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Example of Hypothesis Testing: Suppose we want to know if exposure
to asbestos is associated with lung disease. We could take some rats and
randomly divide them in 2 groups: one group exposed to asbestos and the
other unexposed. Then we compare the disease rate.

Null Hypothesis: The disease rate is the same in the two groups.

Alternative Hypothesis: The disease rate is not the same in the two
groups.
If the exposed group has a much higher rate of disease than the
unexposed group, then we will reject the null hypothesis and conclude
that the evidence favors the alternative hypothesis.

Formally we can partition the parameter space into two disjoint sets
Θ0 and Θ1 and we test

H0 : θ 2 Θ0 versus H1 : θ 2 Θ1.
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Let X be a random variable and let X be the range of X .

We test an hypothesis by �nding an appropriate subset of outcomes
R � X called the rejection region.
If X 2 R, we reject H0, otherwise we do not.
Usually the rejection region is of the form

R = fx : T (x) > cg

where T is a test statistic and c is a critical value.
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There are two types of errors

Retain H0 Reject H0
H0 true � type I error
H1 true type II error �

The power function of a test with rejection R is the probability of
rejecting the hypothesis de�ned by

β (θ) = Pθ (X 2 R) .

An ideal test would satisfy β (θ) = 0 for θ 2 Θ0 and β (θ) = 1 for
θ 2 Θ1.

The size of a test is de�ned to be

α = sup
θ2Θ0

β (θ) .

It is the largest possible probability of making an error of type I,
i.e. the maximum power under the null hypothesis.
A test has signi�cance level α if its size is less than or equal to α.
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Hypothesis of the form θ = θ0 is a simple hypothesis.

Hypothesis of the form θ > θ0 or θ < θ0 is a composite hypothesis.
A two-sided test is of the form

H0 : θ = θ0 versus H1 : θ 6= θ0

A one-sided test is of the the form

H0 : θ � θ0 versus H1 : θ > θ0

or
H0 : θ � θ0 versus H1 : θ < θ0.
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We have not yet discussed how to set c .

Assuming R = fx : T (x) > cg then if we choose the critical value c
to satisfy

α = sup
θ2Θ0

Pθ (X 2 R)

then by construction we get a test of size α.
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Example. Let X1, ...,Xn � N
�
µ, σ2

�
where σ is known. We want to

test H0 : µ � 0 vs H1 : µ > 0. Hence Θ0 = (�∞, 0] and
Θ1 = (0,+∞).

Consider the test
reject H0 if X > c .

The rejection region is

R =

(
(x1, ..., xn) : T (x1, ..., xn) =

1
n

n

∑
i=1
xi > c

)
.

The power function is

β (µ) = Pµ

�
X 2 R

�
= Pµ

 p
n
�
X � µ

�
σ

>

p
n (c � µ)

σ

!

= P

�
Z >

p
n (c � µ)

σ

�
where Z � N (0, 1)

= 1�Φ
�p

n (c � µ)

σ

�
.
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This function is increasing in µ, hence

size = sup
µ�0

β (µ) = β (0) = 1�Φ
�p

nc
σ

�
.

For a size α test, we set this equal to α and solve for c to get

c =
σΦ�1 (1� α)p

n
.

We reject when X > σΦ�1(1�α)p
n , equivalently when

p
n
�
X � 0

�
σ

> zα

where zα = Φ�1 (1� α) (i.e. P (Z � zα) = α).

AD () January 2007 8 / 44



This function is increasing in µ, hence

size = sup
µ�0

β (µ) = β (0) = 1�Φ
�p

nc
σ

�
.

For a size α test, we set this equal to α and solve for c to get

c =
σΦ�1 (1� α)p

n
.

We reject when X > σΦ�1(1�α)p
n , equivalently when

p
n
�
X � 0

�
σ

> zα

where zα = Φ�1 (1� α) (i.e. P (Z � zα) = α).

AD () January 2007 8 / 44



This function is increasing in µ, hence

size = sup
µ�0

β (µ) = β (0) = 1�Φ
�p

nc
σ

�
.

For a size α test, we set this equal to α and solve for c to get

c =
σΦ�1 (1� α)p

n
.

We reject when X > σΦ�1(1�α)p
n , equivalently when

p
n
�
X � 0

�
σ

> zα

where zα = Φ�1 (1� α) (i.e. P (Z � zα) = α).

AD () January 2007 8 / 44



Assume you have Xi
i.i.d.� f (x j θ) then the Likelihood Ratio (LR) test

statistic for testing H0 : θ 2 Θ0 versus H1 : θ 2 Θc
0 is de�ned by

λ (x) =
sup

θ2Θ0

L ( θj x)

sup
θ2Θ
L ( θj x)

where L ( θj x) is the likelihood function

L ( θj x) =
n

∏
i=1
f (xi j θ) .

A LR test (LRT) is any test that has a rejection of the form
fx : λ (x) � cg where c is any number satisfying 0 � c � 1.
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Suppose bθ is the MLE of θ de�ned by bθ = argmax
θ2Θ

L ( θj x), then we
can rewrite

λ (x) =
L
�bθ0��� x�
L
�bθ��� x�

where bθ = argmax
θ2Θ0

L ( θj x) is the �MLE estimate restricted to bθ0�.

Example: Assume we have Xi
i.i.d.� N (θ, 1) and we want to test

H0 : θ = θ0 and H1 : θ 2 Θc
0 then

λ (x) =
L ( θ0j x)
L
�bθ��� x�
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It follows that

λ (x) =
(2π)�n/2 exp

�
�∑n

i=1 (xi � θ0)
2 /2

�
(2π)�n/2 exp

�
�∑n

i=1 (xi � x)
2 /2

�
= exp

h
�n (x � θ0)

2 /2
i
.

An LRT reject H0 for small values of λ (x) and�
x : jx � θ0j �

q
�2 (log c) /n

�
where c 2 [0, 1] thus

p
�2 (log c) /n 2 [0,∞) .

Hence the LRT rejects H0 is the x di¤ers from θ0 by more than a
speci�ed value.
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To construct a size α LRT, we need to select c such that

sup
θ2Θ0

Pθ (λ (X) � c) = α.

In our case, we have Θ0 = fθ0g so the size α test is

Reject H0 if jx � θ0j �
zα/2p
n

where P (Z � zα/2) =
α
2 as

Pθ0

���X � θ0
�� � zα/2p

n

�
= P (jZ j > zα/2) where Z � N (0, 1)

= α.
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We have Xi
i.i.d.� f (x j θ) with

f (x j θ) = exp (�x + θ) 1[θ,∞) (x) .

The likelihood is given by

L (θj x) = exp
 
nθ �

n

∑
i=1
xi

!
1(�∞,x(1)]

(θ) .

We want to test H0 : θ � θ0 and H1 : θ > θ0 and we havebθMLE = x(1) so
λ (x) =

(
1 if x(1) � θ0

exp
�
�n
�
x(1) � θ0

��
if x(1) > θ0.

A LRT test reject H0 if λ (x) � c , that is it has the rejection regionn
x :x(1) � θ0 � log c

n

o
.
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We are looking for a size α test. We have

Pθ0

�
X(1) � c

�
= exp (�nc + nθ0)

and
Pθ

�
X(1) � c

�
� Pθ0

�
X(1) � c

�
for any θ � θ0.

Thus we have

sup
θ2Θ0

β (θ) = sup
θ�θ0

Pθ

�
X(1) � c

�
= Pθ0

�
X(1) � c

�
.

So to get a size α test, we just need to set c such that

Pθ0

�
X(1) � c

�
= exp (�nc + nθ0) = α.
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The LRT is obviously only function of the su¢ cient statistic which
follows from the fact that

L ( θj x) = h (x) g (T (x)j θ) .
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Assume Xi
i.i.d.� N

�
µ, σ2

�
and we want to test H0 : µ � µ0 and

H1 : µ > µ0 where σ2 is a nuisance parameter.

The LRT can be extended in this case

λ (x) =

sup
(µ,σ2 :µ�µ0,σ

2�0)
L (θj x)

sup
(µ,σ2 :�∞<µ<∞,σ2�0)

L ( θj x) =
sup

(µ,σ2 :µ�µ0,σ
2�0)

L ( θj x)

L
�bθMLE ��� x�

It follows that

λ (x) =

8<: 1 if bµMLE � µ0
L( µ0,bσ20jx)L(x)
L(bθMLE jx) if bµMLE > µ0

as
�

µ0, bσ20� is the restricted ML where bσ20 = ∑n
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It would be desirable to �nd the test with highest power under H1
among all size α tests.

When such a test exists, it is called most powerful.
Finding most powerful tests is hard and, in many cases, most
powerful tests do not even exist.

There is however an important exception when we are testing

H0 : θ = θ0 versus H1 : θ = θ1.
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Theorem (Neyman-Pearson). Suppose we test H0 : θ = θ0 versus
H1 : θ = θ1. Let

T =

n

∏
i=1
f (xi j θ1)

n

∏
i=1
f (xi j θ0)

and suppose we reject H0 when T > k. If we choose k so that

Pθ0 (T > k) = α

then this test is the most powerful size α test. That is, among all
tests with size α, this test maximizes the power β (θ1).

In other words, if the observations is much more likely under H1 than
H0, we reject it.
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Example: Let Xi
i.i.d.� N

�
θ, σ2

�
where σ2 is known and we test

H0 : θ = θ0 vs H1 : θ = θ1, where θ0 > θ1.

We have

T > k , x <

�
2σ2 log k

�
/n� θ20 + θ21

2 (θ1 � θ0)
.

The rhs increases from -∞ to ∞ as k goes from 0 to ∞. Thus the
test with rejection region x < c if the uniformly most powerful level α
test, where α = Pθ0

�
X < c

�
.

If a particular α is chosen, then c = �σzα/
p
n+ θ0.
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Reporting �reject H0�or �retain H0� is not very informative.

It is also important to report α. If α is small, the decision to reject H0
is convincing but if α is large it is not because there is a large
probability of incorrectly making the decision.

An alternative consists of reporting a so-called p-value.

De�nition. A p-value p (X) is a test statistic satisfying
0 � p (x) � 1 for every x. Small values of p (x) give evidence that H1
is true. A p-value is valid if for any 0 � α � 1

sup
θ2Θ0

Pθ (p (X) � α) � α.

Consequence: If p (X) is a valid p-value then the test that rejects H0
if and only if p (X) � α is a α level test.

The smaller the p-value, the stronger the evidence for rejecting H0.
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Suppose T (X) is a test statistic such that larges values of T (X) give
evidence that H1 is true. For each sample point x, then de�ne

p (x) = sup
θ2Θ0

Pθ fT (X) � T (x)g ,

i.e. the largest possible probability of obtaining a value of T (X)
which is at least as extreme as the one observed, under the
assumption that H0 is true.

Theorem. p (x) is a valid p-value.
Sketch of Proof: Let us prove it in the simple case where
Θ0 = fθ0g. We have in this case

p (x) = Pθ0 fT (X) � T (x)g
= Pθ0 f�T (X) � �T (x)g
= Fθ0 (�T (x))

where Fθ0 is the cdf of �T (X). Now we have for any rv Y with cdf
FY where y is a random variable

Pθ0 (FY (y) � α) = Pθ0

�
y � F�1Y (α)

�
= FY

�
F�1Y (α)

�
= α.
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There is NO magic level which means that null hypotheses are
automatically rejected. Although lots of people mistakenly use a
signi�cance level of p < 0.05 to de�nitely reject H0, it should depend
entirely on the consequences of being wrong.

The P-values simply state, under H0, what the probability that the
apparent di¤erence is due to chance.

At the least you should qualify any statements such as

0.05 < p � 0.06 "Weak evidence for rejection"
0.03 < p � 0.05 "Reasonable evidence for rejection"
0.01 < p � 0.03 "Good evidence for rejection"
0.005 < p � 0.01 "Strong evidence for rejection"
0.001 < p � 0.005 "Very strong evidence for rejection"
0.0005 < p � 0.001 "Extremely strong evidence for rejection"
p � 0.0005 "Overwhelming evidence for rejection"

P-values are not posterior probabilities!
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The one sample t-test: Used for observation Xi � N
�
µ, σ2

�
with

unknown parameters.

We wish to test for location H0 : µ = µ0 or Possible H1 : µ > µ0.

The test statistic is

T =

p
n
�
X � µ0

�
S

� t (n� 1) (under H0)

where S2 is the sample variance of the Xi�s.
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Example: We have measured the IQ of 8 students and we wish to see
if their intelligence is higher than the population average of 100.

Student 1 2 3 4 5 6 7 8
IQ 118 121 96 102 93 110 117 131

H0 : µ = 100, H1 : µ > 100. We have X = 111 and S2 = 174 so
t = 2.36.

The p-value is given by

PH0 (T > t) = 0.025.

Hence there is good evidence for rejection of H0.
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The paired t-test: Suppose we have pairs (Xi ,Yi ) and that
Di = Xi � Yi � N

�
µ, σ2

�
with unknown parameters.

We wish to test whether there is a di¤erence in mean between two
samples

H0 : µ = 0 (Xi�s don�t di¤er from Yi�s)

Possible H1 : µ 6= µ0 (Xi�s di¤er from Yi�s).

Test statistics

T =

p
n
�
D � µ0

�
SD

� t (n� 1) (under H0)

where S2D is the sample variance of the Di�s.
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Example: Two types of rubber (A and B) were randomly assigned to
the left and right shoes of 10 children and relative wear on each
measure.

i 1 2 3 4 5 6 7 8 9 10
Xi 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
Yi 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6
Di -.8 -0.6 -0.3 0.1 -1.1 0.2 -0.3 -0.5 -0.5 -0.3

We have D = �0.41, S2D = 0.15 so that t = �3.3489.
Noting the form of the alternative hypothesis we calculate

PH0 (jT j > t) = 0.0085

and so there is strong evidence for rejection of the null hypothesis.
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The two sample t-test: Assume we have X1, ...,Xm � N
�
µX , σ

2
�

and Y1, ...,Yn � N
�
µY , σ

2
�
.

We wish to test

H0 : µX = µY (Null hypothesis)

Possible H1 : µX 6= µY (Alternative hypothesis).

Use test statistic

T =
X � Y

S
q� 1

m +
1
n

� � t (m+ n� 2) (under H0)
where the pooled sample variance is

S2 =
(m� 1) S2X + (n� 1) S2Y

m+ n� 2
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Under H0, we have

X � Y � N
�
0, σ2

�
1
m
+
1
n

��
and also (m�1)S 2X

σ2
� χ2 (m� 1) , (n�1)S

2
Y

σ2
� χ2 (n� 1) thus

T =
(m� 1) S2X + (n� 1) S2Y

σ2
� χ2 (m+ n� 2) .

So de�ning

S2 =
(m� 1) S2X + (n� 1) S2Y

m+ n� 2
the result follows.
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Example: We have measured the results of two experiments (which
we know have the same variance) to determine the concentration of a
chemical

Test X 22 19 35 11 21 10
Test Y 33 11 20 38

Test

H0 : µX = µY (No di¤erence in mean of experiments)

H1 : µX 6= µY (X has a di¤erent mean than Y ).

We �nd X = 19.7, Y = 25.5, SX = 82.2 and SY = 90.6. So
t = �0.87 and

PH0 (jT j > t) = 0.41.
Hence we do not reject H0.
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In the last test, we assume that X and Y have the same variance.
How can we check this is the case?

We use the F test which is based on Snecedor�s F distribution: If
U � χ2 (m) and V � χ2 (n) then

U/m
V/n

� Fm,n.

Suppose we have X1, ...,Xm � N
�
µX , σ

2
X

�
and

Y1, ...,Yn � N
�
µY , σ

2
Y

�
and we wish to test

H0 : σ2X = σ2Y (Null hypothesis),

Possible H1 : σ2X 6= σ2Y (Alternative hypothesis),

then we use the test statistic

S2X
S2Y

� Fm�1,n�1 (under H0)

The greater the ratio deviates from 1, the stronger the evidence for
unequal variances.
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Returning to

Test X 22 19 35 11 21 10
Test Y 33 11 20 38

we �nd that

t =
S2X
S2Y

= 0.545

and
PH0 (jT j > t) = 0.52

It follows that we do not reject the null hypothesis.

AD () January 2007 31 / 44



Returning to

Test X 22 19 35 11 21 10
Test Y 33 11 20 38

we �nd that

t =
S2X
S2Y

= 0.545

and
PH0 (jT j > t) = 0.52

It follows that we do not reject the null hypothesis.

AD () January 2007 31 / 44



All the tests described so far rely on parametric assumption, we now
describe so non-parametric test.

Test of location zero: Suppose we have data D1, ...,Dn and we wish
to test H0 : the data have a symmetric continuous distribution
centred about zero.

The sign test relies on N+ = Number of data � 0, N� = Number
of data < 0. Under H0 we have

N+ � Bernoulli (n, 1/2)

and we can easily compute a p-value.
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Wilconson signed-rank test: Order the absolute values
jD1j , ...., jDn j and assign each a rank Ri . The smallest absolute value
getting rank 1 and tied scores are assigned a mean rank. If some
Di = 0 then we drop these values completely.

De�ne our statistic to be the sum of the ranks of the positive Di

W+ = ∑
Di>0

Ri .

Extreme values of this statistic (large or small) indicate departure
from the null hypothesis. We can work out the exact distribution
under H0 of W+ using the permutation distribution, otherwise we use
a large sample normal approximation.
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Example: Suppose we have 9 aptitudes scores of 13,7,3,15,10,12,8,2,9
and we wish to test if they are symmetrically distributed around 10.
We �rst discard the score of 10 leaving 8 scores.

Score 13 7 3 15 12 8 2 9
Score - 10= D 3 -3 -7 5 2 -2 -8 -1
jD j 3 3 7 5 2 2 8 1
Rank assigned 4.5 4.5 7 6 2.5 2.5 8 1

Hence we obtain w+ = 13. After looking at tables, we �nd that this
has a p-value of 0.53 so we do not reject H0.
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Multiple testing. In some situations, we may need to conduct many
hypothesis tests.

Example. DNA microarrays allow researchers to measure the
expression levels of thousands of genes. The data are levels of
messenger RNA of each gene. Roughly, the larger the number, the
more active the gene. The type of data we have are usually a very
large number of genes and two types of patients (say not ill/ill, or ill
with disease A/ill with disease B). We have thousands of genes to
test.

Suppose each test is conducted a level α; i.e. the chance of a false
rejection of the null is α.

The chance of at least one false rejection is much higher!
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Consider m hypothesis tests

H0,i versus H1,i where i = 1, ...,m

We denote P1, ...,Pm the m p-values for these tests.

To ensure that, the probability of falsely rejecting any null hypothesis
is less than or equal to α, we can adopt the Bonferroni method; i.e.
reject H0,i is

Pi �
α

m
.
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Proof. Let R be the event that at least one null hypothesis is falsely
rejected and let Ri be the event that H0,i is falsely rejected. Then we
have

Pr (R) = Pr ([mi=1Ri ) �
m

∑
i=1
Pr (Ri ) .

But by construction we have Pr (Ri ) = Pr
�
Pi � α

m

�
� α

m so

Pr (R) � α.

Gene example with m = 2.638 genes, we have for α = .05 that

α

m
= 0.0001895375.

The Bonferroni method is far too conservative as it is trying to make
it unlikely to have even one single false rejection. So you can expect a
lot of type II errors.
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In many scienti�c problems, the number of erroneous rejections
should be taken into account and not only the question whether any
error was made.

The seriousness of the loss incurred by erroneous rejections is
inversely related to the number of hypotheses rejected.

Thus a desirable error rate maybe the expected proportion of
errors among the rejected hypothesis.
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Suppose we reject all the H0,i such that the p-values fall below a �xed
threshold.

Let m0 be the number of null hypotheses that are true and let
m1 = m�m0.
Then the outcome in multiple testing is

Retain H0 Reject H0 Total
H0 true U V m0
H1 true T S m1
Total m� R R m
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The False Discovery Proportion (FDP) is

FDP =
�
V/R = V/ (V + S) if R > 0
0 if R = 0

that is the proportions of rejections (of H0,i ) that are incorrect.

The False Discovery Rate (FDR) is de�ned as the expectation of
the number of false rejections divided by the number of rejections.

FDR = E [FDP ]

where the expectation is with respect to the unknown distribution of
the data.

Obviously the FDP is NOT observed and the FDR cannot be
computed either!
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If all null hypothesis are true, i.e. m0 = m, then S = 0 and FDP = 1
if V � 1 and 0 otherwise; so

FDR = E [FDP ] = Pr (V � 1)

and the FDR is just the probability of committing any type I error
(the probability �controlled�by Bonferroni). Note that in this case,
there cannot be any type II error as m1 = 0.

When m0 < m, then we have if V � 1 then

V/R = V/ (V + S) � 1

thus IfV�1g � V/R thus

FDR � Pr (V � 1) .

The larger the number of non-true null hypothesis is, the larger S
tends to be and the di¤erence between FDR and Pr (V � 1) increase.
The advantage of FDR is that if you can control it, then you can
expect to increase the power and limit type II errors.
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The Benjamini-Hochberg method (1995) allows us to control the
FDR.

1 Let P(1) < � � � < P(m) denoted the ordered independent P-values.
2 De�ne

li =
i .α
m
and R = max

n
i : P(i ) < li

o
3 Let T = P(R ) be the so-called BH rejection treshold.
4 Reject all H0,i for which Pi � T .
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Theorem. Regardless of how many nulls are true and regardless of
the distribution of the p-values when the null hypothesis is false,

FDR = E (FDP) � m0
m

α � α.

Proof: one full paper JRSSB... not presented here.

It is shown that the �average power�(i.e. the probability of H1
correctly rejected) is much higher than for the Bonferroni test.
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Suppose 10 independent hypothesis tests are carried leading to the
following ordered p-values

i 1 2 3 4 5
p(i ) 0.00017 0.00448 0.00671 0.00907 0.01220

i 6 7 8 9 10
p(i ) 0.3362 0.39341 0.53882 0.58125 0.98617

When α = 0.05, the Bonferroni test rejects any p-value less than
α/10 = 0.005. Thus, only the �rst two hypotheses are rejected.
For the BH test, we �nd the largets i such that
P(i ) < iα/m = 0.0005i which in this case is i = 5. Thus we reject
the �rst �ve hypotheses.
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