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Introduction

Bayesian model: likelihood f (x j θ) and prior distribution π (θ).

Bayesian inference is based on the posterior distribution

π ( θj x) = π (θ) f (x j θ)
π (x)

where
π (x) =

Z
Θ

π (θ) f (x j θ) dθ.

Many point estimates require computing additional integrals, e.g.

E [ ϕ (θ)j x ] =
Z

Θ
ϕ (θ)π ( θj x) dθ

AD () March 2008 2 / 94



Assume θ = (θ1, θ2) 2 Θ1 �Θ2 then, if θ2 are some nuisance
parameters, we are only interested in the marginal posterior
distribution

π ( θ1j x) =
Z

Θ2

π ( θ1, θ2j x) dθ2.

Assume Y j θ � g (y j θ) then, given the observations x , the predictive
distribution is

π (y j x) =
Z

Θ
g (y j θ)π ( θj x) dθ.
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Athlough Bayesian inference is conceptually simple, it requires being
able to compute potentially high-dimensional integrals.

In previous lectures, we have discussed mostly examples where these
calculations could be performed analytically. However, analytic
tractability seriously restricts the class of models we can work with.

Approximations such as the Laplace�s approximation and BIC are
rather crude and require large sample sizes. Consequently until the
beginning of the 90�s, Bayesian inference for all but simple models
could not be implemented

In 1990, Markov chain Monte Carlo (MCMC) were introduced in
statistics and have completely revolutionized Bayesian statistics.
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MCMC are a class of powerful simulation-based algorithms that
allows us to sample (approximately) from any high-dimensional
probability distribution.

The availability of these algorithms has truly revolutionized many
�elds, allowing the statistician/scientist to �t complex models.

MCMC are now widely used in bioinformatics, econometrics, applied
statistics, genetics, machine learning etc.

Among the top 10 most cited mathematicians over the past 10 years,
5 of them are Bayesian statisticians.
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Introduction to Monte Carlo

Assume you are interested in approximating an high-dimensional pdf
π ( θj x).
A Monte Carlo approximation consists of sampling a large number N
of i.i.d. random variables θ(i ) � π ( θj x) and build the following
approximation

bπN ( θj x) = 1
N

N

∑
i=1

δ
θ(i )
(θ)

where δa (θ) is the delta-Dirac mass which is such thatZ
A

δa (θ) dθ =

�
1 if a 2 A,
0 otherwise.

This approach is in contrast with what is usually done in parametric
statistics, i.e. start with samples and then introduce a distribution
with an algebraic representation for the underlying population.
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Figure: Normal N (0, 1) and Monte Carlo approximation using N = 50 samples
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Figure: Bivariate non-standard probability density function
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Figure: Scatterplot of N = 1000 random samples
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You can think of the Monte Carlo method as an �clever�discretization
of the space where automatically the samples concentrate themselves
in regions of high probability mass.

An alternative deterministic approximation would consist of
discretizing Θ using a regular grid and then computing

eπN (θ) = ∑N
i=1 π

�
θ(i )
��� x� δ

θ(i )
(θ)

∑N
j=1 π

�
θ(j)
��� x� .

Such an approach will be extremely ine¢ cient in high-dimensional
spaces. If Θ = Rd and you discretize say each dimension using p
values, then the total number of points in the grid will be pd . Given
we are routinely interested in problems where d = 100, even the
crudest discretization p = 2 would require 2100 >> 1 points.
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Properties of Monte Carlo Estimates

Now consider the problem of estimating

Eπ(ϕ) =
Z

Θ
ϕ (θ)π ( θj x) dθ

using Monte Carlo where ϕ : Θ ! R.
We substitute to π ( θj x) its Monte Carlo approximation bπN and
obtain

EbπN (ϕ) =
Z

Θ
ϕ (θ)

 
N

∑
i=1

1
N

δ
θ(i )
(θ)

!
dθ =

N

∑
i=1

1
N

Z
Θ

ϕ (θ) δ
θ(i )
(θ) dθ

=
1
N

N

∑
i=1

ϕ(θ(i )).

This estimate is unbiased

Efθ(i )g
�
EbπN (ϕ)� = 1

N

N

∑
i=1

E
θ(i )

�
ϕ(θ(i ))

�
= Eπ(ϕ).
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The variance is given by

Vfθ(i )g
�
EbπN (ϕ)� = 1

N
Vπ (ϕ(θ)) .

The CLT yields

p
N
�
EbπN (ϕ)�EπN (ϕ)

� d! N (0,Vπ (ϕ(θ))) .

The most remarkable property of the MC estimate is that the rate of
convergence is independent of the dimension of Θ.
It is sometimes said that the MC beats the curse of dimensionality.
This is not quite true.
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MC can easily be used to compute marginal distributions. We
approximate

π ( θ1j x) =
Z

Θ2

π ( θ1, θ2j x) dθ2 �
Z

Θ2

bπN ( θ1, θ2j x) dθ2

=
1
N

Z N

∑
i=1

δ
θ
(i )
1 ,θ

(i )
2
(θ1, θ2) dθ2

=
1
N

N

∑
i=1

δ
θ
(i )
1
(θ1) = bπN ( θ1j x)

Similarly the predictive distribution can be approximated easily

π (y j x) =
Z

Θ
g (y j θ)π ( θj x) dθ �

Z
Θ
g (y j θ) bπN ( θj x) dθ

=
1
N

N

∑
i=1
g
�
y j θ(i )

�
.

However, the marginal likelihood π (x) cannot be estimated easily
using samples from π ( θj x)!
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Sampling from complex distributions

There are standard methods to sample from classical distributions
such as Beta, Gamma, Normal, Poisson etc. We will not detail them
here.

We are interested in problems where π ( θj x) is not standard and is
only known up to a normalizing constant; i.e.

π ( θj x) = π (θ) f (x j θ)
π (x)

where π (θ) f (x j θ) is known pointwise whereas π (x) is unknown.

There is no method available able to sample from any high
dimensional probability distribution.
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Accept-Reject Method

The rejection method relies on a so-called proposal distribution
q ( θj x) which is selected such that it is easy to sample from it.

We have q ( θj x) ∝ q� ( θj x) where q� ( θj x) is known pointwise.
We need q� ( θj x) to �dominate�π (θ) f (x j θ); i.e.

C = sup
θ2Θ

π (θ) f (x j θ)
q� ( θj x) < +∞

This implies π ( θj x) > 0 ) q� ( θj x) > 0 but also that the tails of
q ( θj x) must be thicker than the tails of π ( θj x).
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Consider M � C . Then the accept/reject procedure proceeds as follows.
1 Sample θ��q ( θj x) and U � U [0, 1].
2 If U < π(θ�)f ( x jθ�)

Mq�( θ�jx ) then return θ�; otherwise return to step 1.
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Proof of Validity

We have for any θ 2 Θ(= R, this is only to simplify notation)

Pr (θ� � θ and θ� accepted)

=
Z

Θ

Z 1

0
I (θ� � θ) I

�
u � π (θ�) f (x j θ�)

Mq� ( θ�j x)

�
q ( θ�j x)� 1dudθ�

=
Z θ

�∞

π (θ�) f (x j θ�)
Mq� ( θ�j x) q ( θ�j x) dθ�

=

R θ
�∞ π (θ�) f (x j θ�) dθ�

M
R

Θ q
� ( θ�j x) dθ�

.

The probability of being accepted is simply

Pr (θ� accepted) =

R
Θ π (θ�) f (x j θ�) dθ�

M
R

Θ q
� ( θ�j x) dθ�

=
π (x)

M
R

Θ q
� ( θ�j x) dθ�

.

AD () March 2008 17 / 94



Finally, we have

Pr ( θ� � θj θ� accepted) =
Pr (θ� � θ and θ� accepted)

Pr (θ� accepted)

=

R θ
�∞ π (θ�) f (x j θ�) dθ�

π (x)

=
Z θ

�∞
π ( θ�j x) dθ�.
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The acceptance probability Pr (θ� accepted) is a measure of e¢ ciency.

The number of trials before accepting a candidate follows a geometric
distribution

Pr
�
k th proposal accepted

�
= (1� ρ)k�1 ρ

where ρ =

 
π (x)

M
R

Θ q
� ( θ�j x) dθ�

!

thus its expected value is

∞

∑
k=0

k (1� ρ)k�1 ρ =
1
ρ
=

1
Pr (θ� accepted)

.
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Toy Example

Consider the following distribution

π ( θj x) ∝ exp
�
�θ2/2

� �
sin (θx)2 + 3 cos (θx)2 sin (4x)2 + 1

�
We use q� ( θj x) = q� (θ) = exp

�
�θ2/2

�
, that is

q (θ) = N (θ; 0, 1) .

This proposal is easy to sample and

exp
�
�θ2/2

� �
sin (θx)2 + 3 cos (θx)2 sin (4x)2 + 1

�
exp

�
�θ2/2

� � 1+ 3+ 1 = 5
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Figure: 5q� (θ) and unnormalized target distribution

exp
�
�θ2/2

� �
sin (θx)2 + 3 cos (θx)2 sin (4x)2 + 1

�
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Using the Prior as Proposal

A simple choice consists of selecting q ( θj x) = q� ( θj x) = π (θ).

This is possible if the likelihood is upper bounded as

sup
θ2Θ

π (θ) f (x j θ)
q� ( θj x) = sup

θ2Θ
f (x j θ) � M

In this case, expected value before acceptance is ρ�1 where

ρ =

R
Θ π� (θ�) f (x j θ�) dθ�

M
R

Θ q
� ( θ�j x) dθ�

=
π (x)
M

and provides us with an estimate of the marginal likelihood.
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Ine¢ ciency of the Accept-Reject Strategy

Consider θ � N
�
0, τ2

�
and Xi j θ � N

�
θ, σ2

�
.

In this case, we have

π ( θj x1:n) = N
�
θ;m, υ2

�
where υ2 =

� 1
τ2
+ n

σ2

��1
, m = υ2

�
∑n
i=1 xi
σ2

�
and

π (x1:n) =
υ

(2πσ2)n/2 τ
exp

�
m2

2υ2
� ∑n

i=1 x
2
i

2σ2

�
.

whereas the likelihood is bounded by
�
2πσ2

��n/2 so

ρ =
π (x1:n)

M
=

υ

τ
exp

�
m2

2υ2
� ∑n

i=1 x
2
i

2σ2

�
.

For τ2 >> 1 and σ2 << 1, we have υ2 � σ2

n , m � x

ρ � σ2

nτ
exp

0@n
�
x2 � x2

�
2σ2

1A! 0
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Application to Genetic Linkage Model

Consider the following genetic linkage model where observations

(X1,X2,X3,X4) �M
�
n;
1
2
+

θ

4
,
1
4
(1� θ) ,

1
4
(1� θ) ,

θ

4

�
with θ 2 (0, 1) .
We set an uniform prior π (θ) = U [0, 1] (θ) and want to estimate
π ( θj x1:4) where (x1, x2, x3, x4) = (125, 18, 20, 34).

We have

π ( θj x1:4) ∝ (2+ θ)x1 (1� θ)x2+x3 θx41(0,1) (θ) .

This univariate distribution is not standard and we sample from it
using Accept-Reject.
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We propose to use q ( θj x) = q� ( θj x) = U [0, 1] (θ) .
To apply accept-reject, we need to be able to upper bound over
θ 2 (0, 1) the function

g (θ) = (2+ θ)x1 (1� θ)x2+x3 θx4 .

Using a simple optimization algorithm (direct search or EM), we get

g (θ) � g (θmax)

where θmax = 0.6268 and g (θmax) = exp (67.3841) .
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Figure: Histogram approximation of π ( θj x1:4) (left) and histogram
approximation of waiting time distribution before acceptance (mean 7.8) (right)

AD () March 2008 26 / 94



Limitations of Accept-Reject

For complex problems, it will be impossible to bound the ratio
between the (unnormalized) target and the proposal.

Even if it is possible to obtain such a bound bound, the
computational complexity typically increases exponentially fast with
the dimension of the problem.

We need to use more powerful techniques.
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The Gibbs Sampler

The Gibbs sampler is an iterative popular method to sample from
high dimensional probability distributions which has found numerous
applications in Bayesian statistics.

For sake of simplicity, consider �rst that we are interested in sampling
from π (θ) where θ = (θ1, θ2) 2 Θ1 �Θ2.

The Gibbs sampler relies on the fact that, although it is impossible to
sample from π (θ), it is often possible to sample from the conditional
distributions

π ( θ1j θ2) and π ( θ2j θ1) .
Note that here π (θ) denotes a generic pdf and could be the posterior!
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Two Component Gibbs Sampler aka Data Augmentation

To sample from π (θ1, θ2), the Gibbs sampler generates a Markov

chain
�

θ
(i )
1 , θ

(i )
2

�
as follows.

Initialization: Set
�

θ
(0)
1 , θ

(0)
2

�
deterministically or randomly.

Iteration i ; i � 1.
Sample θ

(i )
1 � π

�
θ1 j θ(i�1)2

�
Sample θ

(i )
2 � π

�
θ2 j θ(i )1

�
.
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Under weak assumptions, after many such iterations (usually several
hundred or thousand are required), the sampling distribution of�

θ
(i )
1 , θ

(i )
2

�
will approximate closely π (θ1, θ2) .

We should discard the �rst hundred/thousand simulated samples, say
N0, whose distribution might be �far�from π (θ1, θ2).

The samples
�

θ
(i )
1 , θ

(i )
2

�
are not independent but it is still valid to

consider the approximation

bπN (θ1, θ2) = 1
N0 �N + 1

N

∑
i=N0

δ�
θ
(i )
1 ,θ

(i )
2

� (θ1, θ2) .
Note that a deterministic version of this algorithm:
θ
(i )
1 = argmaxπ

�
θ1j θ(i�1)2

�
and θ

(i )
2 = argmaxπ

�
θ2j θ(i )1

�
would

not converge typically to the global maximum of π (θ1, θ2) .
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Toy Example

Consider the distribution

π (θ1, θ2) = N
�
(θ1, θ2) ,

�
0
0

�
,

�
1 ρ
ρ 1

��
∝ exp

�
� 1
2 (1� ρ2)

�
θ21 � 2ρθ1θ2 + θ22

��
where jρj < 1.
To sample from π (θ1, θ2), the Gibbs sampler would sample
iteratively and successively from

π ( θ1j θ2) = N
�
θ1; ρθ2, 1� ρ2

�
,

π ( θ2j θ1) = N
�
θ2; ρθ1, 1� ρ2

�
.

As jρj ! 1 the algorithm will converge more slowly.
Generally speaking, the more correlated θ1 and θ2 are the slowler the
algorithm converges.
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Figure: Estimation of π (θ1) = N (θ1, 0, 1) using the Gibbs sampler for
N = 5000 (left), 25000 (center) and 100000 (right) with N0 = 1000 and
ρ = 0.2 (top), ρ = 0.999 (bottom)
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Application to Genetic Linkage Model

In this example, we have

(X1,X2,X3,X4) �M
�
n;
1
2
+

θ

4
,
1
4
(1� θ) ,

1
4
(1� θ) ,

θ

4

�
and the target posterior distribution is given by

π ( θj x1:4) ∝ (2+ θ)x1 (1� θ)x2+x3 θx41(0,1) (θ) .

We cannot use the Gibbs sampler in this case.
Now assume we introduce the missing data (Z1,Z2) such that
Z1 + Z2 = X1 and

(Z1,Z2,X2,X3,X4) �M
�
n;
1
2
,

θ

4
,
1
4
(1� θ) ,

1
4
(1� θ) ,

θ

4

�
.

This complete likelihood is given by

g (z1:2, x2:4j θ) ∝ θz2+x4 (1� θ)x2+x3 .
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In the EM, we introduced these missing data to ease the
maximization of the likelihood. Here we use them to ease the
simulation from the posterior.

We will now use the Gibbs sampler to generate sample from

π ( θ, z1, z2j x1:4) .

To implement the Gibbs sampler, we need to be able to sample from
π ( θj x1:4, z1:2) and π (z1:2j x1:4, θ).

We have

π ( θj x1:4, z1:2) ∝ g (z1:2, x2:4j θ)π (θ) ∝ θz2+x4 (1� θ)x2+x3

= Beta (θ; z2 + x4 + 1, x2 + x3 + 1) .

We have

π (z1:2j x1:4, θ) =M
 
z1:2; x1,

1
2

1
2 +

θ
4

,
θ
4

1
2 +

θ
4

!
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Figure: Estimation of π ( θj x1:4) using the Gibbs sampler for N = 5000 (left),
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It is beyond the scope of this course to establish convergence results
for the Gibbs sampler.

Proposition: If
�

θ
(i�1)
1 , θ

(i�1)
2

�
� π (θ1, θ2) then�

θ
(i )
1 , θ

(i )
2

�
� π (θ1, θ2) .

Proof. The joint distribution of
��

θ
(i�1)
1 , θ

(i�1)
2

�
,
�

θ
(i )
1 , θ

(i )
2

��
is

given by

π
�

θ
(i�1)
1 , θ

(i�1)
2

�
π
�

θ
(i )
1

��� θ
(i�1)
2

�
π
�

θ
(i )
2

��� θ
(i )
1

�
so Z Z

π
�

θ
(i�1)
1 , θ

(i�1)
2

�
π
�

θ
(i )
1

��� θ
(i�1)
2

�
π
�

θ
(i )
2

��� θ
(i )
1

�
dθ
(i�1)
1 dθ

(i�1)
2

=
Z

π
�

θ
(i�1)
2

�
π
�

θ
(i )
1

��� θ
(i�1)
2

�
π
�

θ
(i )
2

��� θ
(i )
1

�
dθ
(i�1)
2

=
Z

π
�

θ
(i )
1 , θ

(i�1)
2

�
π
�

θ
(i )
2

��� θ
(i )
1

�
dθ
(i�1)
2

= π
�

θ
(i )
1

�
π
�

θ
(i )
2

��� θ
(i )
1

�
= π

�
θ
(i )
1 , θ

(i )
2

�
.
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Gibbs Sampler

We can extend straightforwardly the Gibbs sampler to the case where
θ = (θ1, ..., θp) . To sample from π (θ), the Gibbs sampler generates

a Markov chain
�

θ
(i )
1 , θ

(i )
2 , ..., θ

(i )
p

�
as follows.

Initialization: Set
�

θ
(0)
1 , θ

(0)
2 , ..., θ

(0)
p

�
deterministically or randomly.

Iteration i ; i � 1.
For k = 1 to p

Sample θ
(i )
k � π

�
θk j θ

(i )
�k

�
where

θ
(i )
�k =

�
θ
(i )
1 , ..., θ

(i )
k�1, θ

(i�1)
k+1 , ..., θ

(i�1)
p

�
.
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Bayesian Hierarchical Models

Hierarchical models allow us to combine information and to combine
the results of several studies addressing a set of related research
hypotheses (meta-analysis).

Consider a set of experiments/studies, j = 1, ..., J, in which
experiment j has data (vector) yj and parameter (vector) θj , with
likelihood p (yj j θj ). [the method applies equally well to
nonexperimental data].

If no observation -other than the data fyjg- is available to distinguish
any of the θj�s from any of the others, and no ordering/grouping of
the parameters can be made, one must assume symmetry among the
parameters in their prior; i.e. the parameters (θ1, θ2, ..., θJ ) should be
exchangeable. This means that p (θ1, θ2, ..., θJ ) is invariant to
permutation of the indexes (1, 2, ..., J).
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Exchangeability

The simplest form of exchangeability is

p ( θ1, θ2, ..., θJ j φ) =
J

∏
j=1
p ( θj j φ) .

In general φ is unknown and we consider it random so that

p (θ1, θ2, ..., θJ ) =
Z  J

∏
j=1
p ( θj j φ)

!
p (φ) dφ.

As a consequence, we have

p ( θj j y1, y2, ..., yJ ) 6= p ( θj j yj ) .

This model allows us to borrow information from di¤erent but related
experiments.
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Example: Study of the e¤ectiveness of cardiac treatments

Assume we have J hospitals.

Let yj be data corresponding say to the number of patients having
survived a cardiac treatment.

Let θj be the survival probability for patients in hospital j .

For example, we could have a model like

Yj j (nj , θj ) � Bin (nj , θj )

and
θj � Beta (α, β) .

This model re�ects the fact that the θj are di¤erent but related to
each other.

Further, we put a prior distribution on the hyperparameters (α, β).
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Example: Baseball data

We have the statistics of J = 17 players in pre-season exhibition
matches.

The data yj for the player j corresponds to the number of home runs
in nj times at the bat modelled through

Yj j (nj , pj ) � Bin (nj , pj ) .

j McGw. Sosa Gri¤ey Castilla Gonz. Gala. Palm. Vaughn
yj 7 9 4 7 3 6 2 10
nj 58 59 74 84 69 63 60 54

j Bond Bag. Piaz. Thom. Thom. Mart. Wal. Burks Buhner
yj 2 2 4 3 2 5 3 2 6
nj 53 60 66 66 72 64 42 38 58
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Following Efron & Morris (JASA, 1975), we de�ne

Xj = fnj (Yj/nj )

where
fa (u) = a1/2 sin�1 (2u � 1) .

This is a variance stabilising transformation. It can be shown that we
now have approximately

Xj j θj � N (θj , 1)

where
θj = fnj (pj ) .

Remark: We only use this transformation to compare our results to
the James-Stein estimate discussed later during the lectures.
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Bayesian Model for Baseball data

We set an exchangeable prior distribution of the form

θj j
�
µ, τ2

� i.i.d.� N
�
µ, τ2

�
and

π
�
µ, τ2

�
= π (µ)π

�
τ2
�

with

π
�
τ2
�
= IG

�
τ2;

a
2
,
b
2

�
, π (µ) ∝ 1.

where a = b = 0.001.

Note that if you are a specialist of baseball, an exchangeable prior
might not be appropriate.
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The full posterior distribution is given by

π
�

µ, τ2, θ1:J
�� x1:J

�
∝ π

�
µ, τ2

� J

∏
j=1

π
�

θj j µ, τ2
� J

∏
j=1
f (xj j θj )

∝
1

τJ+a+2
exp

 
� b
2τ2

�
J

∑
j=1

 
(θj � µ)2

2τ2
+
(xj � θj )

2

2

!!

This distribution does not admit a closed-form expression and we are
going to use the Gibbs sampler by decomposing the parameter space
in 3 blocks µ, τ2 and θ1:J .

The Gibbs sampler will require being able to be able to sample from
π
�

µj x1:J , τ
2, θ1:J

�
, π
�

τ2
�� x1:J , µ, θ1:J

�
and π

�
θ1:J j x1:J , µ, τ

2
�
.
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Gibbs Sampling for Baseball Data

Full conditional distribution for µ

π
�

µj x1:J , τ
2, θ1:J

�
∝ exp

 
�

J

∑
j=1

(θj � µ)2

2τ2

!

= N
 

µ; J�1
J

∑
j=1

θj , J�1τ2
!
.

Full conditional distribution for τ2

π
�

τ2
�� x1:J , µ, θ1:J

�
∝

1
τJ+a+2

exp

 
� b
2τ2

�
J

∑
j=1

(θj � µ)2

2τ2

!

= IG
 

τ2;
J + a
2
,
b+∑J

j=1 (θj � µ)2

2

!
.
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Full conditional distribution for π
�

θ1:J j x1:J , µ, τ
2
�

π
�

θ1:J j x1:J , µ, τ
2� = J

∏
j=1

π
�

θj j xj , µ, τ2
�

where

π
�

θj j xj , µ, τ2
�

∝ exp

 
�
 
(θj � µ)2

2τ2
+
(xj � θj )

2

2

!!

= N
�

θj ;
µ+ τ2xj
1+ τ2

,
τ2

1+ τ2

�
.

These three distributions can be sampled using standard procedures
and the simulated samples

�
µ(i ), τ2(i ), θ

(i )
1:J

�
are (asymptotically)

distributed from the posterior.

We applied the Gibbs sampling using N = 10000 iterations and
compared it to a simpler empirical Bayesian analysis.
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Empirical Bayesian Analysis for Baseball Data

In an empirical Bayesian analysis of the data, we just obtain a point
estimate

�bµ, bτ2� of �µ, τ2� using the data.
For example, given that

f
�
xj j µ, τ2

�
=

Z
f (xj j θj )π

�
θj j µ, τ2

�
dθj

= N
�
xj ; µ, 1+ τ2

�
when can select

bµ = 1
J

J

∑
j=1
xj , bτ2 = 1

J

J

∑
j=1
(xj � bµ)2 � 1

This is not a Bayesian calculation because it is not based on any
speci�ed full probability model. The selection of the point estimate is
somewhat arbitrary (although principled) and no uncertainty about
µ, τ2 is taken into account.
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Moreover, the distribution

π
�

θj j xj , bµ, bτ2� = N
 

θj ;
bµ+ bτ2xj
1+ bτ2 ,

bτ2
1+ bτ2

!

are necessarily Gaussian and we somehow use the data twice.

The main advantage of the empirical Bayes approach is that it is very
easy to implement compared to the �full�Bayesian approach which
relies no MCMC.

AD () March 2008 48 / 94



Figure: Posterior distributions π
�

θj
�� x1:J

�
(dashed line) estimated using MCMC

and π
�

θj
�� xj , bµ,cτ2� (solid line) estimated using Empirical Bayes.
AD () March 2008 49 / 94



The estimate of π ( θj j xj ) was not obtained by smoothing the
histogram of the simulated values θ

(i )
j but we use the fact that

π ( θj j x1:J ) =
Z

π
�

θj j xj , µ, τ2
�

π
�

µ, τ2
�� x1:J

�
dµdτ2

So using the Monte Carlo approximation of π
�

µ, τ2
�� x1:J

�
bπ �µ, τ2

�� x1:J
�
=

1
N �N0 + 1

N

∑
i=N0

δµ(i ),τ2(i )
�
µ, τ2

�
we obtain

bπ ( θj j x1:J ) =
1

N �N0 + 1
N

∑
i=N0

π
�

θj j xj , µ(i ), τ2(i )
�

=
1

N �N0 + 1
N

∑
i=N0

N
 

θj ;
µ+ τ2(i )xj
1+ τ2(i )

,
τ2(i )

1+ τ2(i )

!
.

This is a so-called Rao-Blackwellised estimate.
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Example: Nuclear Pump Data

Multiple failures in a nuclear plant

Pump j 1 2 3 4 5
# Failures pj 5 1 5 14 3
Times tj 94.32 15.72 62.88 125.76 5.24
Pump j 6 7 8 9 10

# Failures pj 19 1 1 4 22
Times tj 31.44 1.05 1.05 2.10 10.48

Model: Failures of the j�th pump follow a Poisson process with
parameter λj (1 � j � 10). For an observed time tj , the number of
failures pj is thus a Poisson P(λj tj ) random variable.

The unknown parameters consist of θ = (λ1, . . . ,λ10, β).
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Hierarchical model

λj j (α, β) iid� G(α, β) and β � G(γ, δ)

with α = 1.8 and γ = 0.01 and δ = 1.

The posterior distribution is proportional to

π (λ1:10, βj p1:10, t1:10) ∝ π (β)
10

∏
j=1

π (λj j β)
10

∏
j=1
f (pj j λj , tj )

∝ βγ�1 exp(�δβ)
10

∏
j=1

βαλα�1
j exp(�βλj )

10

∏
j=1
(λj tj )pj exp(�λj tj )

This multidimensional distribution is rather complex. It is not obvious
how the rejection method or importance sampling could be used in
this context.
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The conditionals have a familiar form

π (λ1:10j p1:10, t1:10, β) =
10

∏
j=1

π (λj j pj , tj , β)

where

π (λj j pj , tj , β) ∝ λ
pj+α�1
j exp(�(tj + β)λj )g

= G(λj ; pj + α, tj + β)

For the hyperparameter

π (βj p1:10, t1:10,λ1:10) ∝ β10α+γ�1 exp(�
 

δ+
10

∑
j=1

λj

!
β)

= G(β;γ+ 10α, δ+
10

∑
j=1

λj ).

Gibbs sampling is once more easily feasible in such cases.
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Figure: Histogram approximations of π
�

λj
�� t1:10, p1:10

�
obtained using

N = 50, 000 and N0 = 1000.
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Figure: Histogram approximation of π ( βj p1:10, t1:10) .

The posterior distribution of the hyperparameter is quite di¤use.
Hence the results we obtained using a full Bayesian approach are
signi�cantly di¤erent from an empirical Bayes approach.
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Limitation of Gibbs Sampling

The Gibbs sampler requires sampling from the full conditional
distributions

π ( θk j θ�k ) .
For many complex models, it is impossible to sample from several of
these �full� conditional distributions.

Even if it is possible to implement the Gibbs sampler, the algorithm
might be very ine¢ cient because the variables are very correlated or
sampling from the full conditionals is extremely expensive/ine¢ cient.
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Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is an alternative algorithm to
sample from any probability distribution π (θ) known up to a
normalizing constant.

This can be interpreted as the basis of all MCMC algorithms: It
provides a generic way to build a Markov kernel admitting π (θ) as an
invariant distribution.

The Metropolis algorithm was named the �Top algorithm of the 20th
century�by computer scientists, mathematicians, physicists.
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Introduce a proposal distribution/kernel q
�

θ0
�� θ
�
, i.e.Z

q
�

θ0
�� θ
�
dθ0 = 1 for any θ.

The basic idea of the MH algorithm is to propose a new candidate θ0

based on the current state of the Markov chain θ.

We only accept this algorithm with respect to a probability α
�
θ, θ0

�
which ensures that the invariant distribution of the transition kernel is
the target distribution π (θ).
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Initialization: Select deterministically or randomly θ(0).

Iteration i ; i � 1:
Sample θ� � q

�
θj θ(i�1)

�
and compute

α
�

θ(i�1), θ�
�
= min

0@1, π (θ�) q
�

θ(i�1)
��� θ�
�

π
�

θ(i�1)
�
q
�

θ�j θ(i�1)
�
1A .

With probability α
�

θ(i�1), θ�
�
, set θ(i ) = θ�; otherwise set

θ(i ) = θ(i�1).

Simulated annealing is an extremely popular optimization algorithm:
it is a simple nonhomogeneous version of MH where at iteration i the
target distribution is πi (θ) ∝ [π (θ)]γi where γi is an increasing
sequence going to ∞.
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It is not necessary to know the normalizing constant of π (θ) to
implement the algorithm.

This algorithm is extremely general: q
�

θ0
�� θ
�
can be any proposal

distribution. So in practice, we can select it so that it is easy to
sample from it.

There is much more freedom than in the Gibbs sampler where the
proposal distributions are �xed once we have partitioned the vector
parameter.
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Random Walk Metropolis

The original Metropolis algorithm corresponds to the following choice
for q

�
θ0
�� θ
�

θ0 = θ + Z where Z � g ;
i.e. this is a so-called random walk proposal.

The distribution g (z) is the distribution of the random walk
increments Z and

q
�

θ0
�� θ
�
= g

�
θ0 � θ

�
) α

�
θ, θ0

�
= min

 
1,

π
�
θ0
�
g
�
θ � θ0

�
π (θ) g

�
θ0 � θ

� ! .
If g (z) = g (�z) - e.g. Z � N (0,Σ)- then

α
�
θ, θ0

�
= min

 
1,

π
�
θ0
�

π (θ)

!
.
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There is no clear guideline how to select the proposal distribution.

When the variance of the random walk increments (if it exists) is very
small then the acceptance rate can be expected to be around 0.5-0.7.

You would like to scale the random walk moves such that it is
possible to move reasonably fast in regions of positive probability
masses under π.
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In the Bayesian framework where π (θ) = p ( θj x) ∝ f (x j θ) p (θ)
and q

�
θ0
�� θ
�
= q

�
θj θ0

�
= g

�
θ0 � θ

�
then

α
�
θ, θ0

�
= min

 
1,
f
�
x j θ0

�
p
�
θ0
�

f (x j θ) p (θ)

!
.

Assuming g (z) = N (z ; 0,Σ) then the selection of Σ will be di¢ cult.

When the Fisher/observed information matrix at θ is available, then
we typically select Σ as the inverse of it.
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Toy Example

Consider the case where

π (θ) ∝ exp

 
� θ2

2

!
.

We implement the MH algorithm for

q1
�

θ0
�� θ
�

∝ exp

 
�
�
θ0 � θ

�2
2 (0.2)2

!
,

q2
�

θ0
�� θ
�

∝ exp

 
�
�
θ0 � θ

�2
2 (5)2

!
,

q3
�

θ0
�� θ
�

∝ exp

 
�
�
θ0 � θ

�2
2 (0.02)2

!
.
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Figure: MCMC output for q1, we estimate E (θ) = �0.02 and V (θ) = 0.99
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Figure: MCMC output for q2, we estimate E (θ) = 0.00 and V (θ) = 1.02.
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Figure: MCMC output for q3, we estimate E (θ) = 0.10 and V (θ) = 0.92.
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Independent Metropolis-Hastings

The Hastings�generalization corresponds to the following choice for
q
�

θ0
�� θ
�

q
�

θ0
�� θ
�
= q

�
θ0
�
;

i.e. this is a so-called independent proposal.

In this case, the acceptance probability is given by

α
�
θ, θ0

�
= min

 
1,

π
�
θ0
�
q (θ)

q
�
θ0
�

π (θ)

!
.

The ratio π (θ) /q (θ) also appears the Accept/Reject method.
The optimal independent proposal is clearly q (θ) = π (θ)!
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In the Bayesian framework where π (θ) = p ( θj x) ∝ f (x j θ) p (θ)
and q (θ) = p (θ) then

α
�
θ, θ0

�
= min

 
1,
f
�
x j θ0

�
f (x j θ)

!
.

Like the accept/reject method, this approach will be ine¢ cient if the
prior and the posterior are very di¤erent from each other.

The MH is very �exible and we could use for example

q (θ) = N
�

θ;bθMLE , σ2�
or a distribution with thicker tails.

Any heuristic can be made rigourous using the MH algorithm.
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Toy example

Example: Consider the case where

π (θ) ∝ exp

 
� θ2

2

!
.

We implement the MH algorithm for

q1 (θ) ∝ exp

 
� θ2

2 (0.2)2

!

so π (θ) /q1 (θ)! ∞ as θ ! ∞ and for

q2 (θ) ∝ exp

 
� θ2

2 (5)2

!

so π (θ) /q2 (θ) � C < ∞ for all θ.
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Figure: MCMC output for q1, we estimate E (θ) = 0.0206 and V (θ) = 0.83.
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Figure: MCMC output for q2, we estimate E (θ) = �0.004 and V (θ) = 1.00.
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Ensuring convergence

To establish that the MH chain converges towards the required target,
we need to establish that

If θ(i�1) � π (θ) then θ(i ) � π (θ), i.e. π is an invariant distribution
of the Markov kernel associated to the MH algorithm.
The Markov chain is irreducible; i.e. we can reach any set A such that
π (A) > 0.
The Markov chain is aperiodic; i.e. we do not visit the state-space in a
periodic way.
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Metropolis Hastings kernel

The transition kernel associated to the MH algorithm can be
rewritten as

K
�

θ0
�� θ
�
= α

�
θ, θ0

�
q
�

θ0
�� θ
�
+

�
1�

Z
α (θ, u) q (uj θ) du

�
| {z }

rejection probability

δθ

�
θ0
�

Clearly we haveZ
K
�

θ0
�� θ
�
dθ0 =

Z
α
�
θ, θ0

�
q
�

θ0
�� θ
�
dθ0

+

�
1�

Z
α (θ, u) q (uj θ) du

� Z
δθ

�
θ0
�
dθ0

= 1.
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Proposition: If θ(i�1) � π (θ) then θ(i ) � π (θ).

To prove the result, we are going to establish the stronger reversibility
property: for any θ, θ0

π (θ)K
�

θ0
�� θ
�
= π

�
θ0
�
K
�

θj θ0
�
;

i.e. the probability of being in A and moving to B is equal to the
probability of being in B and moving to A.

Indeed the reversibility condition implies thatZ
π (θ)K

�
θ0
�� θ
�
dθ =

Z
π
�
θ0
�
K
�

θj θ0
�
dθ

= π
�
θ0
� Z

K
�

θj θ0
�
dθ

= π
�
θ0
�
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By de�nition of the kernel, we have

π (θ)K
�

θ0
�� θ
�
= π (θ) α

�
θ, θ0

�
q
�

θ0
�� θ
�

+π (θ)

�
1�

Z
α (θ, u) q (uj θ) du

�
δθ

�
θ0
�
.

Then

π (θ) α
�
θ, θ0

�
q
�

θ0
�� θ
�
= π (θ) q

�
θ0
�� θ
�
min

 
1,

π
�
θ0
�
q
�

θj θ0
�

π (θ) q
�

θ0
�� θ
� !

= min
�
π (θ) q

�
θ0
�� θ
�
,π
�
θ0
�
q
�

θj θ0
��

= π
�
θ0
�
q
�

θj θ0
�
min

 
1,

π (θ) q
�

θ0
�� θ
�

π
�
θ0
�
q
�

θj θ0
�!

= π
�
θ0
�

α
�
θ0, θ

�
q
�

θj θ0
�
.
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We have obviously�
1�

Z
α (θ, u) q (uj θ) du

�
δθ

�
θ0
�

π (θ)

=

�
1�

Z
α
�
θ0, u

�
q
�
uj θ0

�
du
�

δθ0 (θ)π
�
θ0
�
.

It follows that

π (θ)K
�

θ0
�� θ
�
= π

�
θ0
�
K
�

θj θ0
�
.

Hence, π is the invariant distribution of the transition kernel K .
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Irreducibility and Aperiodicity

To ensure irreducibility, a su¢ cient but not necessary condition is that

π
�
θ0
�
> 0) q

�
θ0
�� θ
�
> 0 for any θ

Aperiodicity is automatically ensured as there is always a strictly
positive probability to reject the candidate.

Theoretically, the MH algorithm converges under very weak
assumptions to the target distribution π. In practice, this
convergence can be so slow that the algorithm is useless.
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Application to Genetic Linkage Model

In this example, we have

(X1,X2,X3,X4) �M
�
n;
1
2
+

θ

4
,
1
4
(1� θ) ,

1
4
(1� θ) ,

θ

4

�
and the target posterior distribution is given by

π ( θj x1:4) ∝ (2+ θ)x1 (1� θ)x2+x3 θx41(0,1) (θ) .

Accept/Reject requires maximizing the likelihood whereas Gibbs
sampling requires introducing missing data.

Alternatively, we can use a simple MH algorithm with proposal
distribution q

�
θ0
�� θ
�
= N

�
θ0; θ, σ2

�
. See computer simulations.
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Application to Probit Regression

We consider the following example: we take 4 measurements from
100 genuine Swiss banknotes and 100 counterfeit ones (Marin &
Robert, Bayesian Core, Springer-Verlag, 2007).

The response variable y is 0 for genuine and 1 for counterfeit and the
explanatory variables are

x1 the length,
x2: the width of the left edge
x3: the width of the right edge
x4: the bottom margin witdth
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As Y 2 f0, 1g , we cannot have a linear model

Y = x1β1 + . . .+ x4β4 + ε

= xTβ+ ε

where x = ( x1 x2 x3 x4 )T and β = ( β1 β2 β3 β4 )
T.

We select a probit link here

Pr (Y = 1j β, x) = 1� Pr (Y = 0j β, x) = Φ
�
xTβ

�
where

Φ (u) =
1p
2π

Z u

�∞
exp

�
�v

2

2

�
dv

For n = 200 data, the likelihood is then given by

f (y1:n j β, x1:n) =
n
∏
i=1

Φ
�
xTi β

�yi �
1�Φ

�
xTi β

��1�yi
.
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We assume a vague prior p (β) = N (β; 0, 100I4).
We use a simple random walk sampler where
q
�

β0
�� β
�
= N

�
β0; β, τ2Σ

�
with Σ = Ω�1,

Ωi ,j =
h
� ∂2 log f ( y1:n jβ,x1:n)

∂βi ∂βj

i���
βMLE

.

The algorithm is thus simply given at iteration i by

Sample β� � N
�

β(i�1), τ2Σ
�
and compute

α
�

β(i�1), β�
�

= min

0@1, p ( β�j y1:n , x1:n)

p
�

β(i�1)
��� y1:n , x1:n

�
1A

= min

0@1, f (y1:n j β�, x1:n) p (β
�)

f
�
y1:n j β(i�1), x1:n

�
p
�

β(i�1)
�
1A .

Set β(i ) = β� with probability α
�

β(i�1), β�
�
and β(i ) = β(i�1)

otherwise.

Algorithm tested with τ2 = 1, 10 and 0.1. Best results obtained with
τ2 = 1.
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for N = 10000 and N0 = 1000.
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We found for bβ = E (βj y1:n, x1:n) = (�1.22, 0.95, 0.96, 1.15) so a
simple plug-in estimate of the predictive probability of a counterfeit
bill is

Pr
�
Y = 1j x,bβ� = Φ

�
xTbβ�

The predictive distribution is given by

Pr (Y = 1j x, x1:n) =
Z

Φ
�
xTβ

�
π (βj y1:n, x1:n) dβ.

We rerun the algorithm on only n = 100 randomly selected data (50
genuine and 50 counterfeit) and use the results to classify the
remaining 100 banknotes. The missclassi�cation rate was 13% for the
plug-in classi�er and 7% for the full Bayesian approach.
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Limitations of the MH algorithm

The MH algorithm is a simple and very general algorithm to sample
from a target distribution π (θ).

In practice, the choice of the proposal distribution has a crucial
impact on the performance of the algorithm.

In high dimensional problems, a simple MH algorithm will be useless.
It will be necessary to use a combination of MH kernels.
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Towards more �exible algorithms

It is possible to combine several MH kernels, say using

K
�

θ0
�� θ
�
= λK1

�
θ0
�� θ
�
+ (1� λ)K2

�
θ0
�� θ
�
,

K
�

θ0
�� θ
�
=

Z
K1
�

θ0
�� θ00
�
K2
�

θ00
�� θ
�
dθ00

where K1 (resp. K2) is an MH algorithm of proposal q1 (resp. q2).
Each proposal can modify only a subset of the components of θ. That
is, if θ = (θ1, θ2) , then we can have q1

�
θ0
�� θ
�
= q1

�
θ01
�� θ
�

δθ2

�
θ02
�

and q2
�

θ0
�� θ
�
= δθ1

�
θ01
�
q2
�

θ02
�� θ
�
.

This algorithm satis�esZ
π (θ)K

�
θ0
�� θ
�
dθ

= λ
Z

π (θ)K1
�

θ0
�� θ
�
dθ + (1� λ)

Z
π (θ)K2

�
θ0
�� θ
�
dθ

= λπ
�
θ0
�
+ (1� λ)π

�
θ0
�
= π

�
θ0
�
.
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Metropolis one-at-a time

To sample from π (θ) where θ = (θ1, ..., θp) , we can use the
following algorithm at iteration i .

Iteration i ; i � 1:
For k = 1 : p

Sample θ
(i )
k using an MH step of proposal distribution

qk
�

θk j
�

θ
(i )
�k , θ

(i�1)
k

��
and target π

�
θk j θ

(i )
�k

�
where

θ
(i )
�k =

�
θ
(i )
1 , ..., θ

(i )
k�1, θ

(i�1)
k+1 , ..., θ

(i�1)
p

�
.

Remark: It is possible to rewrite each MH step as a proposal
qk
�

θk j
�

θ
(i )
�k , θ

(i�1)
k

��
δ

θ
(i )
�k
(θ�k ) and target π (θk , θ�k ) .
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The acceptance ratio of the MH step updating θk is given by

α
�

θ
(i )
�k , θ

(i�1)
k , θ�k

�
= min

0@1, π
�

θ�k j θ
(i )
�k

�
qk
�

θ
(i�1)
k

��� �θ
(i )
�k , θ

�
k

��
π
�

θ
(i�1)
k

��� θ
(i )
�k

�
qk
�

θ�k j
�

θ
(i )
�k , θ

(i�1)
k

��
1A

= min

0@1, π
�

θ�k , θ
(i )
�k

�
qk
�

θ
(i�1)
k

��� �θ
(i )
�k , θ

�
k

��
π
�

θ
(i�1)
k , θ

(i )
�k

�
qk
�

θ�k j
�

θ
(i )
�k , θ

(i�1)
k

��
1A

If we select qk
�

θk j
�

θ
(i )
�k , θ

(i�1)
k

��
= π

�
θk j θ(i )�k

�
then

α
�

θ
(i )
�k , θ

(i�1)
k , θ�k

�
= 1 and we are back to the Gibbs sampler.

Example: Assume we have π (θ1, θ2) where it is easy to sample from
π ( θ1j θ2) and π ( θ2j θ1) is not standard. We then use a Gibbs step
to update θ1 and an MH step to update θ2.
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Example: Baseball data revisited

We have the statistics of J = 17 players in pre-season exhibition
matches where the data yj for the player j corresponds to the number
of home runs in nj times at the bat modelled through

Yj j (nj , pj ) � Bin (nj , pj ) .
We use the logit transformation and write

θj = log
�

pj
1� pj

�
, pj =

exp (θj )
1+ exp (θj )

which translates the parameter range (0, 1) for pj to (�∞,∞) for θj .
We set an exchangeable prior where

θj j (µ, τ) i.i.d.� N
�
µ, τ2

�
.

and the hyperprior is selected as before with a = b = 0.001.

π
�
τ2
�
= IG

�
τ2;

a
2
,
b
2

�
, π (µ) ∝ 1.
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The full posterior distribution is given by

π
�

µ, τ2, θ1:J
�� y1:J

�
∝ π

�
µ, τ2

� J

∏
j=1

π
�

θj j µ, τ2
� J

∏
j=1
f (yj j θj , nj )

∝
1

τJ+a+2
exp

 
� b
2τ2

�
J

∑
j=1

(θj � µ)2

2τ2

!

�
J

∏
j=1

�
exp (θj )

1+ exp (θj )

�yj � 1
1+ exp (θj )

�nj�yj
This distribution does not admit a closed-form expression and we are
going to use the Gibbs sampler by decomposing the parameter space
in J + 2 blocks µ, τ2, θ1, θ2, ...., θj .

The Gibbs sampler will require being able to be able to sample from
π
�

µj y1:J , τ
2, θ1:J

�
, π
�

τ2
�� y1:J , µ, θ1:J

�
and π

�
θj j y1:J , µ, τ

2
�
.
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Full conditional distribution for µ

π
�

µj y1:J , τ
2, θ1:J

�
= π

�
µj τ2, θ1:J

�
= N

 
µ; J�1

J

∑
j=1

θj , J�1τ2
!
.

Full conditional distribution for τ2

π
�

τ2
�� y1:J , µ, θ1:J

�
= π

�
τ2
�� µ, θ1:J

�
= IG

 
τ2;

a+ J
2
,
b+∑J

j=1 (θj � µ)2

2

!
.

These two distributions are standard.
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Full conditional distribution for θj

π
�

θj j y1:J , τ
2, µ
�

∝
exp (θj )

yj

(1+ exp (θj ))
nj exp

 
� (θj � µ)2

2τ2

!
.

This distribution does not admit a closed-form expression so we use a
Metropolis algorithm where

q
�

θ0j
�� θj
�
= U

�
θ0j ; [θj � δ, θj + δ]

�
where δ is a parameter of the algorithm.

We run N = 100, 000 iterations of the Metropolis-Hastings one-at-a
time and discard the �rst N0 = 10, 000 samples. The acceptance
rates for the Metropolis algorithm was given by

δ 0.1 0.5 1 2 10
Average acceptance proba. 0.87 0.55 0.35 0.17 0.04
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Based on these results we computed the predictive distribution of Zi
the number of homes runs in the full season where mj is the number
of bats in the full seasons. We assume

Zi � Bin (mj , pj ) .

The predictive distribution is given by

Pr (Zi = k j y1:J , n1:J ,m1:J ) =
Z
Pr (Zi = k jmj , pj )π (pj j y1:J , n1:J ) dpj

and can be approximated through the ouput of the MCMC algorithm

1
N �N0 + 1

N

∑
i=N0

Pr
�
Zi = k jm(i )j , p

(i )
j

�
.
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Figure: Predictive distribution for the number of home runs scored by each batter.

AD () March 2008 94 / 94


