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Parametric Inference

o Let f (x| 0) denote the joint pdf or pmf of the sample
X = (Xi,..., X,) parametrized by 6 € ®. Then given that X = x is
observed, the function L (60| x) = f (x| 0) is the likelihood function.

@ The most common estimate is the Maximum Likelihood Estimate

(MLE) given by R
6 = argmax L(0]|x).
0e®
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@ Example: Gaussian distribution

f(x]0) = L exp <—(Xi2;zy) ) :

2702
Then we have with 0 = (;4, (72)
logL(0]x) = log f (xi| )
i=1
= 0 log (2710?) — == ] (i —n)?.
2 202 =
@ By taking the derivatives and setting them to zero
dlog L (6|x) 1 &
D MES IR}
oy o ;
dlogL(0|x) n 1 2
e = et aap m K=
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@ By solving these equations, we obtain

o Note that ji is an unbiased estimate but 02 is biased.
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e Example: Laplace Distribution (Double Exponential)

1
f(x]0)= 5 exp (—|xi—#8]).

Then we have

n

log L (6]x) = —nlog2— ) [x; — 0.

i=1

o By taking the derivative, we obtain

hence

forn=2p+1.

AD. ()
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e Example (Uniform Distribution): Consider X; ~ U (0, 0), i.e.

[ 1/6 ifo<x<86,
f(xi0) = { 0 otherwise.

@ We have

i 1/6)" if 0> x,
L6l =ITr (xlo) = { §7" oo
=1 n

o It follows that 6 = X(n) Where x(1) < Xx(2) < -+ < X(p).
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e Example (Linear Regression): Let {x;, y;}"_; be a set of n data where

P AT . . :
X; = (x{,xQ’, ...,x/,) is a set of explanatory variables and y; € R is

the response. We assume

yi=x B+ei, € ~N(00°)
2
L oo =X P)
27102 202

logL(0) = ilog f (vilxi, B)

= —glog (2m7 = 552 Z (y, iﬁ)z

_ —glog(2na2)—%(y—xﬁ) (y - XB)

thus

f(yilxi,B) =

e We have for 6 = (B,0?)

where y = (y1, ...,y,,)T and X = (xq, ...,x,,)T.
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o By taking the derivatives and setting them to zero

ak%;éebo _ _§§§(—2XTﬁ+2XTXﬁ)::Q
Ros LX) Ly -XB) (y-XB) =0

2(0?)

@ Thus we obtain

=)
I

(xTx)fley
)
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e Example (Time Series): Consider the following autoregression
Xo = X0, Xn = aXp_1 + 0V, where V, "% N (0,1)

where 6 = (0&,0’2).
@ We have

n . . 2
L(6]%) = f (x| 0) = L o (- T @m)
i=1 2702 20

@ Thus we have

n

n
—cst——logg? =y T2
log L(6|x) = cs 5 logo ,;E— 1 502
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o It follows that

d2log L(0x) _n " (xj—axio1)?
902 2 = ot '

d2log L (6 2 &

Oga(x”x) = S Yl —w)

@ Thus we have

~ 2
2o Lim X =5 Mg (% — 8xie1)

)
Y1 X n
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Invariance

Consider 1 = g (6). We introduce the induced likelihood function L*

L (glx)= sup L(8]%).
{0:g(8)=n}

o Invariance property: If 9 is the MLE of 6 then for any function
n =g (0) then g (5) is the MLE of 7.
“Proof”: The MLE of 7 is defined by

77 =argsup sup L(6]x)
1 {6:g(6)=n}

Define

g () =1{6:2(68)=n}.

Then clearly 6 € g1 (77) and cannot be in any other preimage so

ﬁzg(af
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Definition. A sequence of estimators 5,7 = /9\,, (X1, ..., Xn) is consistent for
the parameter 0 if, for every € > 0 and every 6 € ®

lim P, ( 8, 6) < s) — 1 (equivalently lim Py (
n—oo n—oo

e Example: Consider X; Hd- N (6,1) and 9, = % 741 X; then
0, ~ N (6,1/n) and

~ e/n 1 U2
(<)~ o)

@ It is possible to avoid this calculations and use instead Chebychev's

inequality
~ 2
, E, ((9 — 9) )
> ez) <

5,,—0‘ 28) =0).

£2
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e Example of inconsistent MLE (Fisher)

o= ((1)-(5 %)

@ The likelihood function is given by

L<e>—(2m,2)nexp( 207 1o [ = )+ m])
@ We obtain
1(8) = cste—nlogo?
1 (Xt i 21y 2
= |2 — — U = i—vi) |-
@ We have
n 2 2
x5ty 5 Yl (i —yi) g
Hi=mp 4n R
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Consistency of the MLE

o Kullback-Leibler Distance: For any density f, g

D(f,g) :/f(x) log (;Ei;) dx

D(f,g)>0and D(f,f)=0.

@ We have

@ Indeed

D(f,g) = /f Iog( §>d</f (}’: )dxzo

e D(f,g) is a very useful 'distance’ and appears in many different
contexts.
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Alternative measures of similarity

@ Hellinger distance

D(f.g) = / (W— W)i&

@ Generalized information

D (f,g) :i/ ((;E’;DA—Q f (x) dx

@ Ll-norm / Total variation

D(f.g) = [ I () =g (x)|

@ L2-norm / Total variation

D(f.8) = [ (F(x) ~ ()" d
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e Suppose we have f (x) =N (x;&,7%) and g (x) = N (x; 1, 0?) .

@ We have

Er [(X—p)’]

@ So it follows that

Ef [log g (X)]

and

Er [(X =8 +2(X=8) (E— )+ — )]
4 (§-p)?

1 X —u)?
= IEf —Elog (27‘[(72) — ( 2(72]/[) ]
_ 1 2 _T2+(C—V)2
= > log (2m7 ) 202

January 2008 17 / 63



@ It follows that
D(f,g) = x) log f X)>
- 1Ef [|ogf(x>] Ef [log g (X)]

2 _
= ;{Iog<(;)+T+(fzy)—l}

o It can be easily checked that D (f,f) = 0 (less easy to show
D(f,g) >0).
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o Assume we have f (x) = Sexp(—|x|) and g (x) = N (x; u,0?).

@ We obtain
1 o]
Erflogf (X)) = —log2— [ |x|exp(~ |x]) dx
= —Iog2—/ xexp (— |x]) dx
0
= —log2—1,

Ef [logg (X)] = —% log (271(72) — riz (4_1_2”2)

o |t follows that

1 1
D(f,g) = Elog (27t0?) +ﬁ (24 u?) —log2 — 1.
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Assume the pdfs f (x| 0) have common support for all 6 and
f(x]0)#f(x]|0) for 0 £6;ie. Sg={x:f(x|0) >0} is
independent of 6.

Denote f(X\O)
1Z f
M, (6) = ;;Iog X106,

As the MLE 5,7 maximises L (6| x), it also maximizes M, (6) .

Assume X; "< f (x| 0+). Note that by the law of large numbers
M, (0) converges to

(X|9)>

f (x]6)
Fe <'°g F(x]e.) i

= /f x| 0) Iogf( 0. X
= —D(f(+]0:) .1 (:[8)) := M(8).

Hence, M, (6) ~ —D (f (-|6.),f (-|6)) which is maximized for 6*

so we expect that its maximizer will converge towards 6.,.

A.D. () January 2008
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e Assume f (x) = g (x) =N (x;0,1).
@ We approximate

1 1
Ef [logg (X)] = ~3 log (277) — 5= —1.4189

through

n

IE; [log g (X)] = —% log (277) — 2*1,7 ;X?

@ Numerical examples

n 10 100 1,000 10,000 | Ef [logg (X)]
Mean -1.4188 | -1.4185 | -1.4191 | -1.4189 | -1.4189
Variance 0.05079 | 0.00497 | 0.00050 | 0.00005 | -

Standard deviation | 0.22537 | 0.07056 | 0.02232 | 0.00696 | -

Mean, variance and standard deviation by running 1,000 Monte Carlo trials
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Theorem. Suppose

sup | M, () — M (8)] =0
0c®

and that, for every € > 0,

sup M (0) < M(6,)
0:10—0°| e

then R
6,50,
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Proof. Since 8, maximizes M, (0), we have M, (5,,) > M, (6.). Thus

M(8,) — M (@) = M,(0,)—M (@) +M(8,) — M, (8,)

M, (@) M (@) +M(0.) — M, (65)
< 2SL61p!Mn (6) — M (6)]

IN

— 0.
Thus it implies that for any § > 0, we have
Pr(M(8,) < M(8.)~0) —o0.

Now for any & > 0, there exists 6 > 0 such that |6 — 6| > & implies
M (6) < M (6,) — . Hence,

g

A.D. () January 2008
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Asymptotic Normality

@ Assuming we have 9, L 6., what can we say about v/n ([9\,, — 9*)?

e Lemma. Let s(x|6):= M’%G(Xm be the score function, then we

have for any 0
Eq[s(X|6)] =0.
@ Proof. We have

dlog f (x| 6)
/Tf(xw) dx

16)
0

of (x
9

- /f(xg

- aae/f(x]f))dxzo.
=1

of (x|0)
20

)f(xye)dx:/ dx
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@ Lemma. We also have

varg [s (X]6)] = Eg [S(X\ 9)2] = —Fy [W(XW)

302 ] =1(6)

@ Proof. This follows from

dlogf (x|0) B
/Tf(x|9)dx—0

thus by taking the derivative once more with respect to 0

B alogf (x|6)
0 = 89/ f(x|6)dx

azlogf(x\(?) dlogf (x| 0)of (x|0)
/ 962 f(X‘HH/ a0 0 =
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e Heuristic Derivation. We have for [ (8) := log L (6| x)
0 = / (5) ~ 1 (0) + (én —9*) 1" (0,)

> (-0) =5rg)

That is

L16,)
3 vn
V(B -e.) = —317(8.)
e Now remember that /' (0,) = Y71 s (X;|0+) where
Ey, [s (Xi|6+)] = 0 and vary, [s (X;|0+)] = 1 (6+) so the CLT tells us
that

\%// (0.) 2 N (0,1(6,))
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@ Now the law of large number yields

—%/“ 0.) 5 16.)

so by Slutsky's theorem
~ D 1 ~ D
Jn <9n - 9*) LAY, (o, 1(9*)> e /m/1(6:) <9n - 9*) 2 N(0,1)

@ Note that you have already seen this expression when establishing the
Cramer-Rao bound.

@ It is important to remember that depending on 6, the parameter can
be more or less easy to estimate.
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@ Similarly, we can prove that

vﬁnlﬁg(m-ﬁg_ﬁAua1y

@ We can also prove that

g (8)] /1 (8) (g (82) —g(6.)) 2 N (0,1).

@ This allows us to derive some confidence intervals.

N

January 2008
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Making the proof more rigourous

@ We have

/ (5) =1 (0,) + (ﬁn - 9*> 1" (6,) + % (@n - 9*)2 1" (8,.)
where 0, , lies between @,, and 6, so that
Vn (8, -0.) Vil (6)
n —0,) = .
' ~1r(0.) = 4 (8. - 0*)2 17 (6..0)

@ To proof the result, we need to check that

i(@ —9)2/“'(9 ) 20 As B, D 0., we ] d h
T n % *.n . As U, — 04, we Just need to prove that

117(8..4) is bounded (in probability). So we need an additional
condition of the form say for any 6

dlog f (x| 0)
393’ < C()

with Eg_ [C (X)] < oo,
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Multiparameter Case

@ The extension to the multiparameter case 6 = (01, ...,04) is
straightforward

NG (ﬁn - 9*) 2N (0,4(8,))

where J (6.) = 1 (6.) " where

2 (o) X
16 = —Ba | =00

) 9 9z \ T .
o We define Vg := (ﬁ ..... ﬁ) then if Vg (6.) #0
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o Example: If X; """ A (,02) with 6 = (, 0) then
(x=p)?

202

( (X—2V) )
s(x]0) = o |
_(lT + ( (réu)

% E 2();?4)
16 = (]E |2 lE: E;L(xﬂw?) ) :<

@ The MLE of yu is given by

log f (x|0) = cst — logo —

qu‘,_.

Y ©
N S

1 -
U= - X,-:>var[pt]:0—
~ n

3

and the MLE is indeed efficient (it reaches Cramer-Rao lower bound).
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° Assume we observe a vector X = (Xi, ..., Xi) where X; € {0,1},

21 1 X; =1 with

£ (x| Pty o Pr1) (H ><l_zpj>Xk

where p; > 0 and py :=1— ij 1 pj < 1. We have
0= (p1, .. Pk—1)-

o We have
dlogf(x|0) X Xk
ap; P Pk
Plogf(x[0) _ 5 x
op? PP
?logf (x|6) —X—g,j#/<k

ap;op; P

January 2008
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@ Recall that X; has a Bernoulli distribution with mean p; so

p;1 +p;1 p;1 p;1
1 1 1 :
Py Py "+ Py
1@)=1| . "
Py
I : Pl + et |

@ One can check that

pr(l1—p1) —pip2 “re —P1Pk—1
_ —p1p2 p2 (1 —p2 —P2Pk—1
o)yt = | _ ( ) |
—p1pk-1  —P2Pk-1 - Pk—1(1—pr-1)

January 2008 33 /63



@ Now assume we observe X!, X2, ..., X" then
log L (6] x) th log pj = Z tj log p; + tx log (1— ij>
Jj=1 Jj=1 J

. —yn i
where t; =} 1L, X/

@ So we have

op; Pi Pk ’ n

o Clearly t; is Binomial(n, p;) with variance np; (1 — p;) so p; is
efficient.

A.D. () January 2008
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Nuisance Parameters

@ Assume 6 = (01, ...,04) is the parameter vector but only the scalar 6;
is of interest whereas (62, ...,04) are nuisance parameters.

@ We want to assess how the asymptotic precision with which we
estimate 01 is influenced by the presence of nuisance parameters; i.e.
if § is an efficient estimate for 0, then how does 61 as an estimator of
01 compare to an efficient estimation of 61, say 91, which would
assume that all the nuisance parameters are known.

@ Intuitively, we should have var [51} < var [/9\1}; i.e. ignorance cannot
bring you any advantage.
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e Asymptotic variance of \/n <§,, - 9*> is 171 (6,) whose (i, )
parameter is denoted «a; ;.
e Asymptotic variance of \/n (51 = 6*,1) is |71 (041) =1/ 1.

e Theorem. We have a1 1 > 1/ 1, with equality if and only if
K12 =-""=a14=0.
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e Partition / (8) as follows

@ Now we use the fact that
1 ATy —1
I7H(0) == ' -1 f)1ZT -1 -1
T\ —X7p X pp X +TX
where T =7, ; —pT% " 1p.
o As I (0) is definite positive then £~ ! is definite positive and

1
1 =—-—2>1
1,1 = /')’1,1

with equality iff p = 0.
@ To show that T > 0 we use the fact that / (6) is p.d. and that

1
T=v"1(6) v where v = < Ty > :

January 2008
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Beyond Maximum Likelihood: Method of Moments

@ MLE estimates can be difficult to compute, the method of moments is
a simple alternative. The obtained estimators are typically not optimal
but can be used as starting values for more sophisticated methods.

e For 1 < j < d, define the j®" moment of f (x|6) where
0= (61,....0q)

@ (8) = Eg [XI] = /xff(x|9) dx
and, given X = (X1, ..., X) , the jth sample as
1o
= = X!
D‘J ”; i

@ The idea of the method of moments method is to match the
theoretical moments to the sample moments; that is we defined 8, as
the value of 0 such that

o (@,,) =ajforj=1,..d.
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e Example: Let X; Hig- N (p,0%) with 8 = (p,0?) then
ap (0) = p, ax(0) =0”+p,

1 n n
~ Z 1 ~ Z 2
K, = - Xi , Ko = — Xi
ni=3 ni=3

@ Thus we obtain

~

]1:56\1 and0'2:l/36\2—<

~

061)2.

o Note that ¢ is not unbiased.

January 2008
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@ Assume X; iy (01,02) where —co < 01 < 0 < o0 then

0, + 6 02 + 02 + 6,0
a1 (8) = 5, wp (6) = S

@ Now we solve and obtain

61 = 21— 0y,
3@:(%-@%%Hmf@@@@—m%ﬁ@—ﬁ

Since 6, > E (X) then

@:&+M%@—ﬁ)@:m— Q@—ﬁ)

@ Note that (§1§2> is NOT a function of the sufficient statistics
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o Assume X; B (p, k) with parameters k € N and p € (0,1).

@ We have
w1 (8) = kp, ap (0) = kp (1 — p) + k*p°.

@ Thus we obtain

o)

~ ~2 o~ —~
= (lxl + ] —0é2> /1,

~2 ~ ~2 o~
= o7/ (ocl + w3 —ocg).

x-)

o The estimator B € (0,1) but k is generally not an integer.
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Statistical Properties of the Estimate

o Let@ = (ay,...,&y), we have
i = h(@)

and if the inverse function g = h™! exists, then

0=g(@).

o If g is continuous at & = (&1, ..., &) then B is a consistent estimate
of 6 as &j — «a;.
o Moreover if g is differentiable at a and Eg [X??] < oo then

Vvn (5,, — 9> LAY <0, Vg (a)" V,Vg (a))

where
Va [i,j] =iy — Q.
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@ The result follows from
Vn (@, — ) 2 N (0, V,)
as
0(,'+j — CK,‘DCJ'

]Eg [ﬁj,n] = DCj, cov [&;,,,EZJ-,,,] = n

@ We have N
0, —0=g(a,) —g(an)

so using the delta method

Vn (5,, - 9) LAY (0. Vg (x)" VoVg (zx))
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@ We can also establish the n=! order asymptotic bias of the estimate as
)+ Vg (@) (@ —a)

1
(@ =) Vg () o =) 0 (1)

g(@) = gl
1
3

where \/n (&, — ) L, Z with Zg ~ N (0,%) so
n@—a) Vi (2)@—a) > 2V (a) Zs

as recall that X, = X implies ¢ (Xn) L ¢ (X).

@ Thus we have

E g (&) = g(uc)+2—1nlE [Z%V{g(,x)zz}_,_o(l)

= g(a)+tr(v2g(“>z)+o<1>. n

2n n
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Beyond Maximum Likelihood: Pseudo-Likelihood

o Assume X = (X1, ..., Xy) ~ f (x|6). Given n observations
X' ~ f(x|8), the MLE requires maximizing L (0| x).

@ However in some problems, it might be difficult to specify f (x| 8)
and we may be only able to specify say

f(xk,x]0) forl<k<I<gq

@ Based on this information and n observations, we could define the
pseudo-log-likelihood functions

i M: [ M:

log f (xs|0)

/1 (9|X) = é/l (9|

i log (x5, x¢| 0) +ah (6] %) .

Y
h(6]x) = ilg(e\ i

@ These pseudo-likelihood functions are simpler that the full likelihood.
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@ Under regularity conditions very similar to the ones for the MLE,

solving
l, (8]x) =0 for k =1,2

will provide unbiased estimates.
@ To derive the asymptotic variance, we use

0 = 1 (én)z/;(e*w(@,,—e*) 1 (6,)
) L 6.)
- w03

where 117/ (6,) T Eq, [I/'] and

1
L
Vi (80— 0.) 2N (0.Fo, [<K] " Eo. [17]).

@ We have the estimates

L1 (6.) 2> N (0, Eq, [122]), thus

1

Eo. [I{] ~ Z/ (0] x), Eq, [12] =~ 72/ (6] xi) .

n ¢

A.D. () January 2008
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e Example. Assume that X = (X1, ..., Xq) ~ N (0, %) where
[Z] (7,j) = 1if i = j and p otherwise. We are interested in estimating

0 = p.
@ There is no information about p in / (6] x) so we use h (0] x) for
a = 0. For n observations (X!, ..., X"), we have

h(0]x) = —nq(i_l)log (1—p%) — HSSW
(g—-1)(1—0)SSs
2(1=p%) ¢

where

SSw =}, i (x;'— (ix{))z, SSp = ixf.

i=1
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@ After simple but tiedous calculations, we obtain for the asymptotic

variance )
2 (1-p*)c(a.p)
ng(g—1) (14 p2)?
where
c(q.p) = (1—p°) (1+30°) +qp (—30° +8p* —3p +2)

+q2p2 (1 —p2)
whereas for MLE we have
2 (+(¢-1p’(1-p)?
ng(q—1) 1+(qg—1)p?

@ The ratio is 1 for g = 2 as expected and also 1 if p = 0 or 1. For any
other values, there is a loss of efficiency for h (0] x) which increases
as g — oo.
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Consider the following time series

2 .
Xo ~ N <0, 1‘_7“2> , Xy = aX,_1 + 0V, where V, "N (0,1)

where 0 = 02,
We can show that we have for any i = 0,1,...,n

1
f(xi|0)= WorTe exp (— 557

and we consider

’ , (1-0®) &
2h (0]x) =2 21 log f (x;| ) = cste — nlogo” — o Zx-
This pseudo-likelihood can easily be maximized

5 (=)L,

n
If one is interested in estimating «, it would be necessary to introduce
f(xi,xi+1]0).
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@ Pseudo-likelihood is widely used for Markov random fields since its
introduction by Besag (1975). In the Gaussian context, we have
X = (Xl, ...,X,,) where d is extremely large and Gaussian and the
model is specified by
IEQ [X,| X_,'] =A Z H,'J'Xj, varp [X,| X_,'] = K.
i=1
e Computing the likelihood for 8 = (A, k) can be too computatonally
intensive so the pseudo-likelihood is defined through

T(0|x) = Znilogf(x,-| 0,x-)

thus

~  x'Hx 1T (XTHX)2
AT T O TR

@ In this context, it can be show that the estimate is consistent and has
a reasonable asymptotic variance.
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Summary of Pseudo Likelihood

e In many applications, the log-likelihood / (8; yi.n) is very complex to
compute.

o Instead we maximize a surrogate function /s (6; y1.n).

o If possible, we pick this function such that if 8" is the ‘true’
parameter then

Eg- (s (6: Y1:n))
is maximized for 6 = 6™ and solving

Vis @n: Yl:n) =0

is ‘easy’.
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@ Under regularity assumptions, we have
Vi (8, —67) = N (0.6, (69)
where

with

J
H

>

(0) = V{VIs(6; Y1)},
(6) = E{V?s(6;Yin)}.

>

@ When /s (6; Y1.n) = 1(0; Y1.n) and the model is correctly specified
then G, (0) is the Fisher information matrix.

e When /s (6; Yi1.n) # 1(6; Y1:n), we typically lose in terms of efficiency.
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Application to General State-Space Models

o Consider the following general state-space model. Let {Xy},-; be an
Markov process defined by

X1~ ptg and Xi| (X1 = xu—1) ~ fo (*[ xk—1) -

@ Then we have that for any n > 0

n

po (xi:n) = po(x1) [ po (| ¥1k-1)
k=3

= g ) TT Ao xelxen)

k=2
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@ We are interested in estimating 6 from the data but we do not have
access to {Xi},~; . We only have access to a process { Y },~; such
that, conditional upon {Xx},~, the observations are statistically
independent and -

Yiel (X = xi) ~ gp (] xk) -

@ That is we have for any n > 0

n n
Po (Y1:n| X1:0) = HP@ (vl x) = ng SARAE
k=1 k=1
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o Linear Gaussian model. Consider say for |a| <1

2 ..
X1 ~ N <0, 1(_Ta2> , Xk = aXg_1 + oV where V S N(O, 1),
Yo = B+ X+ TW where W, % N (0,1).

o In this case we have say § = (B, 02, &, 7%) and

fo (x| xk—1) = N (x; axe—1,0%),
g (yk|x) = N (yi;B+xk,7°).

January 2008 55 / 63



e Stochastic Volatility model. Consider say for |a| < 1

02

"1 —a?

Yo = PBexp(Xc/2) Wi where Wi < A (0,1).

X1 ~ N <0 > . Xk = aXg_1 + oV where Vi S N(O, 1),
o In this case we have say 6 = (B,0?,a) and

fo (x| xk—1) = N (xu;ax-1,0°),
8o (yk|x) = N (vi:0. % exp (xi)) -

January 2008



@ In this case, the likelihood of the observations y1., is given by

Pe (yl:n) = /PG (Xlznr)/l:n) Xm:n

= /pG (y1:n| Xl:n) Po (X1:n> dxi:n

/(ﬁge()ﬂxk)) (P‘e (X1)I£If9(xk|xk1)> dxt.p.
k=1 k=2

@ If the model is linear Gaussian or finite state-space, we can compute
the likelihood in closed-form but the maximization is not trivial.
Otherwise, we cannot.
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Pairwise likelihood for state-space models

@ We consider the following pseudo-likelihood for m > 1

n—1min{i+m,n}

s@yn) =11 TI peiy)

i=1  j=i+1

where
po (yi.yj) = /ge(inXi)ge(}’j|Xj)Pe (xi, xj) dxjdx;.

@ As an alternative, if n = pm, we could maximize

9y1n Hp9< 11m+1/m)'
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@ For the two models discussed earlier, it is possible to compute exactly
po (i, xj) as
po (xi, Xj) = pg (xi) po (xj| xi)

where

po () = N<x,, | >
po (] x) = N(}g,ucf i, 02 ;_ )

@ In a general case, we could approximate py (y;, yj) through Monte
Carlo

(YMYJ de(yl‘x)gf)()/]’)()
where (Xi’, XJ’) ~ pg (xi, X;) .
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@ Under regularity assumptions, we have
//5 (9;}/1;”) Po* <y1:n) dyi:n

which is maximum in 6% so maximizing this pseudo-likelihood method
makes sense.

@ To prove it, note that
n—1 min{i+m,n}
sOyin) =Y, Y, logps(yiy)
i=1  j=i+l1
and
/log po (¥i.¥;) -Po- (Y1:n) dy1:n
/log pe (¥i,¥j) -per (yi, y;) dyidy;

which is maximum in 6 = 8™
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Application

o Consider
02 i.i.d
X1 ~ N <0, 1—0(2> , Xk = aXk_1+ oV, where V|, '~ N(O, ].),

Yo = B+ X+ TWy where W, 5 AN (0,1).

where 6 = (B, 02, a, T°).

@ In this case, we can directly establish not only py (x;, x;) but pg (yi, y;)

Yi) o N p T+ 1512 “j_iliﬁ
Yj B) \ Wi, 24
1—a2 1—a?

@ For m=2,....,20 we compare the performance of @MLE and §MPL
where the likelihood and pseudo-likelihood are maximized using a
simple gradient algorithm (EM could be used).

@ 1,000 time series of length n = 500 with ﬁ* =0.1, ™ =1.0,

a* =0.95 and ¢* = 0.55 are simulated.
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3(2) 7(6) 7(12) 7(20) A
true OmpL OmpL OmpL OmpL Ome

g 0.1 |0.108 0.108 0.109 0.109 0.102

(0.488) | (0.489) | (0.4908) | (0.492) | (0.481)

T 1.0 | 0.994 0.997 0.990 0.981 0.995

(0.066) | (0.048) | (0.054) | (0.068) | (0.046)

a 0.95 | 0.941 0.941 0.939 0.937 0.941

(0.033) | (0.020) | (0.022) | (0.024) | (0.020)

o 0.55 | 0.535 0.551 0.560 0.571 0.554

(0.160) | (0.064) | (0.072) | (0.087) | (0.061)
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Now you should...

@ be able to compute MLE estimate for rather complex models,
@ be able to compute the asymptotic variance of the MLE estimate,

@ be able to derive the expression of the asymptotic variance of simple
estimates different from MLE.
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