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MLE and EM

The EM consists of considering maximizing with respect to θ the
likelihood function

L ( θj y) = g (yj θ) where g (yj θ) =
Z
f (x, yj θ) dx.

We call

Y the incomplete data (i.e. the observed data) and (X,Y) are the
complete data.

The EM proceeds as

bθj+1 = argmax
θ2Θ

Z
log f (x, yj θ) . f

�
xj y,bθj� dx
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Proof of Theorem for Expectation-Maximization Algorithm

We want to show that L
�bθj+1��� y� � L�bθj ��� y� for bθj+1 = argmax

θ2Θ

Q
�

θ,bθj�.
Proof: We have

f (xj θ, y) = f (x, yj θ)
g (yj θ) , g (yj θ) = L ( θj y) = f (x, yj θ)

f (xj θ, y)
thus

log L ( θj y) = log f (x, yj θ)� log f (xj θ, y)

and for any value bθj
log L ( θj y) =

Z
log f (x, yj θ) .f

�
xjbθj , y� dx| {z }

=Q
�

θ,bθj�
�
Z
log f (xj θ, y) .f

�
xjbθj , y� dx.
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Now the EM ensures by construction that Q
�bθj+1,bθj� � Q �bθj ,bθj�.

So if we can prove thatZ
log f

�
xjbθj+1, y� .f �xjbθj , y� dx � Z log f �xjbθj , y� .f �xjbθj , y� dx

then the Theorem is proved.

We have

Z
log

f
�
xjbθj+1, y�

f
�
xjbθj , y� .f

�
xjbθj , y� dx

� log
Z f

�
xjbθj+1, y�

f
�
xjbθj , y� .f

�
xjbθj , y� dx = 0

where we have use Jensen�s inequality as log is concave.

There are numerous variations of the EM in the literature. We will
discuss some later.
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Calculation of the Information Matrix via the EM

The EM does not provide an obvious way to compute the observed
information matrix given by

�∂2 log L ( θj y)
∂θ2

which is an estimate of the inverse covariance matrix of the MLE.

This quantity is very important in practice and allows us to get some
approximate con�dence intervals.

Is it possible to obtain this quantity using EM-type quantities?
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Missing Information Principle

�∂2 log L ( θj y)
∂θ2| {z }

observed info.

= �
Z

∂2 log f (x, yj θ)
∂θ2

f (xj θ, y) dx| {z }
complete info.

�
�
�
Z

∂2 log f (xj θ, y)
∂θ2

f (xj θ, y) dx
�

| {z }
missing info

Proof: It follows straightforwardly from the following identity valid for
any x

log L ( θj y) = log f (x, yj θ)� log f (xj θ, y) .
The rate of CV of the EM is highly dependent on the �ratio�observed
info/missing info. The more informative the missing variables are, the
slowler the convergence of the algorithm.
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Proposition : We have

� ∂2 log L( θjy)
∂θ2

= �
R ∂2 log f ( x,yjθ)

∂θ2
f (xj θ, y) dx�cov

�
∂ log f ( x,yjθ)

∂θ

��� θ, y
�

= �
R ∂2 log f ( x,yjθ)

∂θ2
f (xj θ, y) dx�

R ∂ log f ( x,yjθ)
∂θ

∂ log f ( x,yjθ)T
∂θ f (xj θ, y) dx

+ ∂ log L( θjy)
∂θ

∂ log L( θjy)
∂θ

T
(Louis�identity)

as

∂ log L ( θj y)
∂θ

=
Z

∂ log f (x, yj θ)
∂θ

f (xj θ, y) dx (Fisher�s identity)
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Proof. Fisher�s identity is trivial. We have

�
R ∂2 log f ( xjθ,y)

∂θ2
f (xj θ, y) dx =

R ∂ log f ( xjθ,y)
∂θ

∂ log f ( xjθ,y)T
∂θ f (xj θ, y) dx

and
∂ log f (xj θ, y)

∂θ
=

∂ log f (x, yj θ)
∂θ

� ∂ log L ( θj y)
∂θ

.

So the result follows directly by noting thatR ∂ log f ( x,yjθ)
∂θ

∂ log L( θjy)T
∂θ f (xj θ, y) dx = ∂ log L( θjy)

∂θ
∂ log L( θjy)

∂θ

T
.

Note that Louis�identity is not very friendly.... and is not a direct
byproduct of the EM.
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Proposition. We have

∂2 log L ( θj y)
∂θ2

=

(
∂2Q

�
θ0, θ

�
∂θ02

+
∂2Q

�
θ0, θ

�
∂θ0∂θ

)�����
θ0=θ

Proof. We show how it is possible to obtain such a result starting
from the key identity, for any θ

log L
�

θ0
�� y� = Q �θ0, θ�� Z log f �xj θ0, y� .f (xj θ, y) dx.

Moreover We haveR ∂ log f ( xjθ,y)
∂θ .f (xj θ, y) dx=0,R ∂2 log f ( xjθ,y)
∂θ2

.f (xj θ, y) dx =�
R ∂ log f ( xjθ,y)

∂θ
∂ log f ( xjθ,y)T

∂θ .f (xj θ, y) dx.
(1)

It follows that
∂ log L

�
θ0
�� y�

∂θ0
=

∂Q
�
θ0, θ

�
∂θ0

� ∂

∂θ0

Z
log f

�
xj θ0, y

�
.f (xj θ, y) dx

(2)

thus for θ0 = θ we have ∂ log L( θjy)
∂θ =

�
∂Q(θ0,θ)

∂θ0

�����
θ0=θ

.
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Now di¤erentiating (2) with respect to θ0 and θ, we obtain

∂ log L
�

θ0
�� y�

∂θ02
=

∂Q
�
θ0, θ

�
∂θ02

�
Z

∂ log f
�
xj θ0, y

�
∂θ02

.f (xj θ, y) dx,

∂ log L
�

θ0
�� y�

∂θ0∂θ
= 0 =

∂Q
�
θ0, θ

�
∂θ0∂θ

�
Z

∂ log f
�
xj θ0, y

�
∂θ0

.
∂ log f (xj θ, y)T

∂θ
f (xj θ, y) dx

Substituting θ = θ0, adding the two equations and using (1), we
obtain

∂ log L ( θj y)
∂θ2

=

(
∂2Q

�
θ0, θ

�
∂θ02

+
∂2Q

�
θ0, θ

�
∂θ0∂θ

)�����
θ0=θ

.

This equality is valid at any point θ.
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Example: Remember the genetic example where

(Y1,Y2,Y3,Y4) �M
�
n;
1
2
+

θ

4
,
1
4
(1� θ) ,

1
4
(1� θ) ,

θ

4

�
.

The observed log-likelihood function is given by

log L ( θj y) = cst + y1 log (2+ θ) + (y2 + y3) log (1� θ) + y4 log θ.

So we obtain via a direct calculation

∂ log L ( θj y)
∂θ2

= � y1
(2+ θ)2

� y2 + y3
(1� θ)2

� y4
θ2
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Introduce the arti�cial missing data (X1,X2) such that Y1 = X1 + X2
and de�ne

Z = (X1,X2,Y2,Y3,Y4) �M
�
n;
1
2
,

θ

4
,
1
4
(1� θ) ,

1
4
(1� θ) ,

θ

4

�
.

Then

log f
�
zj θ0

�
= cst + (y2 + y3) log

�
1� θ0

�
+ (x2 + y4) log θ0

and E (X2j y1, θ) = y1 θ
2+θ so

Q
�
θ0, θ

�
= cst + (y2 + y3) log

�
1� θ0

�
+

�
y1

θ

2+ θ
+ y4

�
log θ0.

The second derivatives are given by

∂2Q(θ0,θ)
∂θ02

= � (y2+y3)

(1�θ0)
2 �

(y1 θ
2+θ+y4)

θ02
,

∂2Q(θ0,θ)
∂θ∂θ0

= 2y1
(2+θ)2

1
θ0

and we can indeed check that�
∂2Q(θ0,θ)

∂θ02
+

∂2Q(θ0,θ)
∂θ0∂θ

�����
θ0=θ

= ∂ log L( θjy)
∂θ2

.
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The EM as a simple Surrogate Optimization Approach

The EM approach seems to be closely related to missing data
problems... but it can also be seen as a simple surrogate optimization
type approach.
Assume you are interested in maximizing a general function f (θ)

using an iterative algorithm generating an estimates bθj at iteration j .
Assume you can build a function g

�
θ,bθj� such that

g
�

θ,bθj� � f (θ) for any θ,

g
�bθj ,bθj� = f

�bθj�
then if bθj+1 =argmax g �θ,bθj� then

f
�bθj+1� � f �bθj� .
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The proof is trivial

f
�bθj+1�� f �bθj�

= f
�bθj+1�� g �bθj ,bθj�

= f
�bθj+1�� g �bθj+1,bθj�+ g �bθj+1,bθj�� g �bθj ,bθj�

� 0

as f
�bθj+1� � g �bθj+1,bθj� and g �bθj+1,bθj� � g �bθj ,bθj� .

The EM is a special case where

f (θ) = log L ( θj y) ,

g
�

θ,bθj� = Q
�

θ,bθj�+ Z log f �xjbθj , y� f �xjbθj , y� dx
as

log L ( θj y)�
R
log

f ( xjbθ,y)
f
�
xjbθj ,y� f

�
xjbθj , y� dx

= Q
�

θ,bθj�+ R log f �xjbθj , y� f �xjbθj , y� dx
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Application: Bradley-Terry

You have a collection of teams i = 1, ...,N

Each team i plays against the other teams (possibly several times).

You can only win or lose: no draw.

We are interesting in ranking the teams.
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We assign to each team i a parameter θi > 0.

We assume that probability that team i beats team j is

θi
θi + θj

So assuming that this happens nij times then the likelihood of
(θ1, ..., θk ) is

∏i ,j ;i 6=j

�
θi

θi + θj

�nij
so for any θki , θ

k
j

l (θ) = ∑i ,j ;i 6=j nij (log θi � log (θi + θj )) .
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We use the fact that for any u, v > 0

log
v
u
� v
u
� 1) � log v � � log u � v � u

u

so for any θ
(k )
i , θ

(k )
j

l (θ) = ∑i ,j ;i 6=j nij (log θi � log (θi + θj ))

� ∑i ,j ;i 6=j nij

0@log θi � log
�

θ
(k )
i + θ

(k )
j

�
�
(θi + θj )�

�
θ
(k )
i + θ

(k )
j

�
θ
(k )
i + θ

(k )
j

1A
Maximizing the rhs, we obtain

θ
(k+1)
i =

∑i 6=j nij

∑i 6=j (nij + nji ) /
�

θ
(k )
i + θ

(k )
j

�
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The key to design this Majorization-Maximization algorithm consists
of designing a suitable function g

�
θ, θ0

�
.

Several �recipes�are proposed in Hunter&Lange.

This class of algorithms has been underused in the literature.
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