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MLE and EM

@ The EM consists of considering maximizing with respect to 6 the
likelihood function

L(6]y) = g (v]6) where g (y]0) = [  (x.y|6) dx

o We call

o Y the incomplete data (i.e. the observed data) and (X,Y) are the
complete data.

@ The EM proceeds as

g = arg max/logf(x y| o) . (x\ y?) dx
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Proof of Theorem for Expectation-Maximization Algorithm

@ We want to show that L (@Hl‘ y) > L (?\j‘ y) for @Hl = arg max
0c®

Q (9,?).
@ Proof: We have

() = LI g y10) = Lioly) = L2

thus
log L (0]y) =log f (x,y|0) —log f (x|6,y)

and for any value o

log L (0]y) /Iogf x,y|0).f <x]§jy) dx
=0(0.¢')
—/Iogf(x|9,y) £ <x|§jy> dx
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@ Now the EM ensures by construction that @ (@JH@\J) >Q (??)
So if we can prove that

/Iogf (x|§/+1,y> f (x]?y) dx S/Iogf <x|§ly> f (x|§ly> dx

then the Theorem is proved.

@ We have

where we have use Jensen's inequality as log is concave.

@ There are numerous variations of the EM in the literature. We will
discuss some later.
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Calculation of the Information Matrix via the EM

@ The EM does not provide an obvious way to compute the observed
information matrix given by

_PlogL(8]y)
062
which is an estimate of the inverse covariance matrix of the MLE.

@ This quantity is very important in practice and allows us to get some
approximate confidence intervals.

@ Is it possible to obtain this quantity using EM-type quantities?
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@ Missing Information Principle

0% log L (0]y) 9 log f (x,y|0)
_ i _/ 07 f(x|6,y)dx
observed info. complete info.
2
—<— / J |0gge(2X| 6.y) f(x]0,y) dx>

missing info

@ Proof: It follows straightforwardly from the following identity valid for
any x
log L (6]y) = log f (x,y|0) —log f (x| 0,y).
@ The rate of CV of the EM is highly dependent on the ‘ratio’ observed
info/missing info. The more informative the missing variables are, the
slowler the convergence of the algorithm.
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o Proposition : We have
92 log L(8ly)
—Lee )

a0
2 % X
_ IW (x]6,y) dx—cov(ialogfa( yw))@ y)

_ f82|ogf xy|9 (Xlely) dx_falogfa(exy\@)alogfi()xyw (X’Q y) X

1208 L(Bly) DIBLOM T (| it identity)
as
2L gg(m y) = / dlog fa(ex y|6) f (x| 6,y) dx (Fisher's identity)
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Proof. Fisher's identity is trivial. We have

[ RGNS (x| 0,y) dx = [ FeLLHOA AL (x], ) o

and

dlogf (x|0,y) dlogf(x,y|6) dlogL(0]y)
90 N a0 a0 '

So the result follows directly by noting that
f dlog fa(ex ,y|0) dlog L(G\y (X| 0, y) dx — dlog L(G\y) alogaLéG\y)

@ Note that Louis’ identity is not very friendly.... and is not a direct
byproduct of the EM.
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@ Proposition. We have
dlogL(0]y) 2°Q (0',0) +82Q(9',9)
% 26" 00 |,

@ Proof. We show how it is possible to obtain such a result starting
from the key identity, for any 6

og L (6']y) = @ (¢.6) — [log (x/€',y) £ (x|0.y) dx
Moreover We have
i 9log f(x[6.y) fa(@xw’)') f(x]6,y) dx=0,

JEEELED £ (x| ,y) dx = — [ LeBLHOA DTN £ (50, y) dx
(1)

o It follows that
dlogL(0']y) 0Q (6.6
00’ T

log L 9Q (6.6
thus for 8’ = 6 we have 2 ogae(e\y) = { gg, ) .
0'=0
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) —aa(y/logf(xw/,y).f(xwyﬂ dx
(2)




o Now differentiating (2) with respect to 8’ and 0, we obtain

dlog L (6']y 2Q (8,6 dlogf x\9',y
ae(’2H _ 8(9/2 )_/ 8(9,2 ).f(x|9,y)dx,
sl (]y) _ , 90(0.0)
00'00 T 90’08
dlog f (x|0',y) dlogf (x|6,y)"
_/ - _ - f (x| 6,y) dx

o Substituting § = ¢, adding the two equations and using (1), we
obtain

dlogL(0]y) [ 0°Q(¢',0) N 02Q (0, 0)
062 N 002 00'90

0'=0

@ This equality is valid at any point 0.
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o Example: Remember the genetic example where

1

0
. (1-9), (1—9),4)_

-Ml—l
-M

0
(Y1, Y2, Y3, Y4) ~ M <n + g

@ The observed log-likelihood function is given by
log L(0]y) = cst+ y1log (24 60) + (y2 + y3) log (1 — 0) + ya log 6.
@ So we obtain via a direct calculation

dlogL(Bly) _~  »n ytys oy

30> (2460 (1-6)?° 6
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@ Introduce the artificial missing data (Xi, X2) such that Y; = X1 + X;
and define

,i(l—e),i(1—9),z>.

A~

1
Z— (X]_,X2, YQ, Y3, Y4) ~ M <n; E,

Then
log f (z|6') = cst+ (y2 + y3) log (1 —8') + (x2 + ya) log &’
and ]E(X2]y1,9) = ylfﬁ SO

+ y4> log 6’

]
Q (9',9) =cst+ (y2 + y3) log (1 - 9/) + <y12+9

@ The second derivatives are given by

’Q(06) _ (ntys) (rigfgtys)
3672 = (1_9,)2 07
PQ(06) _ 21 1
2000 T (240)2 0

and we can indeed check that

2Q(00) | 2°Q(¢'0) _ dlog L(0ly)
00" 26’00 gg
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The EM as a simple Surrogate Optimization Approach

@ The EM approach seems to be closely related to missing data
problems... but it can also be seen as a simple surrogate optimization
type approach.

@ Assume you are interested in maximizing a general function f (6)
using an iterative algorithm generating an estimates 9 at iteration J-

o Assume you can build a function g (9,?) such that
g(e,?) < £(8) forany 6,
(#.8) = (%)
then if @ 7' —argmaxg (9,@’) then

f (@"“) > f (@’) .
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@ The proof is trivial

() - (@)

@)@
- )7 ) e (7 9) -5 (09)

as f (gjﬂ) >g (§J+1§J) and g <§JH§/) >g (5151> .
@ The EM is a special case where

(o) = logL<9| ),
g(@,@j) = /Iogf(x]é’ly x\Hl )
log L (8] y) flog “’y)f(

(@) X')

-q(e. 6J>+flogf(x] y)f(x]ﬁj y) dx

as
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Application: Bradley-Terry

@ You have a collection of teamsi=1,.... N
@ Each team i plays against the other teams (possibly several times).
@ You can only win or lose: no draw.

@ We are interesting in ranking the teams.
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@ We assign to each team i a parameter 6; > 0.

@ We assume that probability that team i beats team j is

0
0; —I—QJ'

@ So assuming that this happens nj; times then the likelihood of

(91,...,9k) is
0, \"

so for any Gf-(, GJ/-(

1(0) = Z’.J;i# njj (log0; —log (0, +6;)) .
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@ We use the fact that for any u,v >0

gl <V 1= —logv> —logu— "
u u u
so for any Hgk),BJ(-k)
1O) = X iy i (log B —log (6; +6;))
(0, +6;) — 0/ +
k k :
> Y gz M (Iog 01 —tog (6" +6,") - g J(re(“

o Maximizing the rhs, we obtain

Zi;éj nij

Zi#j (njj + nji) / (9,@ + 91(-1())

9(k+1)

1
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@ The key to design this Majorization-Maximization algorithm consists
of designing a suitable function g (9, 9') :

@ Several 'recipes’ are proposed in Hunter&Lange.

@ This class of algorithms has been underused in the literature.
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