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Maximum Likelihood Estimation

o Let f (x| 0) denote the joint pdf or pmf of the sample
X = (X1, ..., Xn). Then given that X = x is observed, the likelihood
function is given by f (x|6) = L (6] x) and /(6) = log L (6|x).
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o Let f (x| 0) denote the joint pdf or pmf of the sample
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function is given by f (x|6) = L (6] x) and /(6) = log L (6|x).
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6= argmax /(0).
0e®

@ Under regularity assumptions, the MLE is

. . ~ P .
e consistent, i.e. 8, — 0, where 0, is the true value
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Maximum Likelihood Estimation

o Let f (x| 0) denote the joint pdf or pmf of the sample
X = (X1, ..., Xn). Then given that X = x is observed, the likelihood

function is given by f (x|6) = L (6] x) and /(6) = log L (6|x).
@ The Maximum Likelihood Estimate (MLE) is defined by

6= argmax /(0).

@ Under regularity assumptions, the MLE is

. . ~ P .
e consistent, i.e. 8, — 0, where 0, is the true value
e asymptotically efficient, i.e. the MLE has the smallest variance, at least

for large samples.
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Standard Numerical Methods

e Assume 6 = (64, ...., BP)T, then under regularity assumptions the
MLE are the values that solve
/
aaé?) =0fori=1,..p. (1)
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Standard Numerical Methods

e Assume 6 = (64, ...., BP)T, then under regularity assumptions the
MLE are the values that solve
/
aaé?) =0fori=1,..p. (1)

o Example: if X; =& N (6,1) then

ool (xi — 0)*
L(0]|x) = exp | —
(01 =] = ( .
and 1 (6)
n R 1 n
0 —O(:>i21(x,—9) =0=0= E,;X"'
One can check dzgf) 5 < 0, hence it is a maximum.
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Standard Numerical Methods

e Assume 6 = (64, ...., BP)T, then under regularity assumptions the
MLE are the values that solve
/
aaé?) =0fori=1,..p. (1)

o Example: if X; =& N (6,1) then
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IO oy -6 =0=0=
a6 2, (i =f) A
i=1 i=1
d2i(6)
de’
@ In more complex examples, we cannot solve (1) easily and we need to

rely on numerical methods.

One can check

3 < 0, hence it is a maximum.
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Newton-Raphson Optimization

o Iterative algorithm to find the MLE of 6 = (61, ..., 0,)" .
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Newton-Raphson Optimization

o Iterative algorithm to find the MLE of 6 = (61, ..., 0,)" .

o Assume 0¥ is the estimate at iteration k then

3/ (9 92/ (o)
ala(ee) ~ <ae >+ a9<a9T) (0-0%).
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Newton-Raphson Optimization

o Iterative algorithm to find the MLE of 6 = (61, ..., 0,)" .
o Assume 0¥ is the estimate at iteration k then

ane) _o(0") (") (o).

00 0 90007
@ By writing
a1 (8) al (o ol (0)\ "
g(0) — (), (),..., (0) |
00; ' 90, 20,
_2(8)  [3%1(0)
HO) = 00007 _<39i39i>

this means that

0=g(0) ~g (9(“) Y H (W)) (9 . 9<k>>
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Newton-Raphson Optimization

o Iterative algorithm to find the MLE of 6 = (61, ..., 0,)" .

o Assume 0¥ is the estimate at iteration k then

ane) _o(0") (") (o).

_|_

00 00 00007
@ By writing
al(0) al (0 al (0)\ "
2 (6) (), ()___y (0) |
96, ' 06, 36,
_0%1(0) _ [9%1(0)
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this means that
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@ This suggests
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Difficulties with Newton-Raphson

@ It may prove difficult to calculate the Hessian matrix.
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Difficulties with Newton-Raphson

It may prove difficult to calculate the Hessian matrix.
At each iteration, it requires computing a new Hessian matrix.

Depending on the initial value, the method may converge or diverge.

Quasi-Newton methods have been proposed to mitigate these
problems: it avoids calculating the Hessian H (G(k)) and step widths
can be introduced to accelerate convergence/prevent divergence.
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Quasi-Newton maximization

@ Determine a search direction vector dy, = Hk_lg (0(")> .
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Quasi-Newton maximization

@ Determine a search direction vector dy, = Hk_lg (0(")> .
@ Determine the optimum step width A, maximizing / (9(k) + )Ldk> :

o Set o1 = gk) 4 Axdg and yy = g (9(k+1)) —g (9(")) .
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Quasi-Newton maximization

@ Determine a search direction vector dy, = Hk_lg (0(")> .
@ Determine the optimum step width A, maximizing / (9(k) + )Ldk> :
o Set 9kt = glk) 4 Axdg and yy = g (9(k+1)) —g (9(")) )

-1
@ Obtain an estimate of H <9(k+1)) by using

Davidson-Fletcher-Powell (DFP) or
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

T ~1, T p-1
Hl = Hl4 kS Hi vy Hy
i save yEHC
T -1 ~1, T -1,T T
Hl = gl Rk He™  H sy 4 1+y/<Hk Yk | SkSk
ket g Sy Vi sy Vi sive ) shw

where s, = glk+1) _ gk).
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@ The algorithm is initialized with 0© and Hgl where Hgl is picked at
the identity matrix, an appropriately scale diagonal matrix or an

approximate values of H <9(0)>7
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@ In situations where g (6) is also difficult to compute, it can be
computed approximately numerically.
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The algorithm is initialized with 0©) and Hgl where Hgl is picked at
the identity matrix, an appropriately scale diagonal matrix or an

approximate values of H <9(0)>7

In situations where g (6) is also difficult to compute, it can be
computed approximately numerically.

Example: Consider X; S f (x|, T2) where

1 T
f(x|lp1) ==
i
so for n observations
USSR
aﬂ ,:1 X ]l +T2
ol (.t L_% 1
oT? 2 H (X —u)?+ 1
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o Numerical results for 80 = (V(o),.fz(o))T = (0, 1)T.
B y(k) 200 | _y (9(")> a/(§;k>) a/(ae)T(QH)
0 | 0.000 | 1.000 | 48.126 -0.839 | -1.098
110.231 | 1.302 | 47.874 0.188 -0.144
2 | 0.180 | 1.357 | 47.865 -0.046 | -0.040
31 0.189 | 1.379 | 47.865 0.002 | -0.001
4 | 0.189 | 1.380 | 47.865 -0.001 | 0.000
51 0.189 | 1.380 | 47.865 0.000 | 0.000

AD ()
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-
o Numerical results for 8 = (y(o), ’L’Q(O)) =(0,1)".
P B P a1(0®) [ a1(6™)
k }4( ) T2(k) | —y (9( )) 5 e
0 | 0.000 | 1.000 | 48.126 -0.839 | -1.098
10231 1.302|47.874 0.188 -0.144
2 10.180 | 1.357 | 47.865 -0.046 | -0.040
3 10.189 | 1.379 | 47.865 0.002 -0.001
4 | 0.189 | 1.380 | 47.865 -0.001 | 0.000
5 10.189 | 1.380 | 47.865 0.000 0.000
iterations here.

@ The quasi-Newton method converges in 5

AD ()
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-
o Numerical results for 8 = (y(o), TQ(O)) =(0,1)".

P a1(6™ ) T ar(6™

k y(k) w2(k) | —y (9( )) (ay ) (aT2 )

0 | 0.000 | 1.000 | 48.126 -0.839 | -1.098

1] 0.231 | 1.302 | 47.874 0.188 | -0.144

2 | 0.180 | 1.357 | 47.865 -0.046 | -0.040

3 10.189 | 1.379 | 47.865 0.002 | -0.001

4 10.189 | 1.380 | 47.865 -0.001 | 0.000

5 10.189 | 1.380 | 47.865 0.000 | 0.000

iterations here.

@ The quasi-Newton method converges in 5

@ Many statisticians are not big fans of such methods and prefer using
the Expectation-Maximization algorithm. (Note: statisticians should

follow optimization courses).

AD ()
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Expectation-Maximization Algorithm

@ Although the EM algorithm does not apply to all models, it is
powerful and elegant: one of the most popular algorithms in statistics.
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@ Although the EM algorithm does not apply to all models, it is
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o It is well-suited to so-called missing data problems where you are
interested in maximizing with respect to 6 the likelihood function

L(0ly) =g (y[0)
where

g(10) = [ £(y.x/0) dx
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o It is well-suited to so-called missing data problems where you are
interested in maximizing with respect to 6 the likelihood function

L(6]y) =g (y|0)
where
g(10) = [ £(y.x/0) dx
o We call

o Y the incomplete data (i.e. the observed data) and X the missing data
or the augmented data

January 2008 9/25



Expectation-Maximization Algorithm

@ Although the EM algorithm does not apply to all models, it is
powerful and elegant: one of the most popular algorithms in statistics.

o It is well-suited to so-called missing data problems where you are
interested in maximizing with respect to 6 the likelihood function

L(6]y) =g (y|0)
where
g(10) = [ £(y.x/0) dx
o We call

o Y the incomplete data (i.e. the observed data) and X the missing data
or the augmented data

o (X,Y) the complete data (although remember that X is not observed!).

January 2008 9/25



Expectation-Maximization Algorithm

@ Although the EM algorithm does not apply to all models, it is
powerful and elegant: one of the most popular algorithms in statistics.

o It is well-suited to so-called missing data problems where you are
interested in maximizing with respect to 6 the likelihood function

L(6]y) =g (y|0)
where
g(10) = [ £(y.x/0) dx
o We call

o Y the incomplete data (i.e. the observed data) and X the missing data
or the augmented data
o (X,Y) the complete data (although remember that X is not observed!).

e More generally, we can have Y =h (X).
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@ We introduce the function Q : ® x ® — R

Q(0,0") =E [logf (y.x|0)]y, 0] = /Iogf(y,x|9) . f(x]y,0) dx.
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@ We introduce the function Q : ® x ® — R
Q(0,0") =E [logf (y.x|0)]y, 0] = /Iogf(y,x|9) . f(x]y,0) dx.

@ The EM algorithm is an iterative algorithm defined at iteration k + 1
by

0+ = argmax Q (O,Q(k)> : (2)
0c®
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@ We introduce the function Q: ® x ® — R
Q(0,0") =E [logf (y.x|0)]y, 0] = /Iogf(y,x|9) . f(x]y,0) dx.
@ The EM algorithm is an iterative algorithm defined at iteration k + 1

by

0+ = argmax Q (O,G(k)> : (2)
0c®

e Theorem: The sequence {G(k)} defined by (2) satisfies

(8 ]9) 2 (00]).
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o Example: Let

i.d.
Y ~rom(y) +(1-0)h(y)
where 6 € [0, 1] is unknown whereas m (y) and h(y) are known pdfs.
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o Example: Let

Y; "% 0m (y) + (1 6) h(y)

where 6 € [0, 1] is unknown whereas m (y) and h(y) are known pdfs.
@ We have

n

L(Oly) =g (y|0) =TT (Om(y)+ (1 —0)h(y)).

i=1
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o Example: Let
ii.d.
Y ~om(y) +(1-0)h(y)
where 6 € [0, 1] is unknown whereas m (y) and h(y) are known pdfs.
@ We have

n

L(Oly) =g (y|0) =TT (Om(y)+ (1 —0)h(y)).

i=1

@ Associate to each data Y; the latent variable X; € {1,2} which
indicates from which distribution Y; has been drawn, i.e.

YilXi=1~m(y) and Yi|Xi=2~ h(y)
and Pr(X; =1)=1—Pr(X; =2) = 6. Thus we have
Flyx[0)= T[] omG) [T (1-0)h(x)
{ixj=1} {ixj=2}

=0m(1-0)" [[ m) [ h(w)

{i:X,':].} {i:X,'ZZ}
where nj = Y1 6; (x;) with dp, (a) = 1 if a = b and zero otherwise.

AD () January 2008 11/ 25



e From the expression of f (y,x|6), it follows that

f(x|y. ¢ Hf xi| yi, 0

where
f(xi=1ly,0) = 1—f(x=2|y.0)
. f (X,' = 1,y,-,0’)
o f(X/ZI,y;,Q/)+f(X; :2,)/,',9/)
9/’"(}/:')

O'm(yi))+(1—-6")h(yi)
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Q0.6) = ). logf(xy]0) . f(x]y o)

xe{1,2}"

- ¥ [(251 (log 6 + log m (y )))

xe{1,2}"

n

(Z(Sz (X,> (log ( 1—9)—|—|ogh(y,))] f(xil i 0)

i=1

S

_ f( :1|y,-,9)(|og9+|0gm()/i))

Zn:f i =2|y,0") (log (1 —0)+logh(yi)).

1
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@ We have

plk+1) — argmax @ (0,9(")) )
9cO
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@ We have

plktl) — argmax @ (0,9(")) )

0cO
@ We have
dQ (9,9<k>) YO f (x,- - 1|y,-,9(k)> nf (x,- - 2yy,-,9<k>)
do - 0 - 1-6 '
(k)
By solving % = 0 we obtain
n - k)
glk+1) Yie f (X’ 1.0 )

Yo f (Xi = 1\}//,9“()) + X f (Xi = 2|yi,9(k))
Lio1 0" m ()
L7y 090m () + iy (1 0%)) ()
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@ We have

plktl) — argmax @ (0,9(")) )

0cO
@ We have
dQ (9,9<k>) nf (x,- - 1|y,-,9(k)> nf (x,- - 2yy,-,9<k>)
do - 0 - 1-6 '
(k)
By solving % = 0 we obtain
n - k)
0(k+1) _ /:1f<XI 1|y119 )

i1 f (Xi = 1\}//,9“()) +Yig f (Xi = 2|yi,9(k))
=1 0" m (vi)
21 0%m () + X0y (1-090) h()

@ This updating equation is simple to implement and it is guaranteed
that L (9“‘“)’ y) >L (G(k)‘ y>.
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@ Finite mixture of Gaussians

v ' Y N (e 0%)

k=1

where 71, > 0 and Z’;Zl T, = 1.
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@ Finite mixture of Gaussians
iid, & N ’
Yi ~ an (M %)
k=1

where 71, > 0 and Z’;Zl T, = 1.
@ This simple mixture model is widely used in practice for density
estimation and clustering.
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@ Finite mixture of Gaussians
II p
Yi '~ Z Vk' Uk)

where 71, > 0 and Z’;Zl T, = 1.
@ This simple mixture model is widely used in practice for density
estimation and clustering.

o Given n observations Y =y = (y1, ..., yn), we are interested in the

MLE estimate of 6 = (7‘[1, e Ty My o ‘up,a%, ...,Uf,) where

- - 1 (yi _P‘k)z
g(yl0) = ———exp (—
g kgl ,/27‘[(7%( 20%

January 2008
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Similarly to the previous lecture, we associate to each Y; a latent
variable X; € {1, ..., p} such that
Pr(X; =j) = 7y and Y| (Xi =) ~ N (. 02).

7

It follows that

2
Flxyl0) =[] 2= o)

exp | — 5
i=1 \/2m02 20

f(x|0.y) =T]f(xl0 v)
i=1

and

where

TT;/ 0 exp (— (y,- — yj)2 / (2(7]2))

f(xi=jl6.yi)=

AD () January 2008

Ly 7/ Tmexp (= (vi = 1) / (203,))
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@ We have

Q(e,e)(k)) = Ylogf (xy|6) . f<x|9(k),y)

2 n
=cst+ YY", |logmy — 1 log o2 — (yi;éx") ) Hf <x,-] O(k),y,->
X i i=1
=cst+Yr_, [(log Tm — % log aﬁq) (27:1 f (X,' = m| 9(").y,-)>
Yy, 7(y’2_;éqm)2f (X,- = m| G(k),yi)] :
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@ We have to maximize @ (Q,G(k)) over a constrained set, i.e.

P _17Tm = 1. We introduce a Lagrange multiplier A and maximize

instead
p
Q (6.6%) +2 (Z T — 1) .
m=1
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@ We have to maximize @ ( (k)) over a constrained set, i.e.

P _17Tm = 1. We introduce a Lagrange multiplier A and maximize

mstead
Q(@,Q(k)> A (i 7rm—1> :
m=1
o We have
aQ(aiz(k)) _(z lf(xélﬁm\ﬁ’ v)) FEL, Ut ) f(Xf _ m|9(k),y,->
2(7%‘”% = i Xiy £ (i = m] o J’")

- Yy yif (Xi = m| G(k),y,-) .
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o It follows that

Yim1 yif (x,- = m| g(k),y’,>

Y f (X,‘ = m| G(k),y;) '

2(k+1)  _ Yo <YI — }lffﬂ))z f (x,- = m| g(k),y’.>
S1y f (= m|6®), ) -

y%+n
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o It follows that

Y vif (x,- = m| G(k),y,'>

p(k+) ,
" Yioaf (Xi = m| G(k)v)’i)
(72(k+1) _ L <yi B yg’;+1)>2 f <Xi =m| G(k),y,->
i} Yy f (Xi = m| G(k)vy/') |
o We have
9Q (6,0 Y f (xi=mlo%,y,
gnm ) - ( : ( TTm >> A
k
) s (o
m=1 i=1




o Although the EM is widely used to compute the MLE for finite
mixture of Gaussians, we have

g (y|6) — oo when Jo; — 0.
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o Although the EM is widely used to compute the MLE for finite
mixture of Gaussians, we have

g (y|6) — oo when Jo; — 0.

@ Hence, the true MLE estimate does not give sensible results. The EM
is used to find a sensible local maximum of g (y|0) .
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o Although the EM is widely used to compute the MLE for finite
mixture of Gaussians, we have

g (y|6) — oo when Jo; — 0.

@ Hence, the true MLE estimate does not give sensible results. The EM
is used to find a sensible local maximum of g (y|0) .

@ A way to circumvent this problem consists of introducing a prior
distribution p (8) on 0 and to use the EM to maximize g (y|0) p (6).
We will discuss this Bayesian approach later.
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@ A (somewhat) important generalization of the EM consists of
considering cases where you are interested in maximizing with respect
to 6 the likelihood function

L(6]y) =g (y|0) where g (y|0) follows from f (z|6).
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@ A (somewhat) important generalization of the EM consists of
considering cases where you are interested in maximizing with respect
to 6 the likelihood function

L(6]y) =g (y|0) where g (y|0) follows from f (z|6).

o We call

o Y the incomplete data (i.e. the observed data) and Z are the complete
data.
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@ A (somewhat) important generalization of the EM consists of
considering cases where you are interested in maximizing with respect
to 6 the likelihood function

L(6]y) =g (y|0) where g (y|0) follows from f (z|6).

o We call

o Y the incomplete data (i.e. the observed data) and Z are the complete
data.

o We can have Y as a subset of Z, i.e. Z=(X,Y), or Y =h(Z) where h
is a many-to-one mapping.
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@ A (somewhat) important generalization of the EM consists of
considering cases where you are interested in maximizing with respect
to 6 the likelihood function

L(6]y) =g (y|0) where g (y|0) follows from f (z|6).

o We call

o Y the incomplete data (i.e. the observed data) and Z are the complete
data.

o We can have Y as a subset of Z, i.e. Z=(X,Y), or Y =h(Z) where h
is a many-to-one mapping.

@ The EM proceeds as follows

glk+1) — argmax/logf z|0) (z|y,9(k)> dz
0cO

AD () January 2008 21 /25



@ Example: Consider the following genetic linkage model where
observations

(Y1, Y, Vi, Y4)~M<n' (1-0), a1-0), Z)

-Mr—\
-M

s
4’

l\.)\r—l
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@ Example: Consider the following genetic linkage model where
observations
1 61

(vl,yz,vg,mNM<n;2+4,4(1—9),1(1—9),z>.

@ The observed likelihood function is given by

g (y]6) o (240)" (1 6)>7 g%,

January 2008 22 /25



@ Example: Consider the following genetic linkage model where

observations
(Vi Yo, Y5, Ya) ~ M <n;;+i,i(1—9),i(1—e),i>.
@ The observed likelihood function is given by
g (y]0) o (240)" (1— )" g%,
@ Introduce the artificial missing data (X, X2) such that Y; = X1 + X;
and define

Z = (4,...2) = (X1, X2, Yo, Y3, Ya)
161 1 0
~ =, = 1-60),-(1—-60),-).
M(”’2’4’ (1-6).3( )’4>
In this case we have Y =h (Z); i.e.
(Yl, Y5, Y3, Y4) = (Zl + £, Z3, Z4,Z5). This equation defines
f (z[ 9) o (1 _ 9))’2+Y3 gxetya

and clearly we have
Yoz 1 (2]0) 62142, (v1) 625 (v2) 62, (3) 625 (v4) =& (] 0).
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o We have f (z]y,0') = f (x1, x|y

f(x, x|y 0) =

0') 0y, (23) Oy; (1) Oy, (25) where
f(xi, x2|y1,0")

1 o'

= M| wn; 2 4 )
1 ,60"1 0
stT 3ty

Q (9 9(“) = Yo, lest+ (y2 + y3) log (1= 6) + (x2 + ya) log 6]
X f (Xl,X2|y1,9(k)>

=cst+ (yo+y3)log (1 —6) + (IE (X2| Vi, G(k)) +y4) log 6

Now we have

where [E (Xz\y1,9(k)) "n; (9 thus
20 (0.0) (rty) | Nt
—ag =0 e t % N 0
(k+1) _ o(k) )
=0 —(y2+9 +y2+y3+y4) (y2+9 + ya
AD ()
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Proof of Theorem for Expectation-Maximization Algorithm

e We want to show that L (9(“1)‘ y) > L (G(k)‘ y) for glk+1) =

argergax Q (9, G(k)).
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Proof of Theorem for Expectation-Maximization Algorithm

e We want to show that L (9(“1)‘ y) > L (0(")‘ y) for glk+1) =

argmax @ (9, G(k)).
@
@ Proof: We have

Fix.y) = FOO o) = 1 (a)y) = £x¥IO)

g (y|0) f(x[0,y)

thus
log L (6]y) = log f (x,y|6) —logf (x]0,y)

and for any value g(k)

log L (6]y) /Iogf x,y|0).f <x|9(k),y) dx

(99< 1)

/Iogf x| 6,y <x| G(k),y> dx.
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@ Now the EM ensures by construction that
Q (9(k+1), G(k)) > Q <9(k), Q(k)). So if we can prove that

/Iogf (x\ 9(k+1),y) x <x| G(k),y> dx
< /Iogf (x|9(k),y> £ (x|9(k),y> dx

then the Theorem is proved.
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@ Now the EM ensures by construction that
Q (9(k+1), G(k)) > Q <9(k), Q(k)). So if we can prove that

/Iogf (x\ 9(k+1),y) x <x| G(k),y> dx
/Iogf (x| G(k),y> £ (x|9(k),y> dx

then the Theorem is proved.
@ We have thanks to Jensen's inequality

x| glk+1). )

/Iog x|9 ) £ <x‘g(k),y> dx
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@ Now the EM ensures by construction that
Q (9(k+1), G(k)) > Q <9(k), Q(k)). So if we can prove that

/Iogf (x\ 9(k+1),y) x <x| G(k),y> dx
/Iogf (x|9(k),y> £ (x|9(k),y> dx

then the Theorem is proved.
@ We have thanks to Jensen's inequality

X|9 /<+1),y
/Iog x|9 >).f<x6 )dx
< Iog/ X|’99k+1 ) f (x\(ﬂ“,y) dx =0
x

@ There are numerous variations of the EM in the literature. We will
discuss some later.
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