphy of contributions to the literature. Rather we want to show that the M-estimator approach
is simple, powerful, and more widely applicable than many readers imagine. We want students to
feel comfortable finding and using the asymptotic approximations that flow from the method. The
key advantage is that a very large class of asymptotically normal statistics including delta method
transformations can be put in the general M-estimator framework. This unifies large sample ap-

proximation methods, simplifies analysis, and makes computations routine.

An important practical consideration is the availability of a symbolic manipulation program



like Maple; otherwise, the matrix calculations can be overwhelming. Nevertheless, the general theory

is straightforward.

We claim that many estimators not thought of as M-estimators can be written in the form
of M-estimators. Consider as a simple example the mean deviation from the sample mean
~ 12 —
b =—> [Vi-Y]|

=1
Is this an M-estimator? There is certainly no single equation of the form

n

> (Y, 0) =0

i=1
that yields §1. Moreover, there is no family of densities f(y;@) such that gl is a component of the
maximum likelihood estimator of 8. But if we let 11 (y, 61,02) = |y—62|—61 and ¢2(y, 01, 62) = y—03,

then ~ -
S g vidi iy = | S (1v: - 2] - 61) 0
i=1 - (YZ — 52) 0

yields 8, = Y and 6; = (1/n)Y0Y; —  Y|. We like to use the term “partial M-estimator” for
an estimator that is not naturally an M-estimator until additional ¢ functions are added. The key
idea is simple: any estimator that would be an M-estimator if certain parameters were known, is a
partial M-estimator because we can “stack” 1 functions for each of the unknown parameters. This
aspect of M-estimators is related to the general approach of Randles (1982) for replacing unknown

parameters by estimators.

From the above example it should be obvious that we can replace 52 =Y by any other
estimator defined by an estimating equation; for example, the sample median. Moreover, we can
also add ¥ functions to give delta method asymptotic results for transformations like 53 = log(gl).

In this latter context, there are connections to Benichou and Gail (1989).

Certainly the combination of standard influence curve and “delta theorem” methodology can
handle a larger class of problems than this enhanced M-estimation approach. However, we believe

that the combination of a single approach along with a symbolic manipulator like Maple will make



this M-estimation approach much more likely to be used in complex problems.

A description of the basic approach is given in Section 2 along with a few examples. Connec-
tions to the influence curve are given in Section 3 and then extensions for nonsmooth ¥ functions
are given in Section 4. Extensions for regression are given in Section 5. A discussion of some test-
ing problems is given in Section 6, and Section 7 summarizes the key features of the M-estimator

method.

2. The Basic Approach

M-estimators solve (1), where the vector function 1 must be a known function that does not depend
on ¢ or n. For regression situations, the argument of ¥ will be expanded to depend on regressors z;,
but the basic ¥ will still not depend on 7. For the moment we will confine ourselves to the iid case
where Y7,...,Y, are iid (possibly vector-valued) with distribution function F'. The true parameter

value O is defined by
Brth(Y1,00) = [ 6(y.00)dF(y) = 0. 3)

For example, if ¢(Y;,0) = Y; — 8, then clearly the population mean 6y = [ydF(y) is the unique
solution of [(y — 0)dF(y) = 0.

If there is one unique @y satisfying (3), then in general there exists a sequence of M-estimators
6 such that the weak law of large numbers leads to 0 = 6y asn — occ. Furthermore, if ) is suitably

smooth, then Taylor expansion of G,(0) = n=1 Y7, ¥(Y;, 0) gives
0=G,(0) = G.(60) + G),(60)(0 — 6o) + R,

. For n sufficiently large, we expect G/,(6y) to be nonsingular

where G/,(6y) = [aGn(e)/aeT] ‘0:00

so that we can rearrange and get:

~

V(B - 8y) = [~GL(60)] " VG (00) + VAR;, (4)



Under suitable regularity conditions as n — oo,

- @00 = -3 [ o] B [-Cpn.00] = a0 (5)
VG (80) == MVN(0, B(65)), where B(8) = E [$(V1,00)%(Y1,60)" | . (6)
VrR: - 0. (7)

If A(8)) exists, the Weak Law of Large Numbers gives (5). If B(8y) exists, then (6) follows from
the Central Limit Theorem. The hard part to prove is (7). Huber(1967) was the first to give general
results for (7), but there have been many others since then. We shall be content to observe that
(7) holds in most regular situations where there are sufficent smoothness conditions on 4, and 6

has fixed dimension p as n — oo.

Putting (1) and (4)—(7) together with Slustky’s Theorem, we have that
~ /(0
6 is AMN <00,M) as n — oo, (8)
n

where V(0y) = A(6y) ' B(00){A(0p)"'}T. AMN means “asymptotically multivariate normal.”
The limiting covariance V(6y) is called the sandwich matrix because the “meat” B(8y) is placed

between the “bread” A(6y)~! and {A(6y)~'}7.

Extension. Suppose that instead of (1), 0 satisfies
> %(Yi,0) =y, (9)

where ¢,,//n — 0 as n — oc. Following the above arguments and noting that e, /y/n is absorbed
in \/nR;, of (4), we can see that as long as (9) and (4)—(7) hold, then (8) will also hold. This extension
allows us to cover a much wider class of statistics including empirical quantiles, estimators whose

1 function depends on n, and Bayesian estimators.

For maximum likelihood estimation, %(y, 8) = dlog f(y;0)/080 is often called the score func-

tion. If the data truly come from the assumed parametric family f(y; @), then A(8y) = B(60y) =



1(8o), the information matrix. In this case the sandwich matrix V(6g) reduces to the usual 1(6y)~".
One of the key contributions of M-estimation theory has been to point out what happens when the
assumed parametric family is not correct. In such cases there is often a well-defined 8y satisfying
(3) and @ satisfying (8) but A(6y) # B(8y), and valid inference should be carried out using the
correct limiting covariance matrix V(0g) = A(8y) ' B(00){A(60)~'}T, not 1(6,)~".

Using the left-hand-side of (5), we define the empirical estimator of A(6q) by
A8 =60 = 30 [0 ur.0)
n 5 — Y n gt 80T X .

Note that for maximum likelihood estimation, nA,(8) is the observed information matrix Iy(a).

Similarly, the empirical estimator of B(8p) is

Putting these together yields the empirical sandwich estimator

~

V,(Y,0)= A,(Y,0)7'B,(Y,0){A,(Y,0) 7. (10)

Va(Y, 5) will generally be consistent for V(6y) under mild regularity conditions (see Iverson and

Randles (1989) for a general theorem on this convegence).

V.Y, 5) requires no analytic work beyond specifying the 5 function. In some problems, it is
simpler to work directly with the limiting form V(8y) = A(6)"' B(0,){A(6y)~'}T and just plug
in estimators for 8y and any other unknown quantities in V/(6;). The notation V' (8y) suggests that
0 is the only unknown quantity in V(8g), but in reality V(8y) often involves higher moments or
other characteristics of the true distribution function # of Y;. In fact there is a range of possibilities
for estimating V(6y) depending on what model assumptions are used. For simplicity, we will just
use the notation Vn(Y,a) for the purely empirical estimator and V(a) for any of the expected

value plus model assumption versions.

For maximum likelihood estimation with a correctly specified family, the three competing



. PO | . . .

estimators for 7(8)~! are V,,(Y,9), [Iy(e)/n] = A,(Y,0)7", and I(0)~" = V(). In this case
P ~ .

the standard estimators [Iy(O)/n] and 1(6)~! are generally more efficient than V (Y, 8) for

estimating /(6)~'. (Clearly nothing can have smaller asymptotic variance for estimating /()"

than I(@MLE)_I.)
Now we illustrate these ideas with examples.

Example 1 Let 8 = (7, s2)T the sample mean and variance. Here

Y — b

P(Yi,0) =
(Y; = 61) — 62

The first component, 51 =Y, satisfies > (V; — gl) = 0, and is by itself an M-estimator. The second

component 52 =32 =n713(V; = Y)%, when considered by itself, is not an M-estimator. However,
when combined with 51, the pair (51, 52) is a 2 x 1 M-estimator so that 52 satisfies our definition

of a partial M-estimator.

Now let us calculate A(8y) and B(8y) where 8% = (810, 020):

0 1 0 10
A(6o) = E [——T¢(Y1,00)] =E =
00 2(Yy —619) 1 0 1

B(6o) = B |$(Y1,00)%(V1,00)"]

_ 5 (Y1 — 910)2 (Yl — 910) [(Yl — 910)2 — 920]

(Y1 = 610) [(Y1 = 610)% — B20] [(Y1 — 10)? — )
_ t20 U3 _ o? “3
pz s — 03 s pa—ot |

where . is our notation for the kth central moment of Y; and the more familiar notation 02 =

has been substituted at the end. In this case, since A(6y) is the identity matrix, V(8¢) = B(8o).



To estimate B(6), we may use

g (Y; - 7)? Y =) [(¥; - V) = 52
B0 = Y- |vi-vr-s]  y-ver-s]

ms3 MMy — Si

where the my are sample kth moments. Looking back at the form for V(8y) and plugging in
empirical moment estimators leads to equality of the empirical estimator and the expected value

estimator: V(8) = V,,(Y,8) in this case.

Note that @ is a maximum likelihood estimator for the normal model density f(y;0) =
(278;) "L exp(—(y — 61)?/263), but 1y = Y; — 6y and 1y = (Y; — 6;) — 6, are not the score functions
that come from this normal density. The partial derivative of this normal log density yields 94 =
(Y;—61)/02 and ¥y = (Y; —601)%/262 —1/265. Thus 1) functions are not unique—many different ones
can lead to the same estimator. Of course different ) functions associated with the same estimator
yield different A and B but the same V. For example, using these latter two i functions, the

resulting A and B matrices are

1 1 3
) 0 0'2 20'3
A(6o) = UO 1 |» B(6)=
2 H3  pH4— O
20" —
d 20° 408

If we further assume that the data truly are normally distributed, then u3 = 0 and py = 30
resulting in A(6y) = B(0) = I(6y) = Diag(1/0? 1/20%). Here the expected value model-based

covariance estimator would be V(8) = Diag(1/s2,1/2s2).

Note that the likelihood score v functions, 4, ,, are related to the original ¥ functions by
Yy = C, where C = diag(1/6q0,1/262,). A little algebra shows that all ¥ of the form C%,
where C' is nonsingular (but possibly depending on 6y and Y1,...,Y,,), lead to an equivalence class

having the same estimator and asymptotic variance matrix V' (8g).



Example 2 Ratio Estimator Let § = Y /X, where (Y1, X1),...,(Y,, X,,) is an iid sample of pairs
with means EY; = py and EX; = px, variances var(Y;) = o and var(X;) = 0%, and covariance
cov(Yy, X1) = oyx. A ¢ function for = Y /X is ¥(Y;, X;,0) = Y; — 0X; leading to A(6y) = px,
B(6y) =E(Y; — 60X1)2, V(80) =E(Y; — 0,X1)2/p%, An(Y,0) = X, and

and

This variance estimator is often encountered in finite population sampling contexts.

Now consider the following 1 of dimension 3 that yields 53 =Y /X as the third component

of @
Y, — 6,
PV, X;,0)=| X, —6,
6, — 650,

This is a quite interesting %) function because the third component does not have any data involved
in it. Nevertheless, this v satisfies all the requirements of a % function and illustrates how to build

the “delta” method into the M-estimator framework. The A and B matrices are

1 0 0 012/ oyx 0
A(6y) = 0 1 0 B(6y) = | oyyx o% 0
-1 030 020 0 0 0

This example illustrates the fact that B(6y) can be singular (although A(6y) generally cannot).
In fact whenever a 1) funtion has components that involve no data, then the resulting B matrix
will be singular. In Maple we computed V(8q) = A(6y)~'B(600){A(80)~'}T, and obtained for the

(3,3) element

1
V33 = OT [0)2/ — QHSOUYX + 0300%] .
20

This latter expression for the asymptotic variance of \/ﬁgg can be shown to be the same as



E(Y; — 630X1)?/u% obtained earlier upon noting that a9 = px.

Sample Maple Program

with(linalg): Brings in the linear algebra package
vA:=[1,0,0,0,1,0,-1,thetal[3],thetal[2]]; Make a vector of the entries of A
A:=matrix(3,3,vA); Create A from vA

Ainv:=inverse(4);
vB:=[sigmaly]"2,sigmal[xy],0,sigmalxy],sigma[x]~2,0,0,0,0];
B:=matrix(3,3,vB);

V:=multiply(Ainv,B,transpose(Ainv));

simplify(V[3,3]);

O'yz — 2030, + 05% 5,2
6,2

The above display is what appears on the Maple window for the last command.

Example 3 Further illustration of the “delta method.” In the context of Example 1, suppose we
are interested in s,, = \/s2 and log(s2). We could of course just redefine 6, in Example 1 to be 2 and
exp(f;), respectively. Instead, we prefer to add ¥5(Y;,0) = /By — 63 and ¥4(Y;, ) = log(6) — 64
because it seems conceptually simpler and it also gives the joint asymptotic distribution of all

quantities. Now we have

1 3
— — 00
1 0 0 0 20 2030
0 1 0 0 _ 62
M3 a4 20
A(6y) = 1 B(6o)=| 35 4o 00
- 1 0 20 20
2V1020 0 0 0 0
o — 01
t20 0 0 0 0

10



and V(6y) = A(60)~'B(00){A(00)~1}7T is

0,0 K3 H3

Ha 24/ 020 020

2 2
pa — 030 pa — 03
_ §?
M3 Ha 20 5 /—020 B0

H3 pa =030 pa—03 pa—03

2v/00 2V 4620 20%2

H3 Ha — 9%0 Ha — 9%0 Ha — 9%0
620 620 263/ 030

Thus the asymptotic variance of s, is (pa — 63))/(4620) = (pa — 0*)/40?, and the asymptotic

variance of log(s2) is (uq — 635)/630 = pa/c* — 1.

Example 4 Posterior Mode. Consider the standard Bayesian model in an iid framework where

the posterior density is proportional to

n

=(0) [] 7(vil0),

=1

and 7 is the prior density. Posterior mode estimators satisfy (9) with (y,8) = dlog f(y|0)/00
the same as for maximum likelihood and ¢, = —7'(8)/7(8). Thus, as long as ¢, /\/n —— 0, the
Bayesian mode estimator will have the same asymptotic covariance matrix as maximum likelihood

estimators.

Example 5 Instrumental Variable Fstimation. Instrumental variable estimation is a method for
estimating regression parameters when predictor variables are measured with error (Fuller, 1967;
Carroll et al., 1995). We use a simple instrumental variable model to illustrate some features of the

M-estimation approach. Suppose that triples (Y;, W;,T;) are observed such that

Y, = a+BX;+ 0.1,

= X;+opea,

.

o
ll

Y+ 6Xz + 07rE3,4

11



where ¢;; are mutually independent random errors with common mean 0 and variance 1. For
simplicity also assume that Xy,..., X, are iid, independent of the {¢;;} and have finite variance.
In the language of measurement error models, W; is a measurement of X;, and 7} is an instrumental
variable for X; (for estimating ), provided that 6 # 0 which we now assume. Note that Xy,..., X,
are latent variables and not observed. Let U% and og 7 denote variances and covariances of any

random variables S and T.

The least squares estimator of slope obtained by regressing Y on W, ﬁy|w, converges in
probability to {0%/(c% + ¢%)} 3, and thus is not consistent for 3 when the measurement error
variance o2 > 0. However, the instrumental variable estimator,

a0 ﬁY|T

v = = ’
w|T

where BHT and BWW are the slopes from the least squares regressions of Y on T and W on T,

respectively, is a consistent estimator of 3 under the stated assumptions regardless of o2.

The instrumental variable estimator, ﬁlv is a partial M-estimator as defined in the Introduc-
tion, and there are a number of ways to complete the % function in this case. Provided interest lies

only in estimation of the 3, a simple choice is

Y, W, T, §) = not
IR )‘(w—ogvv)(el—n)’

with associated M-estimator,
6 = T, b2 = Biv.

The A and B matrices calculated at the true parameters assuming the instrumental variable model

are
1 0 o? ac?
A= and B =
2 202 2 2.2
a Ox aoy oz(a® 4 of + [Pof)

12



which yield the asymptotic variance matrix

2
o 0

A'B (A‘l)T =
0 oi(of+p%03)/0%

Under the stated assumptions the instrumental variable estimator and the naive estimator
are both consistent for 3 when o2 = 0, yet have different asymptotic means when o2 > 0. Thus
when there is doubt about the magnitude of o2, their joint asymptotic distribution is of interest.
The M-estimator approach easily accommodates such calculations. For this task consider the %
function

6 —T

0y — W
(Y — 0sW)(0, — W)
(Y -0, W)(6, = T)

P(Y, W, T, 8) =

Note the change in the definitions of 63 and the ordering of the components of this ¢4 function. The
configuration is primarily for convenience as it leads to a triangular A matrix. In general when the
kth component of ¢4 depends only on #y,...,60;, k = 1,2, ..., the partial derivative matrix 8¢/80T

is lower triangular and so too is the A matrix.

The M-estimator associated with this ) function is

~

01 = T, a2 = W7 53 = §Y|W7 64 = ﬁlv-

The A matrix calculated at the true parameters assuming the instrumental variable model

18
1 0 0 0
0 1 0 0
0 a+puxai/oy, of 0

« 0 0 oxr

13



The expression for the B matrix is unwieldy. However, primary interest lies in the lower

T
2 x 2 submatrix of the asymptotic variance matrix A~!B (A_l) . We used Maple to calculate
this submatrix and to substitute expressions for the various mixed moments of (Y, W, T') under the

assumption of joint normality, resulting in the asymptotic covariance matrix for (53, 54),

(U UW ﬁZUUUX)/UW {Ungerﬁ UUUX _UU }/UW

{olol + 8 (o50% — o0)} [ow or(o? + B%0%) /0% +

The variance formula given above assumes normality of the errors ¢;; and the X; in the
model. Instrumental variable estimation works more generally and in the absence of distributional
assumptions (beyond those of lack of correlation) estimated variances can be obtained using the
sandwich formula. We illustrate the calculations with data from the Framingham Heart Study. For
this illustration Y and W are systolic blood pressure and serum cholesterol respectively measured
at the third exam, and 7T is serum cholesterol respectively measured at the second exam. The data

include measurements on n = 1615 males aged 45 to 65.

The 4 x 1 1) function was used to determine the estimates (standard errors in parentheses)

6, =T =227.2(1.1), 6, = W = 228.4(1.0),
05 = By = 0.042(0.011), 01 = By = 0.065(0.015).

The empirical sandwich variance estimate (direct computer output) is

1785.8453 1291.8722 -1.3658812 -3.8619519
1291.8722 1718.3129 -1.1578449 -2.6815324
-1.3658812 -1.1578449 0.20737770 0.19878711
-3.8619519 -2.6815324 0.19878711 0.35584612

The estimated contrast BN — ﬁyw = 0.023 has standard error 0.010, resulting in the test
statistic £ = 2.29. The test statistic statistic is consistent with the hypothesis that serum cholesterol

is measured with non-negligible error.

14



3. CONNECTIONS TO THE INFLUENCE CURVE

The Influence Curve (Hampel, 1974) ICa(y; 6y) of an estimator 6 based on an iid sample may be

defined as satisfying
~ 1 &
0—-6, = E;IC'@(YZ',BO) + R,

where /nR, -~ 0 as n — oo. If E[IC@(Yl,BO)] = 0 and E[IC@(Yl,OO)ICa(Yl,OO)T] =X

exists, then by Slutsky’s Theorem and the CLT, 0 is AMN(0,%)/n). It is easy to verify that

ICa(y; 0o) = A(0y)"14(y;00) for M-estimators. Thus

E:E[IC@(Yl,Bo)Ica(Yh@o)T] = E[A(OO)_I"»b(YheO){"/’(Yh00)}T{A(00)_1}T]

A(60)"'B(60){A(60)'}" = V(60).

Since the Influence Curve approach is more general, why use the M-estimator approach
of this paper? Although the two methods have similarities, we have found that the M-estimator
approach described in this paper is easier to routinely use as a “plug and crank” method. Especially
in messy problems with a large number of parameters, it appears easier to stack @ functions and
compute A and B matrices than it is to compute and then stack influence curves and then compute

3. This may be largely a matter of taste, but we have seen resistance to using influence curves.

If one has already computed influence curves, then defining (Y;,0) = IC@(YZ',OO) — (0 -
6p) allows one to use the approach of this paper. In this case A(8y) is the identity matrix and
B(6y) = X. (A minor modification is that for the empirical variance estimators we need to define
P(V;,0) = IC@(YZ', 5), that is, plugging in @ for both @ and 6.) More importantly, this fact allows

one to combine M-estimators with estimators that may not be M-estimators but for which we have

already computed influence curves. The next example illustrates this.

Example 6 Hodges and Lehmann (1963) suggested that estimators could be obtained by inverting
rank tests, and the class of such estimators is called R-estimators. One of the most interesting R-

estimators is called the Hodges-Lehmann location estimator

~ X;+ X; . .
HHL:median{%l,lﬁlgjgn}.

15



It is not clear how to put this estimator directly in the M-estimator framework, but for distributions
symmetic around 6y, that is having F(y) = Fo(y — o) for a distribution Fj symmetric about 0,

Huber (1981,p. 64) gives
Foly —60) — 5
J15(y)dy

where fo(y) is the density function of Fo(y). The variance of this influence curve is

1C; (yi6o) =

1
12(f f2(y)dy]*

which is easily obtained after noting that Fo(Y; — ) has a uniform distribution.

Now for obtaining the asymptotic joint distribution of gHL and any set of M-estimators, we
can stack ¥(Y;,0) = ICgHL(y;HO) — (8 — 6y) with the % functions of the M-estimators. The part
of the A matrix associated with gHL will be all zeroes except for the diagonal element which will
be a one. The diagonal element of the B matrix will be the asymptotic variance given above, but
one will still need to compute correlations of IC;HL(Yl, fp) with the other 7 functions to get the

off-diagonal elements of the B matrix involving Ot

4. NONSMOOTH y FUNCTIONS

In some situations the @ function may not be differentiable everywhere, thus causing a problem
with the definition of the A matrix as the expected value of a derivative that does not exist. The
modified definition of A is to just interchange the order of taking the derivative and then the

expectation:

A(6y) = _a% {EreM.0)) . (11)

It is important to note that the expectation is taken with respect to the true distribution of the
data (denoted by Er), but 8 within the ) function is free to change in order to take the derivative.

Of course after taking the derivative, we then substitute the true parameter value 8.

Example 7 Huber (1964) proposed estimating the center of symmetry of symmetric distributions

16



using @ that satisfies 3 1x(Y; — 8) = 0, where

z when |z| <k,
bl =
k  when |z| > k.

This % function is continuous everywhere but not differentiable at £k. Thus we use definition (11)

to calculate A(fy):

A(bp) = —% {Err(Yr —0)}

- o [t - 0ar] -

/ {_%W(y - 0)}‘9200 )
- /%@—%Mﬂw

The notation ¥}, inside the integral stands for the derivative of ¢; where it exists, and for the two
points where it doesn’t exist (y — 6y = +k), we delete y = 6y + k from the integral assuming that

F is continuous at those points.
For B(fp) we have B(6y) =Ev2(Y1 — 6g) = [¢i(y — 00)dF(y), and thus

[y — 60)dF(y)
[f ¥4(y — B0)dF(y)]?

V(bo) =

For estimating A(6p) and B(fp), our usual estimators are 4,(Y, 5) =n71y7, [—1%(5/2 — 5)] and
Bo(Y,0)=n"'30, $2(Y;—8) (or perhaps (n—1)"1 Y7, 2(Y; —8)). Here we can use the notation

(Y — A) because we expect to have data at Y; — 8 = +k with probability 0.

Example 8 The sample pth quantile § = F7Y(p) satisfies 3° [p - 1(Y; < §)] = ¢,, where —¢,, =
n [Fn(g) — p] < 1. Thus the % function is ¥(Y;,0) = p — I(Y; < 8) and we are using our extended
definition (9).

This v function is discontinuous at g, but we shall see that definition (11) of A(6y) continues
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to give us the correct asymptotic results:

0
=~ o= FO) = f(bo).

AlBo) = — 5 {Frlp = 10 < 0)] B

=8¢

B(6o) = Elp — I(Y1 < 60))* = p(1 - p).
I%(6o)
Also, we could easily stack any finite number of quantile ¥ functions together to get the joint
asymptotic distribution of (F71(p1),..., F71(px)). There is a cost, however, for the jump disconti-
nuities in these ¥ functions: we no longer can use A, (Y, 8) to estimate A(f). In fact, the derivative
of the pth quantile ¥ function is zero everywhere except at the location of the jump discontinuity.
There are several options for estimating A(fp). One is to use a smoothing technique to estimate f

(kernel density estimators, for example). Another is to approximate ¥ by a smooth 1 function and

use the A(6p) from this smooth approximation.

Example 9 The positive mean deviation from the median is defined to be

—~ 22 —~ —~
01 = ;Z(YZ — 02)[(}/2 > 02),

=1

where 6, is the sample median. Thus the ) function is

2(}/2 — OQ)I(Y; > 02) -6

P(Y;,0) =
3 — 1(Y: < 62)

Notice that the first component of ¥ is continous everywhere but not differentiable at 8, = Y.
The second component has a jump discontinuity at 8; = Y;. To get A(6y), we first calculate the

expected value of 9(Y7,80) (note that € is not 6g):

2 fg, (y — 02)dF(y) — 61

Erp(Y1,0) = )
3 — F'(62)

18



To take derivatives of the first component, let us write dF'(y) as f(y)dy and expand it out to get

2/€myf(y)dy—202/€°Of(y)dy—01 :z/emyf(y)dy—%u—F(02)]—01.

The derivative of this latter expression with respect to 6; is of course —1. The derivative with
respect to Oy is —265f(602) — 2[1 — F(62)] + 202 f(02) = —2[1 — F(6;)] (using the Fundamental
Theorem of Calculus to get the first term). Setting @ = 6y means that F'(6z9) = 1/2 because 8y is
the population median. Thus the derivative of the first component with respect to 85 and evaluated
at @ = 8 is just —1. The partial derivatives of the second component evaluated at 8 = 8g are 0

and — f(fy0), respectively. Thus

1 1
A(6y) =
0 f(f20)
Straightforward calculations for B(6y) yield
6
b
B(6,) = )
o 1
2 4

where byy = 4 [ (y — 020)* f(y) dy — 63,. Finally, V(8y) is given by

bee — tho 4 1 b0 1
T f(020) T 4f%(620) 2f(020)  4f%(8s0)
Vo) = 0 1 1
10 . s
2f(020)  4f*(620) 4f*(620)

5. REGRESSION M-ESTIMATORS

There are two situations of interest for M-estimator analysis of regression estimators. The first is
where the independent variables are random variables and we can think in terms of iid (X, Y) pairs.
This situation fits into our basic theory developed in Section 2 for iid sampling; see Example 5.
The second situation is where the independent variables are fixed constants. This covers standard
regression models as well as multi-sample problems like the one-way analysis of variance setup. For

this second regression situation we need to introduce new notation to handle the non-iid character
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of the problem.

A fairly simple setting to introduce notation is the nonlinear model

Yi = g(x;,8) + ¢ i1=1,...,n, (12)
where ¢ is a known differentiable function and eq, ..., e, are independent with mean 0 and possibly
unequal variances Var(e;) = 02,7 = 1,...,n, and the @y,..., 2, are known constant vectors. As
usual we put the vectors together and define X = (z,...,2,)7. The least squares estimator

satisfies

SV - g(2:,8))g (2. B) = 0,

i=1
where g’(mi,@) means the partial derivative with respect to 8 and evaluated at B Expanding this

equation about the true value and rerarranging, we get

1 -

VB - B) = [ 230~ (ViwinBo)| = X (Vi Bo) + Vak:, (13

=1

where of course ¥(Y;,z;,3¢) = (Y; — g(2:,80))9'(z:,By). We now give general definitions for a

number of quantities followed by the result for the least squares estimator.

An(X7Y7ﬂO) - 7112 Y27m27ﬂ0)] (14)
=1
= LY [ @ Bolg (@i B0)T — (Vi — g, B))a (@i, 5)]
=1

The notation principle is the same as before: all arguments of a quantity will be included in its
name if those quantities are required for calculation. Now taking expectations with respect to the

true model, define

An(XvﬂO) = _ZE Ymﬂ?uﬁo)] (15)

_Zg wHﬁO mHﬁO) .

Notice that we have dropped out the Y from this quantity’s name because the expectation elimi-
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nates dependence on the Y;. Also note that the second term for the least squares estimator drops

out because of the modeling assumption (12). Finally, assuming that the limit exist, we define

A(ﬁO) = nh—{go EZE }27w27ﬁ0)] (16)

=1
: T
= [Jim — Z;g’(wnﬂo)g’(wmﬂo) :
In the linear regression case, note that A(8,) = lim, ., X T X /n. This limit need not exist for the
least squares estimator to be consistent and asymptotically normal, but it’s existence is a typical

assumption leading to those desired results. Definition (14) leads to the purely empirical estimator

of ABy):

n

XY = 05 [0 B) (17)
= 13 [ B @B - (%~ g(ai ) i ).

Since this is the negative of the Hessian in a final Newton iteration, this is sometimes preferred
on computational grounds. But the estimated expected value estimator based on (15) is typically

simpler:

o
2
la
=
I

_Z{E Ylamlaﬁo Hﬁ:@ (18)

_Zg wnﬁ mnﬁ)

For the “B” matrices, we have in this expanded notation

Bn(Xayaﬁo) = _ZE’l;b Y;amzaﬁo)’(/)(y;amiaﬁo)T (19)

=1

T o ; alg (i, Bo)g (mi, By)" -
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and B(3,) is just the limit of B,(X,3,) as n — co. A natural estimator of B(3,) is

—~ 1 n

Bu(X.Y.B) = =3 (Vi@ Br(Yi2:.B) (20)
=1
= L3 (- gl B (1, B (1, )
pi:l

Example 10 Huber (1973) discussed robust regression alternatives to least squares in the linear
regression context. As a specific example, consider the linear model (12) with g(z;,3) = 273 and

estimator of 3 satisfying

ka —z"B)z (21)

where 1, is the “Huber” % function defined in Example 7. This is a slight abuse of notation since
the official ¥ (Y;, z;, B) = ¥r(Y; — 27 B)x;; i.e., ¢ is being used as both the original Huber function
¥, and also as the generic estimating equation function. Since ¥, is an odd function about zero, the
defining equations E¢y(Y; — x; ﬁo)a:Z = 0 will be satisfied if the e; have a symmetric distribution
about zero. If the ¢; are not symmetrically distributed and the X matrix contains a column of
ones, then the intercept estimated by 3 will be different from that of least squares, but the other

components of B, will be the same.

Taking a derivative, we have
1 < 1 &
An(X7 YaBO) = ; Z [_ll)b/(}/iamiaBO)] = ; Z%b;c(e L mT
=1

i=1

and A,(X,8y) = n~' 0, Ev(e)zz!l. Also, B,.(X,B) = n~!' 3, E(e;)?z;z!. If we make
the homogeneity assumption that the errors eq, . . ., e, all have the same distribution, then A, (X,8,) =

E¢l(e)XTX /n, B,(X,B8) = Eg(e1)) XTX /n,and V(X, By) = (XT X /n) " "Etbp(e1)? /[Eh(e1)]*

Example 11 Generalized linear models have score equations

o (Y= pi(B))

ver (22)

where 11;(B,) = E(Y;) = g~ N2 B8y), Di(8) = 0u:(B)/ 98, Vi(By) 0 = Var(Y;), g is the link function,
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and 7 is an additional variance parameter. Taking expectations of the negative of the derivative

with respect to 3 of the above sum evaluated at 3, yields the Fisher information matrix

- Di(ﬁo)Di(ﬁo)T
; Vi(Bo)To

1=

Note that the second term involving derivatives of D;/V; drops out due to the assumption that
wi(Bo) = E(Y:). Now for certain misspecification of densities, the generalized linear model frame-
work allows for estimation of 7 and approximately correct inference as long as the the mean is
modeled correctly and the mean-variance relationship is specified correctly. Details of this robusti-
fied inference may be found in McCullagh (1983) under the name “quasi-likelihood.” Note, though,
that only one extra parameter 7 is used to make up for possible misspecification. Instead, Liang
and Zeger (1986) noticed that the M-estimator approach could be used here without 7 and with

only the mean correctly specified:

B.(X.,Y,B) = ni zn: (¥ - Mi(@))QDi(@)Di(@)T_

= Vi(B)

Liang and Zeger (1986) actually proposed a generalized set of estimating equations that
accommodates independent clusters of correlated data. The form of the estimating equations and
A and B matrices are similar to the above except that the sums are over independent clusters.

Dunlop (1994) gives a simple introduction to these generalized estimating equations (GEE).

In time series and spatial analyses, there is often correlation among all the Y; with no in-
dependent replication. In such cases the A matrix estimates from the independent case are still
consistent, but more complicated methods must be used in estimating the B matrix; see Lumley

and Heagerty (2000) and Kim and Boos (2001).

23



Table 1: Shaquille O’Neal Free Throws in 2000 NBA Playoffs

Game Number 1 2 3 4 5 6 7 8 9 10 11

FT’s Made 4 5 5 5 2 7 6 9 4 1 13
FT’s Attempted 5 11 14 12 7 10 14 15 12 4 27
Prop. Made 80 45 36 42 29 .70 43 .60 .33 .25 48

Game Number 12 13 14 15 16 17 18 19 20 21 22 23

FT’s Made 5 6 9 7 3 8 1 18 3 10 1 3
FT°s Attempted 17 12 9 12 10 12 6 39 13 17 6 12
Prop. Made 29 50 1.0 .58 .30 .67 .17 .46 .23 .59 .17 .25

6. APPLICATION TO TEST STATISTICS

Recall that Wald test statistics for Hg : @ = 8¢ are quadratic forms like (?0 — OO)T Vn(a)_l (?0 — 00)
Thus M-estimation is directly useful for creating such statistics. Score statistics are created from
the defining equations (1), but the variance estimates used to define them are not as simple to
derive by the M-estimation method as Wald statistics. Here we illustrate how to find appropriate

variances estimates for score statistics in two applications .

Example 12 In the National Basketball Association (NBA) playoffs of 2000, Los Angeles Lak-
ers star player Shaquille O’Neal played in 23 games. Table 1 gives his game-by-game free throw

outcomes and Figure 1 displays the results.

It is often conjectured that players have streaks where they shoot better or worse. One way
to think about that is to assume that the the number of free throws made in the ith game, Y;,
is binomial (n;,p;) conditional on n;, the number of free throws attempted in the ith game, and
p;, the probability of making a free throw in the ith game. Having streaks might correspond to
some games having high or low p; values. Thus, a statistical formulation of the problem might be
“Can the above observed game-to-game variation in sample proportions be explained
by binomial variability with a common p?” (By the way, the apparent downward trend in

sample proportions is not significant; the simple linear regression p-value=.24.)

For generality let & be the number of games. The score statistic for testing a common binomial
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Figure 1: Shaq’s Free Throw Percentages in the 2000 NBA Playoffs

proportion versus some differences

Ho:pr=po=---=pr=p vs. Hy:p;, #p; foratleast one pair i # j
is given by
k
Ts =Y (Yi — nip)*/nip(1 - p),
i=1

where p = > Y,/ > n; is the estimate of the common value of p under the null hypothesis. The
sample sizes ny,...,n; were assumed fixed for this derivation (they aren’t really; so this will be
a conditional approach). Ts is also the simple chisquared goodness-of-fit statistic with the 2k cell
expected values n1p,n1(1 - p),...,nip, ng(1 — p).

Using the above data, we find Ts = 35.51 and the p-value is .034 based on a chisquared
distribution with & — 1 = 22 degrees of freedom. But the chisquared approximation is based on
each n; going to infinity, and most of the n; in our data set are quite small. Another approach then
is to use the normal approximation based on k& — oo. To find the asymptotic variance of Ts using

the M-estimator approach, we need to treat the expected value of T's/k as a parameter #;, and p
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as 6y, and form two @ functions:

(Y; — n;p)?

}fiy i707 =Y; —n;p.

ft/jl(yriv n;, 017p) =

For calculating the A and B matrices we can treat the n; like fixed constants in regression or as
random variables with some distribution. Taking the latter approach and noting that ; = 1 under

Hy, we get Ajp =1, A1g = (1 - 2p)/[p(1 - p)], Az1 = 0, Ay = E(n;) = pin,

By, =2+

(1—6p—|—6p2)E<i)’

p(1—p) n;

Bis = (1 —-2p), Baa = pnp(1 — p). We have used the assumption that conditionally under Hy that

Yi|n; is binomial(n;, p). The asymptotic variance of interest is then

2A,,B A2 B
-1 Z18T _ _ 12812 12822
[A B{A }]11 = Bu Az A%Q
2
_ o, (oret) B ECELTS
p(1—p) n;)  pap(l—p)

Plugging in > (1/n;) for E(1/n;) and k=1 n; for p,, and comparing Tss/k to a normal distribution
with mean=1 and this estimated variance divided by k leads to a p-value for the Shaq free throw data
of .026. We also ran two parametric bootstraps with 10,000 resamples: conditional on (n1,...,n23)
yielding p-value=.042 and also with the n; drawn with replacement from (nq,...,ng3) yielding
p-value=.037. So the chisquared approximation seems better than the normal approximation. We
might add that the results are very sensitive to game 14 where Shaq made 9 free throws out of 9.
Also, the related score statistic derived by Tarone (1979) from the beta-binomial model is weighted

differently and results in a p-value of .25.

Example 13 Sen (1982) first derived generalized score tests based on the M-estimation formula-
tion. Boos (1992) shows how the form of the test statistic arises from Taylor expansion. In this
example we would like to point out how our M-estimation approach leads to the correct test statis-
tic. In a sense, the A and B matrix formulation automatically does the Taylor expansion and

computes the variance of the appropriate linear approximations. For simplicity we will present
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results for the iid situation; regression extensions are similar.

Assume that 87 = (0?, HT) and the null hypothesis is Hg : 81 = 819, where 84 is of dimension
r x 1 and @y is of dimension (p — r) x 1. Assume that @7 = (47,47 is partioned similarly.
Generalized score tests are based on 3, (Y;, 8), where - (0{0,55) satisfies 3" b,(Y;,0) = 0.

The goal is to find the appropriate variance matrix to invert and put between Zzpl(l@,é)T and

>4 (Y;, 0).

To that end, let a: =n"' " %, (Y;, 0) be an M-estimator that solves 37 [1/;1(Yi, ) — é;] =
0. Then, thinking of 87 as a parameter that is the limit in probability of @I, the parameter for this
new problem is 8" composed of 87 and 03; 8¢ is fixed and not a parameter in the new problem.
The associated % functions are ¥7(Y;,0%) = ¥,(Y;,0) — 07 and ¥5(Y;,0%) = 1,(Y;,0). Taking

derivatives with respect to 8* and expectations, we find that

I, A BT Bl
A* = 2 ad  Br=p=| 0¥ v ,

0 Ay Ev,9] E¢,l

where I, is the r x r identity matrix and A and B without *’s refer to their form in the original

problem. Finally, inverting and multiplying leads to the asymptotic variance of Y 4 (Y, 5)/\/_ =
/18 given by

Vi = B — AnAy) Bay — Bio{ Ay }T Al + A1z Ay) Ba{ Ay} Av,
and the generalized score statistic is

TGS—Z¢1 YHOTVH Z"/ﬁ Ym~
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7. Summary

M-estimators represent a very large class of statistics, including for example, maximum likelihood
estimators and basic sample statistics like sample moments and sample quantiles as well as com-
plex functions of these. The approach we have summarized makes standard error estimation and
asymptotic analysis routine regardless of the complexity or dimension of the problem. In summary

we would like to bring together the key features of M-estimators:

1. An M-estimator @ satisfies (1):374(Y,, 5) = 0, where 1) is a known function not depending

on i or n. See also the extensions (2) and (9).

2. Many estimators that do not satisfy (1) or the extensions (2) and (9) are components of
higher-dimensional M-estimators and thus are amenable to M-estimator techniques using the

method of stacking. Such estimators are called partial M-estimators.

3. A(6y) =E [—(’ﬁp(Yl, 00)/80T] is the Fisher information matrix in regular parametric models
when ) is the log-likelihood score function. More generally A(8p) must have an inverse but

need not be symmetric. See also the extension (11) for non-differentiable .

4. B(6y) =FE [1,&()/1, 0o)v (Y1, OO)T] is also the Fisher information matrix in regular parametric
models when % is the log-likelihood score function. B(6y) always has the properties of a
covariance matrix but will be singular when one component of 6 is a non-random function of

the other components of 0.

5. Under suitable regularity conditions, 8 is AMN (8o, V (6g)/n) as n — oo, where V(6) =
A(00)"'B(09){A(6p)~"}T is the sandwich matrix.

6. One generally applicable estimator of V(6y) for differentiable % functions is the empirical

sandwich estimator Vn(Y,a) = A,L(Y,é)_an(Y7 5){,4”(}/’5)—1}?
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