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Parametric Inference

Let f (xj θ) denote the joint pdf or pmf of the sample
X = (X1, ...,Xn) parametrized by θ 2 Θ. Then given that X = x is
observed, the function L ( θj x) = f (xj θ) is the likelihood function.
The most common estimate is the Maximum Likelihood Estimate
(MLE) given by bθ = argmax

θ2Θ
L ( θj x) .
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Example: Gaussian distribution

f (xi j θ) =
1p
2πσ2

exp

 
� (xi � µ)2

2σ2

!
.

Then we have with θ =
�
µ, σ2

�
log L ( θj x) =

n

∑
i=1
log f (xi j θ)

= �n
2
log
�
2πσ2

�
� 1
2σ2

n

∑
i=1
(xi � µ)2 .

By taking the derivatives and setting them to zero

∂ log L ( θj x)
∂µ

=
1

σ2

n

∑
i=1
(xi � µ) = 0,

∂ log L ( θj x)
∂σ2

= � n
2σ2

+
1

2 (σ2)2

n

∑
i=1
(xi � µ)2 = 0.
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By solving these equations, we obtain

bµ = 1
n

n

∑
i=1
xi ,

cσ2 = 1
n

n

∑
i=1
(xi � bµ)2 .

Note that bµ is an unbiased estimate but cσ2 is biased.
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Example: Laplace Distribution (Double Exponential)

f (xi j θ) =
1
2
exp (� jxi � θj) .

Then we have

log L ( θj x) = �n log 2�
n

∑
i=1
jxi � θj .

By taking the derivative, we obtain

d log L ( θj x)
dθ

=
n

∑
i=1
sgn (xi � θ)

hence bθ = med fx1, ..., xng
for n = 2p + 1.
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Example (Uniform Distribution): Consider Xi � U (0, θ), i.e.

f (xi j θ) =
�
1/θ if 0 � x < θ,
0 otherwise.

We have

L ( θj x) =
n

∏
i=1
f (xi j θ) =

�
(1/θ)n if θ � x(n)
0 if θ < x(n)

.

It follows that bθ = x(n) where x(1) < x(2) < � � � < x(n).
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Example (Linear Regression): Let fxi , yigni=1 be a set of n data where
xi =

�
x i1, x

i
2, ..., x

i
p

�T
is a set of explanatory variables and yi 2 R is

the response. We assume

yi = xTi β+ εi , εi � N
�
0, σ2

�
thus

f (yi j xi , β) =
1p
2πσ2

exp

 
�
�
yi � xTi β

�2
2σ2

!
We have for θ =

�
β,σ2

�
log L (θ) =

n

∑
i=1
log f (yi j xi , β)

= �n
2
log
�
2πσ2

�
� 1
2σ2

n

∑
i=1

�
yi � xTi β

�2
= �n

2
log
�
2πσ2

�
� 1
2σ2

(y�Xβ)T (y�Xβ)

where y = (y1, ..., yn)
T and X = (x1, ..., xn)

T .
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By taking the derivatives and setting them to zero

∂ log L ( θj x)
∂β

= � 1
2σ2

�
�2XTβ+ 2XTXβ

�
= 0,

∂ log L ( θj x)
∂σ2

= � n
2σ2

+
1

2 (σ2)2
(y�Xβ)T (y�Xβ) = 0.

Thus we obtain

bβ =
�
XTX

��1
XTy,

cσ2 =
1
n

�
y�Xbβ�T �y�Xbβ� .
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Example (Time Series): Consider the following autoregression

X0 = x0, Xn = αXn�1 + σVn where Vn
i.i.d.� N (0, 1)

where θ =
�
α, σ2

�
.

We have

L ( θj x) = f (xj θ) =
n

∏
i=1

1p
2πσ2

exp

 
� (xi � αxi�1)

2

2σ2

!

Thus we have

log L ( θj x) = cst � n
2
log σ2 �

n

∑
i=1

(xi � αxi�1)
2

2σ2
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It follows that

∂2 log L ( θj x)
∂σ2

= � n
σ2
+

n

∑
i=1

(xi � αxi�1)
2

σ4
,

∂2 log L ( θj x)
∂α

=
2

σ2

n

∑
i=1
xi�1 (xi � αxi�1)

2 .

Thus we have

bα = ∑n
i=1 xi�1xi

∑n
i=1 x

2
i�1

, cσ2 = ∑n
i=1 (xi � bαxi�1)2

n
.
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Invariance

Consider η = g (θ). We introduce the induced likelihood function L�

L� (ηj x) = sup
fθ:g (θ)=ηg

L ( θj x) .

Invariance property: If bθ is the MLE of θ then for any function
η = g (θ) then g

�bθ� is the MLE of η.

�Proof�: The MLE of η is de�ned by

bη = arg sup
η

sup
fθ:g (θ)=ηg

L ( θj x)

De�ne
g�1 (η) = fθ : g (θ) = ηg .

Then clearly bθ 2 g�1 (bη) and cannot be in any other preimage sobη = g �bθ� .
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Consistency

De�nition. A sequence of estimators bθn = bθn (X1, ...,Xn) is consistent for
the parameter θ if, for every ε > 0 and every θ 2 Θ

lim
n!∞

Pθ

����bθn � θ
��� < ε

�
= 1 (equivalently lim

n!∞
Pθ

����bθn � θ
��� � ε

�
= 0).

Example: Consider Xi
i.i.d.� N (θ, 1) and bθn = 1

n ∑n
i=1 Xi thenbθn � N (θ, 1/n) and

Pθ

����bθn � θ
��� < ε

�
=
Z ε

p
n

�ε
p
n

1p
2π

exp
�
�u

2

2

�
du ! 1.

It is possible to avoid this calculations and use instead Chebychev�s
inequality

Pθ

����bθn � θ
��� � ε

�
= Pθ

����bθn � θ
���2 � ε2

�
�

Eθ

��bθn � θ
�2�

ε2

where Eθ

��bθn � θ
�2�

= varθ
�bθn�+ �Eθ

�bθn � θ
��2

.
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Example of inconsistent MLE (Fisher)

(Xi ,Yi ) � N
��

µi
µi

�
,

�
σ2 0
0 σ2

��
.

The likelihood function is given by

L (θ) =
1

(2πσ2)n
exp

 
� 1
2σ2

n

∑
i=1

h
(xi � µi )

2 + (yi � µi )
2
i!

We obtain

l (θ) = cste � n log σ2

� 1
2σ2

"
2
n

∑
i=1

�
xi + yi
2

� µi

�2
+
1
2

n

∑
i=1
(xi � yi )2

#
.

We have

bµi = xi + yi
2

, cσ2 = ∑n
i=1 (xi � yi )

2

4n
! σ2

2
.
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Consistency of the MLE

Kullback-Leibler Distance: For any density f , g

D (f , g) =
Z
f (x) log

�
f (x)
g (x)

�
dx

We have
D (f , g) � 0 and D (f , f ) = 0.

Indeed

�D (f , g) =
Z
f (x) log

�
g (x)
f (x)

�
dx �

Z
f (x)

�
g (x)
f (x)

� 1
�
dx = 0

D (f , g) is a very useful �distance�and appears in many di¤erent
contexts.
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Alternative measures of similarity

Hellinger distance

D (f , g) =
Z �q

f (x)�
q
g (x)

�2
dx

Generalized information

D (f , g) =
1
λ

Z  � f (x)
g (x)

�λ

� 1
!
f (x) dx

L1-norm / Total variation

D (f , g) =
Z
jf (x)� g (x)j dx

L2-norm / Total variation

D (f , g) =
Z
(f (x)� g (x))2 dx
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Example

Suppose we have f (x) = N
�
x ; ξ, τ2

�
and g (x) = N

�
x ; µ, σ2

�
.

We have

Ef

h
(X � µ)2

i
= Ef

h
(X � ξ)2 + 2 (X � ξ) (ξ � µ) + (ξ � µ)2

i
= τ2 + (ξ � µ)2

So it follows that

Ef [log g (X )] = Ef

"
�1
2
log
�
2πσ2

�
� (X � µ)2

2σ2

#

= �1
2
log
�
2πσ2

�
� τ2 + (ξ � µ)2

2σ2

and
Ef [log f (X )] = �

1
2
log
�
2πτ2

�
� 1
2
.
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It follows that

D (f , g) =
Z
f (x) log

�
f (x)
g (x)

�
dx

= Ef [log f (X )]�Ef [log g (X )]

=
1
2

(
log
�

σ2

τ2

�
+

τ2 + (ξ � µ)2

σ2
� 1
)

It can be easily checked that D (f , f ) = 0 (less easy to show
D (f , g) � 0).
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Example

Assume we have f (x) = 1
2 exp (� jx j) and g (x) = N

�
x ; µ, σ2

�
.

We obtain

Ef [log f (X )] = � log 2� 1
2

Z ∞

�∞
jx j exp (� jx j) dx

= � log 2�
Z ∞

0
x exp (� jx j) dx

= � log 2� 1,

Ef [log g (X )] = �
1
2
log
�
2πσ2

�
� 1
4σ2

�
4+ 2µ2

�
It follows that

D (f , g) =
1
2
log
�
2πσ2

�
+

1
2σ2

�
2+ µ2

�
� log 2� 1.
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Assume the pdfs f (x j θ) have common support for all θ and
f (x j θ) 6= f

�
x j θ0

�
for θ 6= θ0; i.e. Sθ = fx : f (x j θ) > 0g is

independent of θ.

Denote

Mn (θ) =
1
n

n

∑
i=1
log

f (Xi j θ)
f (Xi j θ�)

As the MLE bθn maximises L ( θj x), it also maximizes Mn (θ) .

Assume Xi
i.i.d.� f (x j θ�). Note that by the law of large numbers

Mn (θ) converges to

Eθ�

�
log

f (X j θ)
f (X j θ�)

�
=

Z
f (x j θ�) log

f (x j θ)
f (x j θ�)

dx

= �D (f ( �j θ�) , f ( �j θ)) := M (θ) .

Hence, Mn (θ) � �D (f ( �j θ�) , f ( �j θ)) which is maximized for θ�

so we expect that its maximizer will converge towards θ�.
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Example

Assume f (x) = g (x) = N (x ; 0, 1).
We approximate

Ef [log g (X )] = �
1
2
log (2π)� 1

2
= �1.4189

through

Ebf [log g (X )] = �12 log (2π)� 1
2n

n

∑
i=1
X 2i

Numerical examples

n 10 100 1, 000 10, 000 Ef [log g (X )]
Mean -1.4188 -1.4185 -1.4191 -1.4189 -1.4189
Variance 0.05079 0.00497 0.00050 0.00005 -
Standard deviation 0.22537 0.07056 0.02232 0.00696 -

Mean, variance and standard deviation by running 1,000 Monte Carlo trials
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Theorem. Suppose

sup
θ2Θ

jMn (θ)�M (θ)j P! 0

and that, for every ε > 0,

sup
θ:jθ�θ�j�ε

M (θ) < M (θ�)

then bθn P! θ�
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Proof. Since bθn maximizes Mn (θ), we have Mn

�bθn� � Mn (θ�). Thus,

M (θ�)�M
�bθn� = Mn (θ�)�M

�bθn�+M (θ�)�Mn (θ�)

� Mn

�bθn��M �bθn�+M (θ�)�Mn (θ�)

� 2sup
θ
jMn (θ)�M (θ)j

P! 0.

Thus it implies that for any δ > 0, we have

Pr
�
M
�bθn� < M (θ�)� δ

�
! 0.

Now for any ε > 0, there exists δ > 0 such that jθ � θ�j � ε implies
M (θ) < M (θ�)� δ. Hence,

Pr
����bθn � θ�

��� > ε
�
� Pr

�
M
�bθn� < M (θ�)� δ

�
! 0.
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Asymptotic Normality

Assuming we have bθn P! θ�, what can we say about
p
n
�bθn � θ�

�
?

Lemma. Let s (x j θ) := ∂ log f ( x jθ)
∂θ be the score function, then we

have for any θ
Eθ [s (X j θ)] = 0.

Proof. We have Z
∂ log f (x j θ)

∂θ
f (x j θ) dx

=
Z ∂f ( x jθ)

∂θ

f (x j θ) f (x j θ) dx =
Z

∂f (x j θ)
∂θ

dx

=
∂

∂θ

Z
f (x j θ) dx| {z }

=1

= 0.
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Lemma. We also have

varθ [s (X j θ)] = Eθ

h
s (X j θ)2

i
= �Eθ

�
∂2 log f (X j θ)

∂θ2

�
:= I (θ)

Proof. This follows fromZ
∂ log f (x j θ)

∂θ
f (x j θ) dx = 0

thus by taking the derivative once more with respect to θ

0 =
∂

∂θ

Z
∂ log f (x j θ)

∂θ
f (x j θ) dx

=
Z

∂2 log f (x j θ)
∂θ2

f (x j θ) +
Z

∂ log f (x j θ)
∂θ

∂f (x j θ)
∂θ

dx
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Heuristic Derivation. We have for l (θ) := log L ( θj x)

0 = l 0
�bθn� � l 0 (θ�) + �bθn � θ�

�
l 00 (θ�)

)
�bθn � θ�

�
= � l

0 (θ�)

l 00 (θ�)

That is
p
n
�bθn � θ�

�
=

1p
n l
0 (θ�)

� 1
n l
00 (θ�)

.

Now remember that l 0 (θ�) = ∑n
i=1 s (Xi j θ�) where

Eθ� [s (Xi j θ�)] = 0 and varθ� [s (Xi j θ�)] = I (θ�) so the CLT tells us
that

1p
n
l 0 (θ�)

D! N (0, I (θ�))
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Now the law of large number yields

�1
n
l 00 (θ�)

P! I (θ�)

so by Slutsky�s theorem

p
n
�bθn � θ�

�
D! N

�
0,

1
I (θ�)

�
,
p
n
q
I (θ�)

�bθn � θ�
�

D! N (0, 1)

Note that you have already seen this expression when establishing the
Cramer-Rao bound.

It is important to remember that depending on θ� the parameter can
be more or less easy to estimate.
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Similarly, we can prove that

p
n

r
I
�bθn� �bθn � θ�

�
D! N (0, 1) .

We can also prove that

p
n
���g 0 �bθn����rI �bθn� �g �bθn�� g (θ�)� D! N (0, 1) .

This allows us to derive some con�dence intervals.
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Making the proof more rigourous

We have

l 0
�bθn� = l 0 (θ�) + �bθn � θ�

�
l 00 (θ�) +

1
2

�bθn � θ�
�2
l 000 (θ�,n)

where θ�,n lies between bθn and θ� so that

p
n
�bθn � θ�

�
=

1p
n l
0 (θ�)

� 1
n l
00 (θ�)� 1

2n

�bθn � θ�
�2
l 000 (θ�,n)

.

To proof the result, we need to check that
1
2n

�bθn � θ�
�2
l 000 (θ�,n)

P! 0. As bθn P! θ�, we just need to prove that
1
n l
000 (θ�,n) is bounded (in probability). So we need an additional

condition of the form say for any θ����∂3 log f (x j θ)∂θ3

���� � C (x)
with Eθ� [C (X )] < ∞.

A.D. () January 2008 29 / 63



Multiparameter Case

The extension to the multiparameter case θ = (θ1, ..., θd ) is
straightforward

p
n
�bθn � θ�

�
D! N (0, J (θ�))

where J (θ�) = I (θ�)
�1 where

[I (θ�)]k ,l = �Eθ�

�
∂2 log f (x j θ)

∂θk∂θl

�
.

We de�ne rg :=
�

∂g
∂θ1
, . . . , ∂g

∂θd

�T
then if rg (θ�) 6= 0

p
n
�
g
�bθn�� g (θ�)� D! N

�
0,rg (θ�) J (θ�)rg (θ�)T

�
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Example: If Xi
i.i.d.� N

�
µ, σ2

�
with θ = (µ, σ) then

log f (x j θ) = cst � log σ� (x�µ)2

2σ2

s (x j θ) =

 
(x�µ)

σ2

� 1
σ +

(x�µ)2

σ3

!
,

I (θ) =

0@ 1
σ2

Eθ

h
2(x�µ)

σ3

i
Eθ

h
2(x�µ)

σ3

i
Eθ

�
� 1

σ2
+ 3(x�µ)2

σ4

� 1A =

� 1
σ2

0
0 2

σ2

�

The MLE of µ is given by

bµ = 1
n

n

∑
i=1
Xi ) var [bµ] = σ2

n

and the MLE is indeed e¢ cient (it reaches Cramer-Rao lower bound).
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Assume we observe a vector X = (X1, ...,Xk ) where Xj 2 f0, 1g ,
∑k
j=1 Xj = 1 with

f (x j p1, ..., pk�1) =
 
k�1
∏
j=1

pxjj

! 
1�

k�1
∑
j=1

pj

!xk
where pj > 0 and pk := 1�∑k�1

j=1 pj < 1. We have
θ = (p1, ..., pk�1).

We have

∂ log f (x j θ)
∂pj

=
xj
pj
� xk
pk
,

∂2 log f (x j θ)
∂p2j

= � xj
p2j
� xk
p2k

∂2 log f (x j θ)
∂pj∂pl

= � xk
p2k
, j 6= l < k.
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Recall that Xj has a Bernoulli distribution with mean pj so

I (θ) =

2666664
p�11 + p�1k p�1k p�1k
p�1k p�12 + p�1k

...
... p�1k

...
...

... p�1k�1 + p
�1
k

3777775
One can check that

I (θ)�1 =

26664
p1 (1� p1) �p1p2 � � � �p1pk�1
�p1p2 p2 (1� p2) �p2pk�1
...

...
...

�p1pk�1 �p2pk�1 � � � pk�1 (1� pk�1)

37775
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Now assume we observe X 1,X 2, ...,X n then

log L ( θj x) =
k

∑
j=1
tj log pj =

k�1
∑
j=1

tj log pj + tk log

 
1�

k�1
∑
j=1

pj

!

where tj = ∑n
i=1 x

i
j .

So we have

∂ log L ( θj x)
∂pj

=
tj
pj
� tk
pk
for j = 1, ..., k � 1) bpj = tj

n
.

Clearly tj is Binomial(n, pj ) with variance npj (1� pj ) so bpj is
e¢ cient.
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Nuisance Parameters

Assume θ = (θ1, ..., θd ) is the parameter vector but only the scalar θ1
is of interest whereas (θ2, ..., θd ) are nuisance parameters.

We want to assess how the asymptotic precision with which we
estimate θ1 is in�uenced by the presence of nuisance parameters; i.e.
if bθ is an e¢ cient estimate for θ, then how does bθ1 as an estimator of
θ1 compare to an e¢ cient estimation of θ1, say eθ1, which would
assume that all the nuisance parameters are known.

Intuitively, we should have var
heθ1i � var hbθ1i; i.e. ignorance cannot

bring you any advantage.
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Asymptotic variance of
p
n
�bθn � θ�

�
is I�1 (θ�) whose (i , j)

parameter is denoted αi ,j .

Asymptotic variance of
p
n
�eθ1 � θ�,1

�
is I�1 (θ�,1) = 1/γ1,1.

Theorem. We have α1,1 � 1/γ1,1, with equality if and only if
α1,2 = � � � = α1,d = 0.
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Partition I (θ) as follows

I (θ) =
�

γ1,1 ρT

ρ Σ

�
.

Now we use the fact that

I�1 (θ) =
1
τ

�
1 �ρTΣ�1

�Σ�1ρ Σ�1ρρTΣ�1 + τΣ�1

�
where τ = γ1,1 � ρTΣ�1ρ.
As I (θ) is de�nite positive then Σ�1 is de�nite positive and

α1,1 =
1
τ
� 1/γ1,1

with equality i¤ ρ = 0.
To show that τ > 0 we use the fact that I (θ) is p.d. and that

τ = vTI (θ) v where v =
�

1
�ρTΣ�1

�
.
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Beyond Maximum Likelihood: Method of Moments

MLE estimates can be di¢ cult to compute, the method of moments is
a simple alternative. The obtained estimators are typically not optimal
but can be used as starting values for more sophisticated methods.
For 1 � j � d , de�ne the j th moment of f (x j θ) where
θ = (θ1, ..., θd )

αj (θ) = Eθ

�
X j
�
=
Z
x j f (x j θ) dx

and, given X = (X1, ...,Xn) , the j th sample as

bαj = 1
n

n

∑
i=1
X ji .

The idea of the method of moments method is to match the
theoretical moments to the sample moments; that is we de�ned bθn as
the value of θ such that

αj

�bθn� = bαj for j = 1, ..., d .
A.D. () January 2008 38 / 63



Example: Let Xi
i.i.d.� N

�
µ, σ2

�
with θ =

�
µ, σ2

�
then

α1 (θ) = µ, α2 (θ) = σ2 + µ2,

bα1 =
1
n

n

∑
i=1
X 1i , bα2 = 1

n

n

∑
i=1
X 2i

Thus we obtain

bµ = bα1 and cσ2 = bα2 � (bα1)2 .
Note that cσ2 is not unbiased.
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Assume Xi
i.i.d.� U (θ1, θ2) where �∞ < θ1 < θ2 < +∞ then

α1 (θ) =
θ1 + θ2
2

, α2 (θ) =
θ21 + θ22 + θ1θ2

3
.

Now we solve and obtain

θ1 = 2bα1 � θ2,

3bα2 = (2bα1 � θ2)
2 + θ22 + (2bα1 � θ2) θ2 , (θ2 � bα1)2 = 3�bα2 � bα21� .

Since θ2 > E (X ) then

bθ2 = bα1 +r3�bα2 � bα21�, bθ1 = bα1 �r3�bα2 � bα21�.
Note that

�bθ1,bθ2� is NOT a function of the su¢ cient statistics
X(1),X(n).
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Assume Xi
i.i.d.� Bi (p, k) with parameters k 2 N and p 2 (0, 1) .

We have
α1 (θ) = kp, α2 (θ) = kp (1� p) + k2p2.

Thus we obtain

bp =
�bα1 + bα21 � bα2� /bα1,bk = bα21/ �bα1 + bα21 � bα2� .

The estimator bp 2 (0, 1) but bk is generally not an integer.
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Statistical Properties of the Estimate

Let bα = (bα1, ...,bαd ), we have
bα = h �bθ�

and if the inverse function g = h�1 exists, thenbθ = g (bα) .
If g is continuous at α = (α1, ..., αd ) then bθ is a consistent estimate
of θ as bαj ! αj .
Moreover if g is di¤erentiable at α and Eθ

�
X 2d

�
< ∞ then

p
n
�bθn � θ

�
D! N

�
0,rg (α)T Vαrg (α)

�
where

Vα [i , j ] = αi+j � αiαj .
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The result follows from

p
n (bαn � α)

D! N (0,Vα)

as
Eθ [bαj ,n ] = αj , cov [bαi ,nbαj ,n ] = αi+j � αiαj

n
We have bθn � θ = g (bαn)� g (αn)
so using the delta method

p
n
�bθn � θ

�
D! N

�
0,rg (α)T Vαrg (α)

�
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We can also establish the n�1 order asymptotic bias of the estimate as

g (bαn) = g (α) +rg (α)T (bαn � α)

+
1
2
(bαn � α)Tr2g (α) (bαn � α) + o

�
1
n

�
where

p
n (bαn � α)

D! ZΣ with ZΣ � N (0,Σ) so

n (bα� α)Tr2g (α) (bα� α)
D! ZTΣr2g (α)ZΣ

as recall that Xn
D! X implies ϕ (Xn)

D! ϕ (X ).

Thus we have

E [g (bαn)] = g (α) +
1
2n

E
h
ZTΣr2g (α)ZΣ

i
+ o

�
1
n

�
= g (α) +

tr
�
r2g (α)Σ

�
2n

+ o
�
1
n

�
.
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Beyond Maximum Likelihood: Pseudo-Likelihood

Assume X = (X1, ...,Xq) � f (x j θ). Given n observations
X i � f (x j θ), the MLE requires maximizing L ( θj x) .
However in some problems, it might be di¢ cult to specify f (x j θ)
and we may be only able to specify say

f (xk , xl j θ) for 1 � k < l � q

Based on this information and n observations, we could de�ne the
pseudo-log-likelihood functions

l1 ( θj x) =
n

∑
i=1
l1
�

θj x i
�
=

n

∑
i=1

q

∑
s=1

log f (xs j θ) ,

l2 ( θj x) =
n

∑
i=1
l2
�

θj x i
�
=

n

∑
i=1

q

∑
s=1

q

∑
t=s+1

log f (xs , xt j θ) + αl1 ( θj x) .

These pseudo-likelihood functions are simpler that the full likelihood.
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Under regularity conditions very similar to the ones for the MLE,
solving

l 0k ( θj x) = 0 for k = 1, 2
will provide unbiased estimates.
To derive the asymptotic variance, we use

0 = l 0k
�bθn� � l 0k (θ�) + �bθn � θ�

�
l 00k (θ�)

)
p
n
�bθn � θ�

�
= �

1p
n l
0
k (θ�)

1
n l
00
k (θ�)

where 1
n l
00
k (θ�)

P! Eθ� [l
00
k ] and

1p
n l
0 (θ�)

D! N
�
0,Eθ�

�
l 02k
��
, thus

p
n
�bθn � θ�

�
D! N

�
0,Eθ�

�
�l 00k

��2
Eθ�

�
l 02k
��
.

We have the estimates

Eθ�

�
l 00k
�
� 1
n

n

∑
i=1
l 00k ( θj xi ) , Eθ�

�
l 02k
�
� 1
n

n

∑
i=1
l 02k ( θj xi ) .
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Example. Assume that X = (X1, ...,Xq) � N (0,Σ) where
[Σ] (i , j) = 1 if i = j and ρ otherwise. We are interested in estimating
θ = ρ.

There is no information about ρ in l1 ( θj x) so we use l2 ( θj x) for
α = 0. For n observations

�
X 1, ...,X n

�
, we have

l2 ( θj x) = �nq (q � 1)
4

log
�
1� ρ2

�
� q � 1+ ρ

2 (1� ρ2)
SSW

� (q � 1) (1� $)

2 (1� ρ2)

SSB
q

where

SSW =
n

∑
i=1

q

∑
s=1

 
X is �

 
q

∑
t=1
X it

!!2
, SSB =

n

∑
i=1
X i

2

t .
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After simple but tiedous calculations, we obtain for the asymptotic
variance

2
nq (q � 1)

�
1� ρ2

�
c (q, ρ)

(1+ ρ2)2

where

c (q, ρ) =
�
1� ρ2

� �
1+ 3ρ2

�
+ qρ

�
�3ρ3 + 8ρ2 � 3ρ+ 2

�
+q2ρ2

�
1� ρ2

�
whereas for MLE we have

2
nq (q � 1)

(1+ (q � 1) ρ)2 (1� ρ)2

1+ (q � 1) ρ2
.

The ratio is 1 for q = 2 as expected and also 1 if ρ = 0 or 1. For any
other values, there is a loss of e¢ ciency for l2 ( θj x) which increases
as q ! ∞.
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Consider the following time series

X0 � N
�
0,

σ2

1� α2

�
, Xn = αXn�1 + σVn where Vn

i.i.d.� N (0, 1)

where θ = σ2.
We can show that we have for any i = 0, 1, ..., n

f (xi j θ) =
1p
2πσ2

exp

 
�
�
1� α2

�
x2i

2σ2

!
and we consider

2l1 ( θj x) = 2
n

∑
i=1
log f (xi j θ) = cste � n log σ2 �

�
1� α2

�
2σ2

n

∑
i=1
x2i

This pseudo-likelihood can easily be maximized

cσ2 = �
1� α2

�
∑n
i=1 x

2
i

n
.

If one is interested in estimating α, it would be necessary to introduce
f (xi , xi+1j θ) .
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Pseudo-likelihood is widely used for Markov random �elds since its
introduction by Besag (1975). In the Gaussian context, we have
X = (X1, ...,Xn) where d is extremely large and Gaussian and the
model is speci�ed by

Eθ [Xi j x�i ] = λ
n

∑
i=1
Hijxj , varθ [Xi j x�i ] = κ.

Computing the likelihood for θ = (λ, κ) can be too computatonally
intensive so the pseudo-likelihood is de�ned through

el ( θj x) =
n

∑
i=1
log f (xi j θ, x�i )

thus bλ = xTHx
xTH2x

, κ = d�1
 
xTx�

�
xTHx

�2
xTH2x

!
In this context, it can be show that the estimate is consistent and has
a reasonable asymptotic variance.
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Summary of Pseudo Likelihood

In many applications, the log-likelihood l (θ; y1:n) is very complex to
compute.

Instead we maximize a surrogate function lS (θ; y1:n).

If possible, we pick this function such that if θ� is the �true�
parameter then

Eθ� (lS (θ;Y1:n))

is maximized for θ = θ� and solving

rlS
�bθn;Y1:n

�
= 0

is �easy�.
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Under regularity assumptions, we have

p
n
�bθn � θ�

�
) N

�
0,G�1n (θ�)

�
where

G�1n (θ) = H�1n (θ) Jn (θ)H�Tn (θ)

with

Jn (θ) = V frlS (θ;Y1:n)g ,
Hn (θ) = E

�
r2lS (θ;Y1:n)

	
.

When lS (θ;Y1:n) = l (θ;Y1:n) and the model is correctly speci�ed
then Gn (θ) is the Fisher information matrix.

When lS (θ;Y1:n) 6= l (θ;Y1:n), we typically lose in terms of e¢ ciency.
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Application to General State-Space Models

Consider the following general state-space model. Let fXkgk�1 be an
Markov process de�ned by

X1 � µθ and Xk j (Xk�1 = xk�1) � fθ ( �j xk�1) .

Then we have that for any n > 0

pθ (x1:n) = pθ (x1)
n

∏
k=2

pθ (xk j x1:k�1)

= µθ (x1)
n

∏
k=2

fθ (xk j xk�1) .
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We are interested in estimating θ from the data but we do not have
access to fXkgk�1 . We only have access to a process fYkgk�1 such
that, conditional upon fXkgk�1, the observations are statistically
independent and

Yk j (Xk = xk ) � gθ ( �j xk ) .

That is we have for any n > 0

pθ (y1:n j x1:n) =
n

∏
k=1

pθ (yk j xk ) =
n

∏
k=1

gθ (yk j xk ) .
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Examples

Linear Gaussian model. Consider say for jαj < 1

X1 � N
�
0,

σ2

1� α2

�
, Xk = αXk�1 + σVk where Vk

i.i.d.� N (0, 1) ,

Yk = β+ Xk + τWk where Wk
i.i.d.� N (0, 1) .

In this case we have say θ =
�

β, σ2, α, τ2
�
and

fθ (xk j xk�1) = N
�
xk ; αxk�1, σ

2� ,
gθ (yk j xk ) = N

�
yk ; β+ xk , τ

2� .
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Stochastic Volatility model. Consider say for jαj < 1

X1 � N
�
0,

σ2

1� α2

�
, Xk = αXk�1 + σVk where Vk

i.i.d.� N (0, 1) ,

Yk = β exp (Xk/2)Wk where Wk
i.i.d.� N (0, 1) .

In this case we have say θ =
�

β, σ2, α
�
and

fθ (xk j xk�1) = N
�
xk ; αxk�1, σ

2� ,
gθ (yk j xk ) = N

�
yk ; 0, β

2 exp (xk )
�
.
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In this case, the likelihood of the observations y1:n is given by

pθ (y1:n) =
Z
pθ (x1:n, y1:n) dx1:n

=
Z
pθ (y1:n j x1:n) pθ (x1:n) dx1:n

=
Z  n

∏
k=1

gθ (yk j xk )
! 

µθ (x1)
n

∏
k=2

fθ (xk j xk�1)
!
dx1:n.

If the model is linear Gaussian or �nite state-space, we can compute
the likelihood in closed-form but the maximization is not trivial.
Otherwise, we cannot.
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Pairwise likelihood for state-space models

We consider the following pseudo-likelihood for m � 1

LS (θ; y1:n) =
n�1
∏
i=1

minfi+m,ng

∏
j=i+1

pθ (yi , yj )

where

pθ (yi , yj ) =
Z
gθ (yi j xi ) gθ (yj j xj ) pθ (xi , xj ) dxidxj .

As an alternative, if n = pm, we could maximize

LS (θ; y1:n) =
p

∏
i=1
pθ

�
y(i�1)m+1:im

�
.
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For the two models discussed earlier, it is possible to compute exactly
pθ (xi , xj ) as

pθ (xi , xj ) = pθ (xi ) pθ (xj j xi )
where

pθ (xi ) = N
�
xi ; 0,

σ2

1� α2

�
pθ (xj j xi ) = N

 
xj ; αj�ixi , σ2

j�i�1
∑
k=0

α2k

!
.

In a general case, we could approximate pθ (yi , yj ) through Monte
Carlo bpθ (yi , yj ) =

1
N

N

∑
l=1

gθ

�
yi jX li

�
gθ

�
yj jX lj

�
where

�
X li ,X

l
j

�
� pθ (xi , xj ) .
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Under regularity assumptions, we haveZ
lS (θ; y1:n) pθ� (y1:n) dy1:n

which is maximum in θ� so maximizing this pseudo-likelihood method
makes sense.

To prove it, note that

lS (θ; y1:n) =
n�1
∑
i=1

minfi+m,ng

∑
j=i+1

log pθ (yi , yj )

and Z
log pθ (yi , yj ) .pθ� (y1:n) dy1:n

=
Z
log pθ (yi , yj ) .pθ� (yi , yj ) dyidyj

which is maximum in θ = θ�.
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Application

Consider

X1 � N
�
0,

σ2

1� α2

�
, Xk = αXk�1 + σVk where Vk

i.i.d.� N (0, 1) ,

Yk = β+ Xk + τWk where Wk
i.i.d.� N (0, 1) .

where θ =
�

β, σ2, α, τ2
�
.

In this case, we can directly establish not only pθ (xi , xj ) but pθ (yi , yj )�
Yi
Yj

�
� N

 �
β
β

�
,

 
τ2 + σ2

1�α2
αj�i σ2

1�α2

αj�i σ2

1�α2
τ2 + σ2

1�α2

!!

For m = 2, ...., 20 we compare the performance of bθMLE and bθMPL
where the likelihood and pseudo-likelihood are maximized using a
simple gradient algorithm (EM could be used).
1,000 time series of length n = 500 with β� = 0.1, τ� = 1.0,
α� = 0.95 and σ� = 0.55 are simulated.
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true bθ(2)MPL bθ(6)MPL bθ(12)MPL
bθ(20)MPL

bθML
β 0.1 0.108 0.108 0.109 0.109 0.102

(0.488) (0.489) (0.4908) (0.492) (0.481)
τ 1.0 0.994 0.997 0.990 0.981 0.995

(0.066) (0.048) (0.054) (0.068) (0.046)
α 0.95 0.941 0.941 0.939 0.937 0.941

(0.033) (0.020) (0.022) (0.024) (0.020)
σ 0.55 0.535 0.551 0.560 0.571 0.554

(0.160) (0.064) (0.072) (0.087) (0.061)
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Now you should...

be able to compute MLE estimate for rather complex models,

be able to compute the asymptotic variance of the MLE estimate,

be able to derive the expression of the asymptotic variance of simple
estimates di¤erent from MLE.
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