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Introduction & Motivation

In most applications, we have Xi
i.i.d.� g and we obtain an estimate ba

by minimizing a suitable cost function; e.g.

the mean corresponds to ∑ni=1 (θ � xi )
2 .

the median corresponds to ∑ni=1 jθ � xi j .
the MLE corresponds to negative log-likelihood �∑ni=1 log f (xi j θ) .

However, even the mean estimate of a location parameter is typically
not robust. In contrast, the median could be too �rough�.

Example: Consider

x = (�1.28,�0.96,�0.46,�0.44,�0.26,�0.21,�0.063, 0.39, 3, 6, 9)

where Xi
i.i.d.� N (0, 1) for i = 1, ..., 8 but X9,X10,X11 are outliers.

AD () February 2008 2 / 33



The mean is 1.33 and the median is -0.21.

Huber (1964) introduced a general loss function which is a
compromise between mean and median; i.e. we minimize

n

∑
i=1

ρ (xi � θ)

where

ρ (x) =
� 1

2x
2 if jx j � k

k jx j � 1
2k
2 if jx j � k

Large observations are not as heavily weighted as for ∑n
i=1 (θ � xi )

2 .

k is a tuning parameter which controls the mix between the mean and
median-like estimators.
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Results

k 0 1 2 3 4 5 6 8 10
Estimate -.21 .03 -.04 .29 .41 .52 .87 .97 1.33

Huber�s estimator as a function of k

When k = 0, Huber�s estimator corresponds to the median and as k
increases it gets closer to the mean; i.e. the robustness properties of
the estimator are decreasing.
Remark: Clearly minimizing

n

∑
i=1

ρ (xi � θ)

appears equivalent to maximizing a log-likelihood for which
log f (xi j θ) = cste � ρ (xi � θ). We will describe later more general
estimates which do not support such an interpretation.
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Basic Approach

Now we assume a more general case where Xi � g and our estimatebθn is solution of
n

∑
i=1

ψ (xi , θ) = 0.

Under regularity conditions bθn will converge towards the parameter θ�

satisfying

Eg [ψ (X , θ
�)] =

Z
ψ (x , θ�) g (x) dx = 0.

If g (x) = f (x j θ0) then θ� is de�ned by

Ef ( �jθ) [ψ (X , θ
�)] =

Z
ψ (x , θ�) f (x j θ0) dx = 0,

i.e. be careful: we do not have necessarily θ� = θ0! Also in practice,
we would like it to be the case.
For example, if ψ (x , θ) = x � θ then θ� = Eg [X ] .
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To study the asymptotic properties of bθn, we use the (now standard)
Taylor expansion method of ∑n

i=1 ψ (θ, xi ) around the value θ� which
yields

0 =
n

∑
i=1

ψ (xi , θ
�) +

�bθn � θ�
� n

∑
i=1

ψ0 (xi , θ
�) + Rn

By ignoring the remainder term Rn, we obtain

p
n
�bθn � θ�

�
=
� 1p

n ∑n
i=1 ψ (xi , θ

�)

1
n ∑n

i=1 ψ0 (xi , θ
�)
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The CLT yields

� 1p
n

n

∑
i=1

ψ (xi , θ
�)

D! N
�
0,Eg

�
ψ2 (X , θ�)

��
as Eg [ψ (Xi , θ

�)] = 0 and varg [ψ (Xi , θ
�)] = Eg

�
ψ2 (X , θ�)

�
.

The law of large numbers provides

1
n

n

∑
i=1

ψ0 (xi , θ
�)

P! Eg
�
ψ0 (X , θ�)

�
So by Slutsky�s theorem, we get

p
n
�bθn � θ�

�
D! N

 
0,

Eg
�
ψ2 (X , θ�)

�
Eg [ψ0 (X , θ

�)]2

!
.

This is a generalization of the misspeci�ed model we discussed before
where ψ is arbitrary.
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Study of the Huber�s estimate

For the Huber�s estimate, we have ψ (x , θ) = ψ (x � θ) where

ψ (x) =

8<:
x if jx j � k
k if x � k
�k if x < �k

.

Assume we have Xi
i.i.d.� f (x � θ) where f is symmetric around 0 and

we want to estimate θ then indeed

E [ψ (X � θ)]

=
R θ+k

θ�k (x � θ) f (x � θ) dx � k
R θ�k
�∞ f (x � θ) dx

+k
R +∞

θ+k f (x � θ) dx

=
R k
�k uf (u) du � k

R �k
�∞ f (u) du + k

R +∞
k f (u) du

= 0.

In this case we have indeed that θ� = θ!
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We also have

E
�
ψ0 (X � θ)

�
=
Z θ+k

θ�k
f (x � θ) dx = Pθ (jX j � k) ,

E
�
ψ2 (X � θ)

�
=
R θ+k

θ�k (x � θ)2 f (x � θ) dx + k2
R θ�k
�∞ f (x � θ) dx

+k2
R +∞

θ+k f (x � θ) dx

=
R k
�k u

2f (u) du + 2k2
R +∞
k f (u) du.

It follows that the Huber�s estimate satis�es

p
n
�bθn � θ�

�
D! N

 
0,

R k
�k u

2f (u) du + 2k2Pθ� (jX j > k) .
[Pθ� (jX j � k)]2

!
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We compare the asymptotic relative e¢ ciencies of Huber�s estimate
for k = 1.5 to mean and median

Normal Double Exponential
vs. mean .96 1.37
vs. median 1.51 .68

that is σ2Huber/σ2mean and σ2Huber/σ2median.

Remember that mean is the MLE of normal and median is the MLE
of double exponential so ARE are <1 as expected.

Huber�s estimator performs however reasonably well compared to the
MLE.

AD () February 2008 10 / 33



An M-estimator is a tradeo¤ between robustness and e¢ ciency.
To see how much we are losing, we study in more details the
asymptotic variance given by E [ψ0 (X , θ�)]�2 E

�
ψ2 (X , θ�)

�
.

We have

E
�
ψ0 (X , θ)

�
= �

Z dψ (x , θ)
dθ

f (x j θ) dx

where

d
dθ

Z
ψ (x , θ) f (x j θ) dx =

Z dψ (x , θ)
dθ

f (x j θ) dx

+
Z

ψ (x , θ)
df (x j θ)
dθ

dx

so if
R

ψ (x , θ) f (x j θ) dx = 0 for all θ then

E
�
ψ0 (X , θ)

�
=

Z
ψ (x , θ)

df (x j θ)
dθ

dx

=
Z

ψ (x , θ)
d log f (x j θ)

dθ
f (x j θ) dx
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Recall that the asymptotic variance of the MLE is in

Eθ

�
d log f (X jθ)

d θ

2
��1

thus

ARE =
var (MLE)
var (M)

=
E
h
ψ (X , θ) d log f ( x jθ)d θ

i2
E
�
ψ2 (X , θ�)

�
Eθ

�
d log f (X jθ)

d θ

2
� � 1

follows from the Cauchy-Schwartz inequality.

An M-estimate is always less e¢ cient than the MLE and matches its
e¢ ciency only if ψ (x , θ) is proportional to d log f ( x jθ)

d θ .

This result does not say much; if one uses an M-estimate it is because
it it not believed that the model f (x j θ) is reliable...
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General multivariate case

We want to estimate the multidimensional parameter θ� which
satis�es

E [ψ (X , θ�)] =
Z

ψ (x , θ�) f (x) dx = 0.

This extension is trivial theoretically but will allow us to study
numerous interesting estimates; e.g. consider the estimate

bθ1,n = 1
n

n

∑
i=1
jxi � x j .

At �rst glance, this is not an M-estimate as there is no single
equation of the form

n

∑
i=1

ψ (xi , θ1) = 0

that yields bθ1,n.
Moreover there is no family of densities f (x j θ) such that bθ1,n is a
component of the MLE of θ.
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However, we can write

ψ (x , θ) =
�

ψ1 (x , θ1, θ2)
ψ2 (x , θ1, θ2)

�
=

�
jx � θ2j � θ1
(x � θ2)

�
We �nd out that

n

∑
i=1

ψ (xi , θ1, θ2) = 0

implies bθ2,n = 1
n ∑n

i=1 xi , bθ1,n = 1
n ∑n

i=1 jxi � x j .
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Asymptotic results can be easily establish using a straightforward
generalization of the scalar case and, under regularity assumptions, we
obtain p

n
�bθn � θ�

�
D! N (0,V (θ�))

where
V (θ�) = A�1 (θ�)B (θ�)

�
A�1 (θ�)

	T
with

A (θ�) = E

�
�∂ψ (X , θ)

∂θT

�����
θ=θ�

, B (θ�) = E
h
ψ (X , θ�)ψ (X , θ�)T

i
.

Clearly if ψ (x , θ) = ∂ log f ( x jθ)
∂θ and if the data truly come from the

assumed parametric family f (x j θ) then

A (θ�) = B (θ�) = I (θ�)) V (θ�) = I (θ�)�1 .

However, in many cases the data do not come from the assumed
family and valid inference should be carried out using the correct
limiting covariance matrix.
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Let us de�ne Gn (θ) := ∑n
i=1 ψ (xi , θ). The idea of the proof is always

the same

Gn
�bθn� = 0 = Gn (θ�) + G 0n (θ�) �bθn � θ�

�
+ Rn

where G 0n (θ
�) =

h
∂Gn(θ)

∂θT

i���
θ=θ�

so

p
n
�bθn � θ�

�
= �

�
G 0n (θ

�)
��1pnGn (θ�) +pnR�n

Moreover under regularity conditions

�G 0n (θ�)
P! A (θ�) ,

p
nGn (θ

�)
D! N (0,B (θ�)) ,

p
nR�n

P! 0.
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We can estimate A (θ�) , B (θ�) and V (θ�) using the data samples
via

An
�bθn, x� =

1
n

n

∑
i=1
�

∂ψ
�
xi ,bθn�

∂θT
,

B
�bθn, x� =

1
n

n

∑
i=1

ψ
�
xi ,bθn�ψ

�
xi ,bθn�T ,

V
�bθn, x� = A�1

�bθn, x�B �bθn, x� nA�1 �bθn, x�oT
Under mild regularity assumptions, we have

V
�bθn, x� P! V (θ�)
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An interesting extension consists of considering

n

∑
i=1

ψ (xi , θ) = cn

where cn/
p
n

P! 0 as n! ∞.
In these cases, the asymptotic results still hold as we can simply write

Gn
�bθn�� cn = 0 = Gn (θ

�)� cn + G 0n (θ�)
�bθn � θ�

�
+ Rn

= Gn (θ
�) + G 0n (θ

�)
�bθn � θ�

�
+ Rn � cn

and cn is absorbed in the remainder.
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Example. Posterior mode. In this case, assume we are interested in
maximizing the posterior distribution which is proportional to

π (θ)
n

∏
i=1
f (xi j θ) .

Then it can be written as

n

∑
i=1

∂ log f (xi j θ)
∂θ

= �∂ logπ (θ)

∂θ
.

It follows that as long as

cn (θ) = �
∂ logπ (θ)

∂θ

is such that cn (θ) /
p
n

P! 0 then the Bayesian MAP estimator has
the same asymptotic covariance as the MLE.
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Let bθn = (xn, sn) = � 1n ∑n
i=1 xi ,

1
n ∑n

i=1 (xi � xn)
2
�
. This estimate is

an M-estimate for

ψ (x , θ) =
�

ψ1 (x , θ1, θ2)
ψ2 (x , θ1, θ2)

�
=

�
x � θ1

(x � θ1)
2 � θ2

�
.

We can calculate

A (θ�) = E
h
� ∂ψ(X ,θ)

∂θT

i���
θ=θ�

= E

�
1 0
2 (x � θ�1) 1

�
=

�
1 0
0 1

�
,

B (θ�) = E
h
ψ (X , θ�)ψ (X , θ�)T

i
= E

0@ (x � θ�1)
2 (x � θ�1)

�
(x � θ�1)

2 � θ�2

�
(x � θ�1)

�
(x � θ�1)

2 � θ�2

� �
(x � θ�1)

2 � θ�2

�2
1A

=

�
θ�2 µ3
µ3 µ4 � θ�22

�
=

�
θ�2 µ3
µ3 µ4 � σ4

�
where µ3 is the 3th central moment of X and we have use the more
familiar notation σ2 = θ�2.
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We can estimate B (θ�) by

B
�bθn, x� = � s2n m3

m3 m4 � s4n

�
.

bθn is a MLE estimate associated to
f (x j θ) = (2πθ2)

�1/2 exp
�
� (x � θ1)

2 /2θ2
�
but

ψ1 (x , θ1, θ2) = x � θ1 and ψ2 (x , θ1, θ2) = (x � θ1)
2 � θ2 are not

the score functions which are equal to ∂ log f ( x jθ)
∂θ1

= (x � θ1) /θ2 and
∂ log f ( x jθ)

∂θ2
= (x � θ1)

2 /2θ22 � 1/2θ2.

It follows that clearly the ψ functions are not unique - many di¤erent
functions lead to the same estimator. They also yield di¤erent A (θ�)
and B (θ�) but the same V (θ�) .
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If we pick ψMLE (x , θ) =
∂ log f ( x jθ)

∂θ then

A (θ�) = E

�
�∂ψ (X , θ)

∂θT

�����
θ=θ�

=

�
1/σ2 0
0 1/σ4

�
,

B (θ�) = E
h
ψ (X , θ�)ψ (X , θ�)T

i
=

 
1/σ2

µ3
2σ3

µ3
2σ3

µ4�σ4

4σ8

!
.

If the data are distributed according to f (x j θ) then µ3 = 0 and
µ4 = 3σ4 and it follows that

A (θ�) = B (θ�) = Diag
�
1/σ2, 1/σ4

�
.

Note that the likelihood score functions ψMLE are related to the
original ψ by

ψMLE = Cψ

where C = Diag
�
1/σ2, 1/σ4

�
. Generally speaking all functions

ψ0 = Cψ where C is non singular (but possibly dependent on θ�and
x) leads to the same estimator and the same asymptotic matrix.
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Example Ratio Estimator: Let

bθn = y
x

where x = n�1 ∑n
i=1 xi and y = n

�1 ∑n
i=1 yi with E (X ) = µX ,

E (Y ) = µY , var (X ) = σ2X , var (Y ) = σ2Y and cov (X ,Y ) = σXY .

We have
ψ (X ,Y , θ) = Y � θX

thus

A (θ�) = E

�
�∂ψ (X , θ)

∂θT

�����
θ=θ�

= µX ,

B (θ�) = E
h
ψ (X , θ�)2

i
= E

h
(Y � θX )2

i
,

V (θ�) = E
h
(Y � θ�X )2

i
/µ2X ,
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These matrices can be estimated through

A
�bθn, x, y� = x ,

B
�bθn, x, y� =

1
n

n

∑
i=1

�
yi �

y
x
xi

�2
,

V
�bθn, x, y� =

1
nx2

n

∑
i=1

�
yi �

y
x
xi

�2
.
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If we are interested in the joint distribution of
�
x , y , yx

�
, we only need

to de�ne

ψ (X ,Y , θ) =

0@ Y � θ1
X � θ2
θ1 � θ3θ2

1A .
We obtain

A (θ�) =

0@ 1 0 0
0 1 0
�1 θ�3 θ�2

1A , B (θ�) =
0@ σ2Y σXY 0

σXY σ2X 0
0 0 0

1A .
We can check that the (3, 3)th element of
V (θ�) = A�1 (θ�)B (θ�)

�
A�1 (θ�)

	T is
v33 =

1

θ�22

�
σ2Y � 2θ�3σXY + θ�23 σ2X

�
= E

h
(Y � θ�X )2

i
/µ2X
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Example Instrumental Variable Estimation:

Yi = βXi + σεε1,i

Wi = Xi + σU ε2,i

Ti = γ+ δXi + στε3,i

where εj ,i are mutually independent erros with zero mean and unit
variance. We also assume that X1, ...,Xn are unobserved, independent
of fεj ,ig and have �nite variance σ2X .
Wi is a measurement of Xi and Ti is an instrumental variable for Xi
(for estimating β) provided that δ 6= 0.
The OLS estimator of slope obtained by regressing Y on W isbβY jW = ∑n

i=1W iYi
∑n
i=1W

2
i
= ∑n

i=1W i (β(W i�σU ε2,i )+σεε1,i )

∑n
i=1W

2
i

= β� β
σU ∑n

i=1Wi ε2,i

∑n
i=1W

2
i| {z }

! σ2U
σ2U+σ2X

+
σε ∑n

i=1Wi ε1,i

∑n
i=1W

2
i| {z }

!0

P! σ2X
σ2X+σ2U

β.

This estimate is not consistent for β when the measurement error
variance σ2U > 0.
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For sake of simplicity, lets take here γ = 0. Let bβY jW and bβW jT be
the slopes from the LS regressions of Y on T and W . We have

bβY jT = ∑n
i=1 YiTi

∑n
i=1 T

2
i
=

∑n
i=1(βδ�1(Ti�στε3,i )+σεε1,i)Ti

∑n
i=1 T

2
i

= βδ�1 � βδ�1στ
∑n
i=1 ε3,iTi

∑n
i=1 T

2
i| {z }

! σ2τ
σ2τ+δ2σ2X

+ βσε
∑n
i=1 ε1,iTi

∑n
i=1 T

2
i| {z }

!0

! βδ�1
δ2σ2X

σ2τ+σ2XbβW jT =
∑n
i=1W iTi
∑n
i=1 T

2
i
=

∑n
i=1(δ�1(Ti�στε3,i )+σU ε2,i)Ti

∑n
i=1 T

2
i

= δ�1 � δ�1
∑n
i=1 στε3,iTi
∑n
i=1 T

2
i| {z }

! σ2τ
σ2τ+δ2σ2X

+
σU ∑n

i=1 ε2,iTi
∑n
i=1 T

2
i| {z }

!0

! δ�1
δ2σ2X

σ2τ+σ2X
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The intrumental variable estimator is de�ned by

bβIV = bβY jTbβW jT
=

∑n
i=1 YiTi

∑n
i=1WiTi

! β.

This estimate is an M-estimator. A choice for ψ consists of using

ψ (Y ,W ,T , θ) =
�

θ1 � T
(Y � θ2W ) (θ1 � T )

�
.

Indeed

1
n

n

∑
i=1
(θ1 � ti ) = 0) bθ1 = t = 1

n

n

∑
i=1
ti ,

1
n

n

∑
i=1
(yi � θ2wi ) (θ1 � ti ) = 0) bθ2 = ∑n

i=1 yi (ti � t)
∑n
i=1 wi (ti � t)

with bθ1 = T , bθ2 = bβIV.
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We obtain

A (θ) =
�
1 0
0 σX ,T

�
, B (θ) =

�
σ2T 0
0 σ2T

�
σ2ε + β2σ2U

� �
This yields the asymptotic covariance matrix

A (θ)�1 B (θ)
�
A (θ)�1

�T
=

�
σ2T 0
0 σ2T

�
σ2ε + β2σ2U

�
/σ2X ,T

�
When there is doubt about the magnitude of σ2U , then we might want
to estimate the joint asymptotic distribution of bβIV and bβY jW .
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Example. The sample pth quantile bθn = F�1n (p) satis�es

ψ (x , θ) = p � I (x � θ)

We have
n

∑
i=1

ψ (xi , θ) = cn = n
�
p � Fn

�bθn�� � 1
This function is discontinuous at θ� but we can have

A (θ�) = � ∂

∂θT
E [ψ (X , θ)]jθ=θ� . = � ∂

∂θT
[p � F (θ)]

����
θ=θ�

= f (θ�) .
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We also have

B (θ�) = E [p � I (X � θ�)]2 = p (1� p) .

thus we have

V (θ�) =
p (1� p)
f (θ�)2

.

We could also stack any �nite number of quantiles ψ functions
together to get the joint asymptotic distribution of�
F�1n (p1) , . . . ,F�1n (pk )

�
.

However we cannot use A
�bθn, x� to estimate A (θ�): in fact, the

derivative of the pth quantile ψ function is zero everywhere except at
the location of the jump discontinuity!

To estimate f , we can use a kernel density estimator. An alternative
consists of approximating ψ by a smooth ψ function.
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Example. The positive mean deviation from the median is de�ned to
be bθ1,n = 2

n

n

∑
i=1

�
xi � bθ2,n� I

�
xi � bθ2,n�

where bθ2,n is the sample median.
The ψ function is

ψ (x , θ) =
�
2 (x � θ2) I (x � θ2)� θ1

1
2 � I (x � θ2)

�
.

The 1st component of ψ is continuous everywhere but not
di¤erentiable at θ2 = x . The 2nd component has a jump discontinuity
at θ2 = x . To get A (θ

�), we calculate

E [ψ (X , θ)] =
�
2
R ∞

θ2
(x � θ2) f (x) dx � θ1

1
2 � F (θ2)

�
.
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We write

2
Z ∞

θ2
(x � θ2) f (x) dx � θ1 = 2

Z ∞

θ2
xf (x) dx � 2θ2 [1� F (θ2)]� θ1.

The derivative of this expression with respect to θ1 is -1, the
derivative with θ2 is

�2θ2f (θ2)� 2 [1� F (θ2)] + 2θ2f (θ2) .

It follows that

A (θ�) =
�
1 1
0 f (θ�2)

�
, B (θ�) =

 
b11

θ�1
2

θ�1
2

1
4

!

where b11 = 4
R ∞

θ2
(x � θ�2)

2 f (x) dx � θ�21 .
Finally we obtain

V (θ�) =

0@ b11 � θ�1
f (θ�2)

+ 1
4f (θ�2)

2
θ�1

2f (θ�2)
� 1

4f (θ�2)
2

θ�1
2f (θ�2)

� 1
4f (θ�2)

2
1

4f (θ�2)
2

1A .
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