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Introduction & Motivation

— iid. : : ~
o In most applications, we have X; "*°" g and we obtain an estimate 3
by minimizing a suitable cost function; e.g.

e the mean corresponds to Y7 ; (6 — x,-)2 :
o the median corresponds to Y7 ; |6 — x;|.
o the MLE corresponds to negative log-likelihood — Y7 ; log f (x;|6).

@ However, even the mean estimate of a location parameter is typically
not robust. In contrast, the median could be too 'rough’.

@ Example: Consider

x = (—1.28, —0.96, —0.46, —0.44, —0.26, —0.21, —0.063, 0.39, 3,6, 9)

where X; hid- (0,1) for i =1, ...,8 but Xy, Xio, X11 are outliers.
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@ The mean is 1.33 and the median is -0.21.

@ Huber (1964) introduced a general loss function which is a
compromise between mean and median; i.e. we minimize

ép(xi—f’)

where

(x) = Ix? if |x] <k
PROZ kx| = 1k2 if x| > &

@ Large observations are not as heavily weighted as for /' ; (0 — x,-)2

@ k is a tuning parameter which controls the mix between the mean and
median-like estimators.
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Results
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Huber's estimator as a function of k

When k = 0, Huber's estimator corresponds to the median and as k
increases it gets closer to the mean; i.e. the robustness properties of
the estimator are decreasing.

Remark: Clearly minimizing

appears equivalent to maximizing a log-likelihood for which

Y p(xi—6)

i=1

log f (x| 0) = cste — p (x; — 6). We will describe later more general
estimates which do not support such an interpretation.
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Basic Approach

@ Now we assume a more general case where X; ~ g and our estimate
0, is solution of
n
Y P (xi,0) =
i=1
@ Under regularity conditions 5,, will converge towards the parameter 6*
satisfying

Eg [ (X,07)] = [ (x0)g (x)dc =0,
o If g(x) =1 (x|6p) then 6" is defined by
]Ef(.|9) /¢ x,0%) f (x|6p) dx =0,

i.e. be careful: we do not have necessarily 6* = 6! Also in practice,
we would like it to be the case.
o For example, if P (x,0) = x — 0 then 6" = E; [X].

February 2008 5/33




To study the asymptotic properties of 5,,, we use the (now standard)

Taylor expansion method of Y/, ¢ (6, x;) around the value 6" which
yields

o:iw(x,e (9 —9)Z¢ (x;, R,

i=1

By ignoring the remainder term R,, we obtain

—\% Y1 ¢ (%, 0%)
19 (x,07)

Vi (8, -07) =
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The CLT yields

n

P (x:.0%) = N (0., [¢? (X,0%)])

S

i=1

as Eg [ (X, 07)] = 0 and varg [¢p (X;,07)] = E, [qu (X, 9*)] .
The law of large numbers provides
1 . / * / *
=)y (x,67) D Eg [ (X.67)]
i=1

So by Slutsky's theorem, we get

9 _p*) P Eg [y ]
ﬁ@"ﬁ>%N6m[wweﬁ>

This is a generalization of the misspecified model we discussed before
where 1 is arbitrary.
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Study of the Huber's estimate

e For the Huber's estimate, we have ¢ (x,0) = ¢ (x — 6) where
x if x| < k
P (x) = k if x>k
—k ifx<—k

i.id. , ,
o Assume we have X; " f (x — 6) where f is symmetric around 0 and
we want to estimate 6 then indeed

1E[IIJ(X—G)]
96+kk(x_9)f(X_e)dX—kf_g;kf(x—G)dx

+kf9+k —0) dx

—fkuf du—kf du_|-kf u) du

@ In this case we have indeed that 8" = 0!
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@ We also have

0+k
E [y (X —0)] :/H F(x—8)dx = Py (IX| < k),

B [y? (X =0)] = [i7 (= 0)°F (x—0) e+ &2 [* 5 (x = 0) o
+k2 9+kf(x 6) dx
= [* 0PF (u) du+2K2 [ F (u) du.

o |t follows that the Huber’'s estimate satisfies

( [* u?f (u du+2k2P9*(|X]>k).>
[Pe (IX] < k)]

e
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@ We compare the asymptotic relative efficiencies of Huber's estimate
for k = 1.5 to mean and median

Normal | Double Exponential
VS. mean .96 1.37
vs. median 1.51 .68

: 2 2 2 2
that is O-Huber/o-mean and O-Huber/amedian‘

@ Remember that mean is the MLE of normal and median is the MLE
of double exponential so ARE are <1 as expected.

@ Huber's estimator performs however reasonably well compared to the
MLE.
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@ An M-estimator is a tradeoff between robustness and efficiency.

@ To see how much we are losing, we study in more details the
asymptotic variance given by E [¢ (X, 07)] 2 E [¢? (X, 67)] .
o We have

By (x,0)] = — [ s (x0) ox

where
d B dp (x,0)
@/wx,e)f(xw)dx — /Tf(xw)dx
+/¢ df x]9)dx
soif [ (x,0)f (x]|8)dx =0 for all 6 then
/ df x9
Bl (x0] = [p0oT X
d| f 0
= [ e I8 (X‘ )£ (x]6) ax

dx
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@ Recall that the asymptotic variance of the MLE is in
21
2
Eq [d log F(X16) ] thus

2
E lP(X,Q) dlog f(x|6)
ARE = 2T (MLE) _ [ do ] <1

var (M) E [y (X,6%)] Eq [dloggéxe)ﬂ

follows from the Cauchy-Schwartz inequality.

@ An M-estimate is always less efficient than the MLE and matches its
efficiency only if ¢ (x, 0) is proportional to %Q(X‘G).

@ This result does not say much; if one uses an M-estimate it is because
it it not believed that the model f (x| ) is reliable...
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General multivariate case

@ We want to estimate the multidimensional parameter 6 which
satisfies

E [y (X,0%)] = /¢ (x,0%) f (x) dx = 0.

@ This extension is trivial theoretically but will allow us to study
numerous interesting estimates; e.g. consider the estimate

N 1.0
91,17: *Z|X;—Y|.
niz

@ At first glance, this is not an M-estimate as there is no single
equation of the form

;1/1(&"91) =0

that yields 51,,,.
@ Moreover there is no family of densities f (x| 0) such that 6; , is a
component of the MLE of 6.
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@ However, we can write

voso = Qi) = (ML)

@ We find out that

-

Il
_

llJ (X,',91,92) =0

)

implies 6, , = %Z,’-’Zl xi, 010 = %27:1 |xi — x| .
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Asymptotic results can be easily establish using a straightforward
generalization of the scalar case and, under regularity assumptions, we

obtain %
NG (en - 9*) L N (0, v (6%))

where

V) =A 0 BE) (A E)
with

P (X, 0 . N x
A0%) = E [—%()T)] L BE)=E [¢(x,9 ) (X, 0 )T].
Clearly if ¢ (x,0) = alo%e(xm and if the data truly come from the

assumed parametric family £ (x| 6) then
AO)=B(0") =1(6")= V() =1(6")".

However, in many cases the data do not come from the assumed
family and valid inference should be carried out using the correct
limiting covariance matrix.
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o Let us define G, (0) := Y./_1 ¢ (x;,0). The idea of the proof is always
the same

Gn (5) = 0=G,(6") + G (6" (@n - 9*) R,

where G, (6%) = [ag"@] ‘9:9* so

Vi (80— 0%) = = [G1(67)] " V/nG, (6°) + /R,

@ Moreover under regularity conditions
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@ We can estimate A(6%), B (6") and V (6") using the data samples

via
1 oY X,"/9\n>

An ( n é_ I
B (6nx) = 5 0 () v (8r) "

n:
1

vV @n,x) = Al (@,,,x) B <§n,x> {A—l (5n,x) }T

@ Under mild regularity assumptions, we have

/N

)
3
N————
Il

=

vV (@n,x) Pov(en
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@ An interesting extension consists of considering
n
Z ll] (le 9) = Cn
i=1

P
where ¢,/+/n — 0 as n — oo.

@ In these cases, the asymptotic results still hold as we can simply write
G (5) = 0=G,(0") —ch+ G (87) (§n - 9*) + R,
= G (07 + Gy (07) (00— ") + Ry — <

and ¢, is absorbed in the remainder.
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@ Example. Posterior mode. In this case, assume we are interested in
maximizing the posterior distribution which is proportional to

@ Then it can be written as

i dlogf (xi|0)  dlogm(0)
L B a0

i=1
o It follows that as long as

_dlog 7 (0)

e (0) = 90

is such that ¢, (0) /+/n £, 0 then the Bayesian MAP estimator has
the same asymptotic covariance as the MLE.
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o Let 0, = (Xn, sn) = (% Y xi, %27:1 (xi — Yn)2> . This estimate is
an M-estimate for

v = (R ) = (o arn )

@ We can calculate

A(0%) = E |- 20|

:E<§u—%>?>:<é

B(6) = [ (X,0%) p (X,67)")

((x%f (x—01) ((x—07) — 63) )
:]E 2
(x—07) ((x— 07" —03) ((x—61)" —03)

:<9; B3 *2>:(9§ H3 4>
My e — 05 Py My— O

where 11, is the 3th central moment of X and we have use the more
familiar notation 0 = 6.
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@ We can estimate B (6%) by

8 (0n.x) = < fi e — o8 )

° /6\,, is a MLE estimate associated to
f(x|0)= (27‘[92)71/2 exp (— (x—01)? /292) but
P, (x,01,02) =x—01 and ¢, (x,01,62) = (x — 91)2 — 05 are not
the score functions which are equal to aloga;(’(lx\@) = (x—01) /6, and
N8P0 — (x — 01)* /203 — 1/205.

o It follows that clearly the i functions are not unique - many different

functions lead to the same estimator. They also yield different A (0*)
and B (6") but the same V (6%).
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o If we pick ¢ g (x,0) = %G(XW) then

([ 1/c% 0
o—gt /0% )

0
o2 1433
B(6) = IE[w(Xﬁ*)lP(Xﬁ*)T]:(lyi 2 )

o If the data are distributed according to f (x| 6) then p; =0 and
Uy = 30* and it follows that

A(0%) = B(0") = Diag (1/0%,1/0*).

@ Note that the likelihood score functions 1, ¢ are related to the
original ¥ by
Pme = CY
where C = Diag (1/02, 1/04). Generally speaking all functions
¢’ = Cy where C is non singular (but possibly dependent on 6*and
x) leads to the same estimator and the same asymptotic matrix.
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o Example Ratio Estimator: Let

6, =

x| <I

where x =n"1Y7  x; and y = n7 1 Y7 y; with E (X) = py,

E(Y) =y, var (X) = 0%, var (Y) = 0% and cov (X, Y) = oxy.

@ We have
P(X,Y,0)=Y —-06X
thus
N v (X,0
00 9—0"

B(6") = 1E[¢(x,9*)2}:JE[(Y—9X)2},

Ve = E[(y-ex)]
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@ These matrices can be estimated through

A (@n,x,y)

B <§n,x,y)

%4 <§n,x,y>

M

S|
=]
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@ If we are interested in the joint distribution of (Y, Y, J%) we only need
to define
Y — 01
lp(X,Y,g)(XGQ )
01 — 030,
o We obtain

1 0 0 0'%/ Xy 0
A= 0 1 0 |,BO)Y=| oxy» 0% 0 |.
—1 05 0; 0 0 0

@ We can check that the (3, 3)th element of
V(") = A1 (6%)B(6°) {AL (%)} is

1
vz = =5 [0% —2050xy +6570%]

— E [(Y - 9*X)2] /112
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@ Example Instrumental Variable Estimation:

Yi = BXi+oeen;
W, = Xi+oye,i
Ti = 7+0Xi+o0re3,

where ¢; ; are mutually independent erros with zero mean and unit
variance. We also assume that Xi, ..., X,, are unobserved, independent
of {¢;;} and have finite variance 0%.

o W; is a measurement of X; and T; is an instrumental variable for X;
(for estimating B) provided that J # 0.

@ The OLS estimator of slope obtained by regressing Y on W is

’/B _ L WY B Wi(B(Wi—oues,i)toeei)
yiw Y ,‘7/V,-2 Lo w?
y; 'B(TU Yi—1 Wiea L, 0 Y1 Wier
- P n 2 n 2
i=1 VVI i=1 VVI

2 -0
[oa
— s
) (7U+0'X
P o
- 02—&)-(02ﬁ
X%
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o For sake of simplicity, lets take here ¥ = 0. Let BY‘W and ,/B\W‘T be
the slopes from the LS regressions of Y on T and W. We have

B _ XL YT ?:1(.3571(7—1’_0753,1')"'0%51,[)Ti
YT Ty TP L T? N
_ ’B(Sfl . ﬁ(sfl Z/—l 83/ i +IB Zi:l gl,i-ri
= €
L P
N 17% —0
- 17.[2+(52¢7X?
—1 60y
— po 02+0%
,8 Y aWiT ,"1:1(5_1(Ti—¢7r€3,i)+UU€2,i)Tf
W‘T Z =1 T2 Z?:l 7,;12
sl 12:—1‘718317, +(7UZI:1£2JTI
2 n 2
=1 T i=1 -,-I
Hi —0
7.2[+§2<7§(
2 2
N (571 %%

o2+0%
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@ The intrumental variable estimator is defined by

3 BY\T L YiTi
= = = — — p.
IBIV ;7:1 VV,T, ﬁ

- Bw|r

@ This estimate is an M-estimator. A choice for 1 consists of using

0, —T
pv.w. T'G):( (;—92W)(91—7) )

@ Indeed
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@ We obtain

o= (30 )50 (7 % )

@ This yields the asymptotic covariance matrix

207180 (407) = (7 % (24t sk )

@ When there is doubt about the magnitude of (7%,, then we might want
to estimate the joint asymptotic distribution of B, and By .
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o Example. The sample pth quantile 6, = F, 1 (p) satisfies

¥ (x,0) =p—-T(x<0)
@ We have

;IIJ(Xi:(’):Cn:n(p—F,, (@n)) <1

@ This function is discontinuous at 8" but we can have

AWT) =~ B (X Ol = —sir b= FO)]
— (6.
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@ We also have
BO)=E[p-I(X<6))=p(1—p).
thus we have .
f(0%)
@ We could also stack any finite number of quantiles i functions
together to get the joint asymptotic distribution of

(Fat(p1) o Ft (pe))-
e However we cannot use A <§n,x) to estimate A (0"): in fact, the

derivative of the pth quantile ¢ function is zero everywhere except at
the location of the jump discontinuity!

@ To estimate f, we can use a kernel density estimator. An alternative
consists of approximating ¥ by a smooth 1 function.
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@ Example. The positive mean deviation from the median is defined to

R TSRS

where @2,,, is the sample median.
@ The ¢ function is

. 2X—92 H(XZQQ —91

@ The 1st component of ¥ is continuous everywhere but not
differentiable at 8, = x. The 2nd component has a jump discontinuity
at 0, = x. To get A(0"), we calculate

ey~ (P
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o We write
2| (x—62)f(x)dx—01 =2 | xF(x)dx—20; 1~ F(62)] 1.
0> 02

The derivative of this expression with respect to 61 is -1, the
derivative with 05 is

—205f (62) — 2[1 — F (82)] + 202 (62) .

o It follows that

A= (g flfws))'g“)*):(%l )

where by =4 [ (x — 05) f (x) dx — 67,
@ Finally we obtain

=)

* by — ffg*) Y 2 2 2f(z£*) T ar ; 2
V(Q)( o _21 (62) 12 (63) .
20(03)  4f(65)> 4f (03)>
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