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Maximum Likelihood Estimation

Let f (xj θ) denote the joint pdf or pmf of the sample
X = (X1, ...,Xn). Then given that X = x is observed, the likelihood
function is given by f (xj θ) = L ( θj x) and l (θ) = log L ( θj x).

The Maximum Likelihood Estimate (MLE) is de�ned by

bθ = argmax
θ2Θ

l (θ) .

Under regularity assumptions, the MLE is

consistent, i.e. bθn P! θ� where θ� is the true value
asymptotically e¢ cient, i.e. the MLE has the smallest variance, at least
for large samples.
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Standard Numerical Methods

Assume θ = (θ1, ...., θp)
T, then under regularity assumptions the

MLE are the values that solve

∂l (θ)
∂θi

= 0 for i = 1, ..., p. (1)

Example: if Xi
i.i.d.� N (θ, 1) then

L (θj x) =
n

∏
i=1

1p
2π

exp

 
� (xi � θ)2

2

!
and

dl (θ)
dθ

= 0,
n

∑
i=1
(xi � θ) = 0) bθ = 1

n

n

∑
i=1
xi .

One can check d 2 l(θ)
d θ2

���bθ < 0, hence it is a maximum.
In more complex examples, we cannot solve (1) easily and we need to
rely on numerical methods.
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Newton-Raphson Optimization

Iterative algorithm to �nd the MLE of θ = (θ1, ...., θp)
T.

Assume θ(k ) is the estimate at iteration k then

∂l (θ)
∂θ

�
∂l
�

θ(k )
�

∂θ
+

∂2l
�

θ(k )
�

∂θ∂θT

�
θ � θ(k )

�
.

By writing

g (θ) =

�
∂l (θ)
∂θ1

,
∂l (θ)
∂θ2

, ...,
∂l (θ)
∂θp

�T
,

H (θ) =
∂2l (θ)

∂θ∂θT
=

�
∂2l (θ)
∂θi∂θi

�
this means that

0 = g (θ) � g
�

θ(k )
�
+H

�
θ(k )

� �
θ � θ(k )

�
This suggests

θ(k+1) = θ(k ) �H
�

θ(k )
��1

g
�

θ(k )
�

If l (θ) is quadratic, then we �nd the solution in one iteration. It
suggests that the algorithm will work well if the quadratic
approximation of l (θ) is good, otherwise it might be unreliable.
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Di¢ culties with Newton-Raphson

It may prove di¢ cult to calculate the Hessian matrix.

At each iteration, it requires computing a new Hessian matrix.

Depending on the initial value, the method may converge or diverge.

Quasi-Newton methods have been proposed to mitigate these
problems: it avoids calculating the Hessian H

�
θ(k )

�
and step widths

can be introduced to accelerate convergence/prevent divergence.
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Quasi-Newton maximization

Determine a search direction vector dk = H�1k g
�

θ(k )
�
.

Determine the optimum step width λk maximizing l
�

θ(k ) + λdk
�
.

Set θ(k+1) = θ(k ) + λkdk and yk = g
�

θ(k+1)
�
� g

�
θ(k )

�
.

Obtain an estimate of H
�

θ(k+1)
��1

by using

Davidson-Fletcher-Powell (DFP) or
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

H�1k+1 = H�1k +
sk sTk
sTk yk

� H
�1
k ykyTk H

�1
k

yTk H
�1
k yk

,

H�1k+1 = H�1k +
skyTk H

�1
k

sTk yk
� H

�1
k yk sTk
sTk yk

+

 
1+

ykH�1k yTk
sTk yk

!
sk sTk
sTk yk

where sk = θ(k+1) � θ(k ).
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The algorithm is initialized with θ(0) and H�10 where H�10 is picked at
the identity matrix, an appropriately scale diagonal matrix or an

approximate values of H
�

θ(0)
��1

.

In situations where g (θ) is also di¢ cult to compute, it can be
computed approximately numerically.

Example: Consider Xi
i.i.d.� f

�
x j µ, τ2

�
where

f
�
x j µ, τ2

�
=
1
π

τ

(y � µ)2 + τ2

so for n observations

∂l
�
µ, τ2

�
∂µ

= 2
N

∑
i=1

Xi � µ

(Xi � µ)2 + τ2

∂l
�
µ, τ2

�
∂τ2

=
n
2τ2

�
N

∑
i=1

1

(Xi � µ)2 + τ2
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Numerical results for θ(0) =
�

µ(0), τ2(0)
�T
= (0, 1)T .

k µ(k ) τ2(k ) �l
�

θ(k )
�

∂l(θ(k ))
∂µ

∂l(θ(k ))
∂τ2

0 0.000 1.000 48.126 -0.839 -1.098
1 0.231 1.302 47.874 0.188 -0.144
2 0.180 1.357 47.865 -0.046 -0.040
3 0.189 1.379 47.865 0.002 -0.001
4 0.189 1.380 47.865 -0.001 0.000
5 0.189 1.380 47.865 0.000 0.000

The quasi-Newton method converges in 5 iterations here.

Many statisticians are not big fans of such methods and prefer using
the Expectation-Maximization algorithm. (Note: statisticians should
follow optimization courses).
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Expectation-Maximization Algorithm

Although the EM algorithm does not apply to all models, it is
powerful and elegant: one of the most popular algorithms in statistics.

It is well-suited to so-called missing data problems where you are
interested in maximizing with respect to θ the likelihood function

L ( θj y) = g (yj θ)

where
g (yj θ) =

Z
f (y, xj θ) dx.

We call

Y the incomplete data (i.e. the observed data) and X the missing data
or the augmented data
(X,Y) the complete data (although remember that X is not observed!).

More generally, we can have Y =h (X).
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We introduce the function Q : Θ�Θ ! R

Q
�
θ, θ0

�
= E

�
log f (y, xj θ)j y, θ0

�
=
Z
log f (y, xj θ) . f

�
xj y, θ0

�
dx.

The EM algorithm is an iterative algorithm de�ned at iteration k + 1
by

θ(k+1) = argmax
θ2Θ

Q
�

θ, θ(k )
�
. (2)

Theorem: The sequence
n

θ(k )
o
de�ned by (2) satis�es

L
�

θ(k+1)
��� y� � L� θ(k )

��� y� .
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Example: Let

Yi
i.i.d.� θm (y) + (1� θ) h (y)

where θ 2 [0, 1] is unknown whereas m (y) and h (y) are known pdfs.

We have

L ( θj y) = g (yj θ) =
n

∏
i=1
(θm (yi ) + (1� θ) h (yi )) .

Associate to each data Yi the latent variable Xi 2 f1, 2g which
indicates from which distribution Yi has been drawn, i.e.

Yi jXi = 1 � m (y) and Yi jXi = 2 � h (y)

and Pr (Xi = 1) = 1� Pr (Xi = 2) = θ. Thus we have

f (y, xj θ) = ∏
fi :xi=1g

θm (yi ) ∏
fi :xi=2g

(1� θ) h (yi )

= θn1 (1� θ)n2 ∏
fi :xi=1g

m (yi ) ∏
fi :xi=2g

h (yi )

where nj = ∑n
i=1 δj (xi ) with δb (a) = 1 if a = b and zero otherwise.
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From the expression of f (y, xj θ), it follows that

f
�
xj y, θ0

�
=

n

∏
i=1
f
�
xi j yi , θ0

�
where

f
�
xi = 1j yi , θ0

�
= 1� f

�
xi = 2j yi , θ0

�
=

f
�
xi = 1, yi , θ

0�
f
�
xi = 1, yi , θ

0�+ f �xi = 2, yi , θ0�
=

θ0m (yi )
θ0m (yi ) +

�
1� θ0

�
h (yi )

.
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Q
�
θ, θ0

�
= ∑

x2f1,2gn
log f (x, yj θ) . f

�
xj y, θ0

�
= ∑

x2f1,2gn

" 
n

∑
i=1

δ1 (xi ) (log θ + logm (yi ))

!

+

 
n

∑
i=1

δ2 (xi )

!
(log (1� θ) + log h (yi ))

#
n

∏
i=1
f
�
xi j yi , θ0

�
=

n

∑
i=1
f
�
xi = 1j yi , θ0

�
(log θ + logm (yi ))

+
n

∑
i=1
f
�
xi = 2j yi , θ0

�
(log (1� θ) + log h (yi )) .
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We have
θ(k+1) = argmax

θ2Θ
Q
�

θ, θ(k )
�
.

We have

dQ
�

θ, θ(k )
�

dθ
=

∑n
i=1 f

�
xi = 1j yi , θ(k )

�
θ

�
∑n
i=1 f

�
xi = 2j yi , θ(k )

�
1� θ

.

By solving
dQ(θ,θ(k ))

d θ = 0 we obtain

θ(k+1) =
∑n
i=1 f

�
xi = 1j yi , θ(k )

�
∑n
i=1 f

�
xi = 1j yi , θ(k )

�
+∑n

i=1 f
�
xi = 2j yi , θ(k )

�
=

∑n
i=1 θ(k )m (yi )

∑n
i=1 θ(k )m (yi ) +∑n

i=1

�
1� θ(k )

�
h (yi )

.

This updating equation is simple to implement and it is guaranteed
that L

�
θ(k+1)

��� y� � L� θ(k )
��� y�.
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Finite mixture of Gaussians

Yi
i.i.d.�

p

∑
k=1

πkN
�
µk , σ

2
k

�
where πk � 0 and ∑p

k=1 πk = 1.

This simple mixture model is widely used in practice for density
estimation and clustering.

Given n observations Y = y = (y1, ..., yn), we are interested in the
MLE estimate of θ =

�
π1, ...,πp , µ1, ..., µp , σ

2
1, ..., σ

2
p

�
where

g (yj θ) =
n

∏
i=1

0@ p

∑
k=1

1q
2πσ2k

exp

 
� (yi � µk )

2

2σ2k

!1A .
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Similarly to the previous lecture, we associate to each Yi a latent
variable Xi 2 f1, ..., pg such that

Pr (Xi = j) = πj and Yi j (Xi = j) � N
�

µj , σ
2
j

�
.

It follows that

f (x, yj θ) =
n

∏
i=1

πxiq
2πσ2xi

exp

0B@�
�
yi � µxi

�2
2σ2xi

1CA
and

f (xj θ, y) =
n

∏
i=1
f (xi j θ, yi )

where

f (xi = j j θ, yi ) =
πj/σj exp

�
�
�
yi � µj

�2
/
�
2σ2j

��
∑p
m=1 πm/σm exp

�
� (yi � µm)

2 / (2σ2m)
� .
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We have

Q
�

θ, θ(k )
�
= ∑

x
log f (x, yj θ) . f

�
xj θ(k ), y

�
= cst +∑

x
∑n
i=1

 
logπxi � 1

2 log σ2xi �
�
yi�µxi

�2
2σ2xi

!
n

∏
i=1
f
�
xi j θ(k ), yi

�
= cst +∑p

m=1

h�
logπm � 1

2 log σ2m
� �

∑n
i=1 f

�
xi = mj θ(k ), yi

��
�∑n

i=1
(yi�µm )

2

2σ2m
f
�
xi = mj θ(k ), yi

��
.
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We have to maximize Q
�

θ, θ(k )
�
over a constrained set, i.e.

∑p
m=1 πm = 1. We introduce a Lagrange multiplier λ and maximize

instead

Q
�

θ, θ(k )
�
+ λ

 
p

∑
m=1

πm � 1
!
.

We have

∂Q(θ,θ(k ))
∂σ2m

= � (∑n
i=1 f ( xi=mjθ(k ),yi))

2σ2m
+∑n

i=1
(yi�µm )

2

2σ4m
f
�
xi = mj θ(k ), yi

�
,

2σ2m
∂Q(θ,θ(k ))

∂µm
= µm ∑n

i=1 f
�
xi = mj θ(k ), yi

�
�∑n

i=1 yi f
�
xi = mj θ(k ), yi

�
.
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It follows that

µ(k+1)m =
∑n
i=1 yi f

�
xi = mj θ(k ), yi

�
∑n
i=1 f

�
xi = mj θ(k ), yi

� ,
σ
2(k+1)
m =

∑n
i=1

�
yi � µ

(k+1)
m

�2
f
�
xi = mj θ(k ), yi

�
∑n
i=1 f

�
xi = mj θ(k ), yi

� .

We have

∂Q
�

θ, θ(k )
�

∂πm
=

�
∑n
i=1 f

�
xi = mj θ(k ), yi

��
πm

+ λ,

∂Q
�

θ, θ(k )
�

∂λ
=

p

∑
m=1

πm � 1 ) π
(k+1)
m =

1
N

n

∑
i=1
f
�
xi = mj θ(k ), yi

�
.
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Although the EM is widely used to compute the MLE for �nite
mixture of Gaussians, we have

g (yj θ)! ∞ when 9σi ! 0.

Hence, the true MLE estimate does not give sensible results. The EM
is used to �nd a sensible local maximum of g (yj θ) .
A way to circumvent this problem consists of introducing a prior
distribution p (θ) on θ and to use the EM to maximize g (yj θ) p (θ).
We will discuss this Bayesian approach later.
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A (somewhat) important generalization of the EM consists of
considering cases where you are interested in maximizing with respect
to θ the likelihood function

L ( θj y) = g (yj θ) where g (yj θ) follows from f (zj θ) .

We call

Y the incomplete data (i.e. the observed data) and Z are the complete
data.
We can have Y as a subset of Z, i.e. Z = (X,Y), or Y =h (Z) where h
is a many-to-one mapping.

The EM proceeds as follows

θ(k+1) = argmax
θ2Θ

Z
log f (zj θ) . f

�
zj y, θ(k )

�
dz
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Example: Consider the following genetic linkage model where
observations

(Y1,Y2,Y3,Y4) �M
�
n;
1
2
+

θ

4
,
1
4
(1� θ) ,

1
4
(1� θ) ,

θ

4

�
.

The observed likelihood function is given by

g (yj θ) ∝ (2+ θ)y1 (1� θ)y2+y3 θy4 .

Introduce the arti�cial missing data (X1,X2) such that Y1 = X1 + X2
and de�ne

Z = (Z1, ...,Z5) = (X1,X2,Y2,Y3,Y4)

� M
�
n;
1
2
,

θ

4
,
1
4
(1� θ) ,

1
4
(1� θ) ,

θ

4

�
.

In this case we have Y =h (Z); i.e.
(Y1,Y2,Y3,Y4) = (Z1 + Z2,Z3,Z4,Z5). This equation de�nes

f (zj θ) ∝ (1� θ)y2+y3 θx2+y4

and clearly we have
∑z1,z2 f (zj θ) δz1+z2 (y1) δz3 (y2) δz4 (y3) δz5 (y4) =g (yj θ).
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The observed likelihood function is given by
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4
(1� θ) ,

1
4
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θ

4

�
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In this case we have Y =h (Z); i.e.
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We have f
�
zj y, θ0

�
= f

�
x1, x2j y, θ0

�
δy2 (z3) δy3 (z4) δy4 (z5) where

f
�
x1, x2j y, θ0

�
= f

�
x1, x2j y1, θ0

�
= M

 
y1;

1
2

1
2 +

θ0

4

,
θ0

4
1
2 +

θ0

4

!
.

Now we have

Q
�

θ, θ(k )
�
= ∑x1,x2 [cst + (y2 + y3) log (1� θ) + (x2 + y4) log θ]

�f
�
x1, x2j y1, θ(k )

�
= cst + (y2 + y3) log (1� θ) +

�
E
�
X2j y1, θ(k )

�
+ y4

�
log θ

where E
�
X2j y1, θ(k )

�
= y1 θ(k )

2+θ(k )
, thus

dQ(θ,θ(k ))
d θ = 0, � (y2+y3)

(1�θ)
+

y1 θ(k )

2+θ(k )
+y4

θ = 0

) θ(k+1) =
�
y1 θ(k )

2+θ(k )
+ y2 + y3 + y4

��1 �
y1 θ(k )

2+θ(k )
+ y4

�
.
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Proof of Theorem for Expectation-Maximization Algorithm

We want to show that L
�

θ(k+1)
��� y� � L� θ(k )

��� y� for θ(k+1) =

argmax
θ2Θ

Q
�

θ, θ(k )
�
.

Proof: We have

f (xj θ, y) = f (x, yj θ)
g (yj θ) , g (yj θ) = L ( θj y) = f (x, yj θ)

f (xj θ, y)
thus

log L (θj y) = log f (x, yj θ)� log f (xj θ, y)
and for any value θ(k )

log L ( θj y) =
Z
log f (x, yj θ) .f

�
xj θ(k ), y

�
dx| {z }

=Q(θ,θ(k ))

�
Z
log f (xj θ, y) .f

�
xj θ(k ), y

�
dx.
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Now the EM ensures by construction that
Q
�

θ(k+1), θ(k )
�
� Q

�
θ(k ), θ(k )

�
. So if we can prove thatZ

log f
�
xj θ(k+1), y

�
.f
�
xj θ(k ), y

�
dx

�
Z
log f

�
xj θ(k ), y

�
.f
�
xj θ(k ), y

�
dx

then the Theorem is proved.

We have thanks to Jensen�s inequality

Z
log

f
�
xj θ(k+1), y

�
f
�
xj θ(k ), y

� .f
�
xj θ(k ), y

�
dx

� log
Z f

�
xj θ(k+1), y

�
f
�
xj θ(k ), y

� .f
�
xj θ(k ), y

�
dx = 0

There are numerous variations of the EM in the literature. We will
discuss some later.
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