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Introduction

The following problem is taken from Pillow Problems by Lewis Carroll
Consider a bag containing a ball of unknown colour, which may be
either black or white. A white ball is added to the bag, then a ball is
drawn at random from it. The drawn ball happens to be white. What
is the probability that the remaining ball is white? The answer is 2/3
(under assumptions).
Let CI be the colour of the ball initially in the bag. We set
P (CI = W ) = P (CI = B) = 1

2 .
Let D the ball that is been drawn, whether the initial one (I) or the
white ball that has been added (A). We have
P (D = I ) = P (D = A) = 1

2 .
Let CR ,CD the respective colours of the remaining ball and the drawn
ball. Then

P (CR = W jCD = W ) =
P (CR = W ,CD = W )

P (CD = W )
=
1/2
3/4

=
2
3
.
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Implicitly this problems imposes to accept some concepts that deserve
discussion

Prior uncertainty/prior beliefs (Of which colour is the initial ball?)
can be expressed in terms of probabilities

P (CI = W ) = P (CI = B) =
1
2
.

Taking into account any new information that arises from the
experiment (the drawn ball is white) can be done by writing
conditional probabilities

P (CR = W jCD = W ) =
2
3

The fact that we accept almost without noticing them these concepts
prove they are natural and convenient. Therefore we are all
Bayesian... sometimes.
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Let A and B be two events then we have

Bayes�rule: P (AjB) = P (B jA)P (A)
P (B)

where
P (B) = P (B jA)P (A) + P

�
B jA

�
P
�
A
�
.

Example: You feel sick and your GP thinks you might have
contracted a rare disease (0.01% of the population has the disease).

A test is available but not perfect.

If a tested patient has the disease, 100% of the time the test will be
positive.
If a tested patient does not have the diseases, 95% of the time the test
will be negative (5% false positive).

Your test is positive, should you really care?
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Let A be the event that the patient has the disease and B be the
event that the test returns a positive result

P (AjB) = 1� 0.0001
1� 0.0001+ 0.05� 0.9999 � 0.002

Such a test would be a complete waste of money for you or the
National Health System.

A similar question was asked to 60 students and sta¤ at Harvard
Medical School: 18% got the right answer, the modal response was
95%!
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Bayes Formula

Now consider the case where you model your observations with the
likelihood

X � f (x j θ) .
In a Bayesian approach, the unknown parameter θ is assumed
random and we set a prior distribution on it

θ � π (θ) .

This distribution expresses our belief about θ before having seen any
data.
In this context, we have

π ( θj x) = π (θ) f (x j θ)
π (x)

where π (x) is the marginal likelihood also called evidence

π (x) =
Z

π (θ) f (x j θ) dθ.
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Frequentist vs Bayes

So far we have followed a frequentist approach where

Probabilities refer to limiting relative frequencies. They are (supposed
to be) objective properties of the real world.

Parameter are �xed unknown constants. Because they are not
random, we cannot make any probability statements about
parameters.

Statistical procedures should have well-de�ned long-run properties.
For example, a 95% con�dence interval should include the true value
of the parameter with limiting frequency at least 95%.
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Bayesian inference takes a very di¤erent stance.

Probability describes degrees of subjective belief, not limiting
frequency. Thus we can make probability statements about things
other than data that can recur from some source; e.g. the probability
that they will be no snow in Whistler during the 2010 Olympics.

We can make probability statements about parameters, even though
they are �xed constants.

We make inference about a parameter by producing a probability
distribution for it. Point estimates and interval estimates may then be
extracted from this distribution.

AD () March 2008 8 / 89



More on Bayes Formula

Usually, we simply write

π ( θj x) ∝ π (θ) f (x j θ)

where �∝�means �proportional to�. The proportionality constant can
be obtained by normalization.
Example. In Paris, n� x =241,945 girls and x =251,527 boys were
born from 1745 to 1770. Let θ be the probability of a male birth.
What is the probability that θ � 1

2 .
We model X � Bin (n, θ), that is

Pr (X = x j θ) =
�
n
x

�
θx (1� θ)n�x

We set
π (θ) = 1[0,1] (θ) .
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We have Pr
�

θ � 1
2

�� x� = R 11/2 π ( θj x) dθ where

π ( θj x) =

�
n
x

�
θx (1� θ)n�x 1[0,1] (θ)R 1

0

�
n
x

�
θx (1� θ)n�x 1[0,1] (θ) dθ

Let us introduce the class of Beta densities de�ned for α, β > 0

Be (θ; α, β) = Γ (α+ β)

Γ (α) Γ (β)
θα�1 (1� θ)β�1 1[0,1] (θ)

where Γ (u) =
R ∞
0 t

u�1e�tdt then π ( θj x) = Be (1+ x , n+ 1� x)
and

Pr
�

θ � 1
2

���� x = 251, 527� = 1� 1.15� 10�42 � 1.
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Consider now that π (θ) = Be (θ; α, β) which implies that

E (θ) =
α

α+ β
, V (θ) =

αβ

(α+ β)2 (α+ β+ 1)
.

Be careful! (α, β) are �xed quantities. To distinguish them from θ,
we call them hyperparameters.

Then we have for X � Bin (n, θ)

π ( θj x) = Be (θ; α+ x , β+ n� x) .

In this simple case, π (θ) and π ( θj x) are in the same parametric
family (Beta), albeit with di¤erent coe¢ cients.

The prior on θ can be conveniently reinterpreted as an imaginary
initial sample of size (α+ β� 2) with α� 1 observations in favour of
the �yes�answer. Provided that (α+ β) is small with respect to n, the
information carried by the data is prominent.
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Figure: Prior (left) and posterior distributions (right) of θ for Laplace�s example,
with di¤erent choices for hyperparameters (α, β)
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Comparison with the classical/frequentist approach

In a classical framework, we propose a point estimate of θ which
hopefully has nice asymptotic properties. In the Binomial model, we
could pick the MLE

bθ = x
n
, bV = x (1� x/n)

n2

the latter being an estimate of the variance of bθ.
Problem. In a political survey, n = 1000 individual are asked if they
will vote for candidate W . They all answer �no�. What can we say
about the proportion of people ready to vote for W in the entire
population?

Classical answer: bθ = bV = 0 versus Bayesian answer (for α = β = 1)
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A more realistic application

(Gelman et al., 2003, p. 43) Placenta previa is an unusual condition of
pregnancy in which the placenta is implanted very low in the uterus,
obstructing the foetus from a normal delivery. An early study concerning
the sex of placenta previa found that for a total of 980 births, 437 were
female. We want to compute the posterior probability that a placenta
previa birth is a female?
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Figure: Prior (left) and posterior (right) for the placenta previa data
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For the posterior distribution π ( θj x), we have

E ( θj x) =
α+ x

α+ β+m
,

V ( θj x) =
(α+ x) (β+ n� x)

(α+ β+ n)2 (α+ β+ n+ 1)
.

The posterior means behave asymptotically like x/n (the �frequentist�
estimator) and converge to θ0, the �true�value of θ; i.e. the posterior
mean is an estimator of θ in the classical sense.

The posterior variance decreases to zero as n! ∞, at rate n�1: the
information you get on θ gets more and more precise.

For n large enough, the prior is washed out by the data. For a small
n, the impact can have a huge impact. However, even with little or
no prior information, the Bayesian analysis can lead to much more
sensible answers in ill-behaved cases (e.g. political survey).
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Prior Speci�cation

The construction of the prior distribution may be the most delicate
part of Bayesian analysis. We will look at two approaches here.

Subjective Approach: Prior information is available (expert
knowledge, previous experiments, common sense, etc.). Expressing
this prior information into a prior distribution is known as the problem
of prior elicitation.

Objective Approach: Prior information is not available, or too sparse
to be taken into account. One must �nd a way to express this lack of
information (for instance through an uniform distribution like in
Laplace�s example).
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Subjective Approach: conjugate prior distributions

De�nition. A parametric family F of prior distributions is said to be
conjugate for a given model f (x j θ) if and only if any prior
distribution in F yields a posterior distribution for this model that is
still in F ,

π (θ) 2 F ) π ( θj x) 2 F .
Some examples

Model Prior Posterior
Bin(n, θ) Beta(α, β) Beta(α+ x , β+ n� x)
Gamma(υ, θ) Gamma(α, β) Gamma(α+ υ, β+ x)
Gaussian .... see next slides.

In the Beta-Binomial model, the appeals of conjugacy where the
mathematical tractability and the possibility of interpreting the prior
information as one carried by an imaginary initial sample.
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Gamma distributions

X � G (α, β) with α, β > 0

fα,β (x) =
βα

Γ (α)
xα�1 exp (�βx) 1(0,∞) (x)

E (θ) =
α

β
, V (θ) =

α

β2
.

Particular cases are the exponential distribution G (1, β) and the
chi-squared distribution χ2v given by G (v/2, 1/2) .
Clearly we have

G (x ; υ, θ) G (θ; α, β) ∝
θυ

Γ (υ)
xυ�1 exp (�θx) .

βα

Γ (α)
θα�1 exp (�βθ)

∝ θυ exp (�θx) .θα�1 exp (�βθ)

∝ G (θ; α+ υ, β+ x) .
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Figure: Gamma densities for various parameter settings.
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Poisson Gamma model

Assume you have some counting observations

Xi j θ � P (θ) , i.e. Pr (Xi = k j θ) = exp (�θ)
θk

k !

Assume the following prior distribution on θ

θ � G (α, β) .

The posterior is given by

θj x1, ..., xn � G
 

α+
n

∑
i=1
xi , β+ n

!
.

Once more we can think of the conjugate prior as an imaginary
sample of size β with α counts.
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Gaussian model with unknown mean and known variance

Assume you have
Xi j θ � N

�
θ, σ2

�
We assume the following prior distribution on θ

θ � N
�
µ, τ2

�
We have

θj x1, ..., xn � N
�
µn, σ

2
n

�
where

σ2n =

�
σ2/n

�
τ2

σ2/n+ τ2
, µn =

σ2µ/n+ τ2x
σ2/n+ τ2

.

The posterior mean is a weighted average of µ and x .
The prior information can be interpreted as an imaginary initial
sample of size σ2/τ2.
When n is large, we have

µn � x , σ2n � σ2/n.
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Gaussian model with known mean and unknown variance

In this case we have

Xi j θ � N (µ, 1/θ) , θ � G (α, β)

The posterior is given by

θj x1, ..., xn � G (αn, βn)

with

αn = α+ n/2, βn +
n

∑
i=1
(xi � µ)2 /2.

When n is large, we have

E [ θj x1, ..., xn ] =
αn
βn
� n

∑n
i=1 (xi � µ)2

.
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Gaussian model with unknown mean and variance

In this case, θ =
�
µ, σ2

�
and

π (θ) = π
�
σ2
�

π
�

µj σ2
�

= IG
�
σ2; α, β

�
N
�

µ; µ0,
σ2

κ0

�
where

IG (x ; α, β) = βα

Γ (α)
x�α�1 exp (�β/x) 1(0,∞) (x) .

The posterior is given by π ( θj x1:n) = π
�

σ2
�� x1:n

�
π
�

µj x1:n, σ
2
�

where

σ2
�� x1:n � IG

�
σ2; α+ n/2, β+∑n

i=1 (xi � x)
2 /2+ nκ0

n+κ0
(x � µ0)

2
�
,

µj x1:n, σ
2 � N

�
µ;

κ0µ0
κ0+n

+ nx
κ0+n

, σ2

κ0+n

�
Bayesian analysis work exactly the same in the multivariate case. Now
if µ is a nuisance parameter and you are just interested in σ2, then
integrate out µ and consider

π
�

σ2
�� x1:n

�
.

There is no need for pro�le likelihood and all these techniques.
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Conjugate prior for the exponential family

Many likelihood do not admit conjugate distributions BUT it is
feasible when the likelihood is in the exponential family

f (x j θ) = h (x) exp
�

θTx �Ψ (θ)
�

In this case the conjugate distribution is (for the hyperparameters
µ,λ)

π (θ) = K (µ,λ) exp
�

θTµ� λΨ (θ)
�
.

It follows that

π ( θj x) = K (µ+ x ,λ+ 1) exp
�

θT (µ+ x)� (λ+ 1)Ψ (θ)
�
.
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Mixture of Conjugate Priors

If you have a prior distribution π (θ) which is a mixture of conjugate
distributions, then the posterior is in closed form and is a mixture of
conjugate distributions; i.e. with

π (θ) =
K

∑
i=1
wiπi (θ)

then

π ( θj x) = ∑K
i=1 wiπi (θ) f (x j θ)

∑K
i=1 wi

R
πi (θ) f (x j θ) dθ

=
K

∑
i=1
w 0i πi ( θj x)

where

w 0i ∝ wi
Z

πi (θ) f (x j θ) dθ,
K

∑
i=1
w 0i = 1.

Theorem (Brown, 1986): It is possible to approximate arbitrary
closely any prior distribution by a mixture of conjugate distributions.

AD () March 2008 26 / 89



The conjugate prior can have a strange shape or be di¢ cult to handle.

Consider the logistic regression model

Pr (y = 1j θ, x) =
exp

�
θTx

�
1+ exp

�
θTx

�
then the likelihood for n observations is conditional upon xi�s of the
form

f (y1, ..., yn j x1, ..., xn, θ) = exp
 

θT
n

∑
i=1
yixi

!
n

∏
i=1

�
1+ exp

�
θTxi

���1
The conjugate prior is thus given by

π (θ) ∝ exp
�

θTµ
� n

∏
i=1

�
1+ exp

�
θTxi

���λ
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Subjective prior distributions are often built from conjugate prior
distributions. In this way, prior elicitation reduces to tune the
hyperparameters according to the available prior information.

This approach has several drawbacks

Outside simple models, conjugate prior distributions are rarely available.
Mathematical convenience does not mean practical relevance.
Approximation by mixtures feasible but very tiedous and almost never
used in practice.
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Objective Approach

In the probability of male birth problem, Laplace used the uniform
distribution on [0, 1] . Two questions arise from this particular choice.

How can we generalize the uniform distribution to cases where the
parameter is de�ned on an in�nite interval?

Is the uniform distribution the best choice to represent the absence of
knowledge about θ? For instance, let θ0 = θ2 and reexpress the model
in terms of θ0

Pr
�
X = x j θ0

�
=

�
n
x

�
θ0x/2

�
1� θ01/2

�n�x
.

Clearly the model for X is unchanged, and we have no more prior
information on θ0 than θ. Yet if we assign to θ0 an uniform
distribution, we will get di¤erent results! This is the
reparameterisation issue.
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Improper Prior Distributions

De�nition: A prior density π (θ) is said to be improper if and only if
it does not integrate to a �nite value, that isZ

π (θ) dθ = +∞

A Bayesian model including an improper prior density is considered as
valid provided that the corresponding posterior is proper, that isZ

f (x j θ)π (θ) dθ < +∞.

Example: Consider the Gaussian model with unknown mean and
known variance Xi

i.i.d.� N
�
θ, σ2

�
then the following improper prior

density
π (θ) ∝ 1,

yields a proper density

π ( θj x1:n) = N
�
θ; x , σ2/n

�
.

This simply corresponds to the case where τ2 ! ∞ in a conjugate
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Reparametrisation issues: location parameter

If the likelihood is of the form

f (x j θ) = f (x � θ)

then θ is a location parameter, as such a model is translation
invariant.

A natural requirement is that the prior distribution enjoys the same
property, that is π

π (θ) = π (θ � θ0)

for every θ0. The solution is an improper prior

π (θ) ∝ 1.

Example: Gaussian distribution with known variance and unknown
mean.
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Reparametrisation issues: scale parameter

If the likelihood is of the form

f (x j θ) = 1/θf (x/θ)

then θ is a scale parameter. Such a model is scale invariant.

A natural requirement is that the prior distribution enjoys the same
property, that is the prior distribution should satisfy

π (θ) =
1
c

π

�
θ

c

�
for any c > 0. The solution is an improper prior

π (θ) ∝ 1/θ.

Example: Gaussian distribution with unknown variance and known
mean.
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Je¤reys�Prior

De�nition: For a given parametric model f (x j θ), the Je¤reys prior
is de�ned by the density

πJ (θ) ∝ fdet [I (θ)]g1/2

where I (θ) is the Fisher information matrix,

I (θ) = Eθ

�
∂ log f (X j θ)

∂θ

∂ log f (X j θ)
∂θT

�
.

Property: Je¤reys prior is invariant by reparametrisation.
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Proof: Let η = h (θ) where h is a one-to-one mapping, and assume
Θ � R, then

π (η) = πJ
�
h�1 (η)

� ����dh�1 (η)dη

���� = πJ (θ)

���� dθ

dη

���� ∝ jI (η)j1/2 = πJ (η)

as

I (η) = �Eη

�
∂2 log f (X j η)

∂η2

�
= �Eθ

"
∂2 log f (X j θ)

∂θ2
.

���� dθ

dη

����2
#

= I (θ)

���� dθ

dη

����2 .
Example: For Xi � N

�
θ, σ2

�
then

f (x1:n j θ) ∝ exp

 
�n (x � θ)2

2σ2

!
) ∂2 log f (x1:n j θ)

∂θ2
= � n

σ2

thus
πJ (θ) ∝ 1.
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The location invariant prior is the Je¤reys�prior for any location
parameter. The scale invariant prior is the Je¤reys�prior for any scale
parameter.
Je¤reys�prior is appealing in that it solves completely the issue of
reparametrisation. It is invariant through any transformation of the
parameter.
The fact that it is improper in most cases supports the idea that
Je¤reys�s prior is noninformative.
Unfortunately, Je¤reys�prior can lead to incoherences and paradoxes
in multivariate problems and does not satisfy the likelihood principle.
Example. Je¤reys�prior for the Gaussian model with unknown mean
and variance is

πJ (µ, σ) ∝ σ�2.

For such a model, it seems more natural to have

πJ (µ, σ) ∝ σ�1

as µ is a location parameter and σ is a scale parameter.
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More on Bayesian Inference

Bayesian inference satis�es the likelihood principle if you don�t build
your prior using f (x j θ).
If f2 (x j θ) = cf1 (x j θ) then

f2 (x j θ)π (θ)R
f2 (x j θ)π (θ) dθ

=
f1 (x j θ)π (θ)R
f1 (x j θ)π (θ) dθ

.

If f (x j θ) = h (x) g (T (x)j θ) then

f (x j θ)π (θ)R
f (x j θ)π (θ) dθ

=
g (T (x)j θ)π (θ)R
g (T (x)j θ)π (θ) dθ

.
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Variance Decomposition

By using the information x , you might expect that V ( θj x) � V (θ)
but this wrong, this is only true on average over the distribution of X .

You have

E (V ( θjX )) = V (θ)�V (E [ θjX ]) � V (θ) .

Proof. We have

V (θ) = E
�
θ2
�
�E2 (θ)

= E
�
E
�

θ2
��X ���E (E ( θjX ))2

= E
�
E
�

θ2
��X ���E

�
E2 ( θjX )

�
+E

�
E2 ( θjX )

�
�E (E ( θjX ))2 .

AD () March 2008 37 / 89



Predictive Distribution

Assume you have a Bayesian model π (θ) , f (x j θ). Having observed
x1, ..., xm , you want to predict Y j θ � g (y j θ) .
A plug-in estimate consists of picking bθMLE and estimating the
distribution of Y through

g
�
y jbθMLE� .

This estimate of the distribution of Y is over-con�dent, especially if
we do not have access to many data x1:n.

In a Bayesian approach, the predictive distribution is simply given by

g (y j x) =
Z

π (y , θj x) dθ =
Z

π (y j x , θ)π ( θj x) dθ

=
Z
g (y j θ)π ( θj x) dθ.

As n! ∞ then π ( θj x)! δbθMLE (θ) and g (y j x)! g
�
y jbθMLE�.
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Example. Beta-Binomial model with f (x j θ) = Bin(x ; n, θ) and
π (θ) = Be (α, β), we have bθMLE = x

n and

π ( θj x) = Be (α+ x , β+ n� x) .

If we are interested in the predictive distribution of
Y j θ � Bernoulli (θ), then

g
�
y = 1jbθMLE� = bθMLE = x

n
,

whereas

g (y = 1j x) =
Z

θBe (θ; α+ x , β+ n� x) dθ

=
α+ x

α+ β+ n
.
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Example. Consider X1j θ � N
�
θ, σ2

�
and θ � N

�
m0, σ20

�
then

θj x1 � N
�
m1, σ21

�
with

1
σ21

=
1

σ20
+
1

σ2
) σ21 =

σ20σ
2

σ20 + σ2
,

m1 = σ21

�
x1
σ2
+
m
σ20

�
.

To predict the distribution of a new observation X j θ � N
�
θ, σ2

�
in

light of x1 we use the predictive distribution

f (x j x1) =
Z
f (x j θ)π ( θj x1) dθ

We can do direct calculations or alternatively use the fact that
f (x j x1) is Gaussian so is characterized by its mean and variance

E [X j x1] = E [ θ + V j x1] = E [ θj x1] = m1,
V [X j x1] = V [ θ + V j x1] = V [ θj x1] +V [V ] = σ21 + σ2.
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Sequential Bayesian Estimation

Now assume that you observe a realization x2 of X2j θ � N
�
θ, σ2

�
.

Then you are interested now in

π ( θj x1, x2) ∝ f (x2j θ) f (x1j θ)π (θ)

∝ f (x2j θ)π ( θj x1)
∝ f (x1j θ)π ( θj x2) .

Updating the prior one observation at a time, or all observations
together, does not matter.

The sequential approach can be useful for massive dataset. In this
case at time n,

π ( θj x1, ..., xn) ∝ f (xn j θ)π ( θj x1, ..., xn�1) ;

i.e. �the prior at time n is the posterior at time n� 1�.

AD () March 2008 41 / 89



Hypothesis Testing

Consider (again!) the Beta-Binomial model f (x j θ) = Bin(x ; n, θ)
and π (θ) = Be (α, β).
Assume we want to test H0 : θ � 1

2 vs H1 : θ < 1
2 .

In a Bayesian approach, you can simply compute

π (H0j x) = 1� π (H1j x) =
Z 1

1/2
π ( θj x) dθ.

Contrary to frequentists, your test is not based on observations you
do not observe.
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In general, we want to compare two hypothesis: H0 : θ � π0 versus
H1 : θ � π1. You can think of it as putting a prior given by

π (θ) = π (H0)π ( θjH0) + π (H1)π ( θjH1)
= π (H0)π0 (θ) + π (H1)π1 (θ)

where π (H0) + π (H1) = 1.
In the previous example, π0 (θ) = U

�
θ;
� 1
2 , 1
��
and

π1 (θ) = U
�
θ;
�
0, 12
��
and π (H0) = π (H1) = 1

2 .

To compare H0 versus H1, we can compute the posterior probabilities
of H0 and H1 which are of the form

π (Hi j x) =
π (x jHi )π (Hi )

π (x)

=
π (x jHi )π (Hi )

π (x jH0)π (H0) + π (x jH1)π (H1)
.

Clearly this approach can be extended straightforwardly to the
multi-hypothesis case.
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To compare H0 versus H1, we typically compute the Bayes factor
which partially eliminated the in�uence of the prior modelling (i.e.
π (Hi )!)

Bπ
10 =

π (x jH1)
π (x jH0)

=
π (H1j x)
π (H0j x)

π (H0)
π (H1)

=

R
f (x j θ)π ( θjH1) dθR
f (x j θ)π ( θjH0) dθ

=

R
f (x j θ)π1 (θ) dθR
f (x j θ)π0 (θ) dθ

.

For realistic models, these integrals can be very di¢ cult to compute.
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Je¤reys�scale of evidence says that

- if log10 (Bπ
10) varies between 0 and 0.5, the evidence

against H0 is poor,
- if it is between 0.5 and 1, it is substantial,
- if it is between 1 and 2, it is strong, and
- if it is above 2, it is decisive.

Bayes factor tell you where one should prefer H0 to H1: it does NOT
tell you whether these models are sensible!
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Note that Bayes procedures can be directly used to test point null
hypothesis; i.e. H0 : θ = θ0 (that is π0 (θ) = δθ0 (θ)) versus
H1 : θ � π1 where the prior is then de�ned as

π (θ) = π (H0) δθ0 (θ) + π (H1)π1 (θ)

The associated Bayes factor is simply

Bπ
10 =

π (x jH1)
π (x jH0)

=

R
f (x j θ)π1 (θ) dθ

f (x j θ0)
.
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Example: Assume you have an coin, you toss it n times and gets x
heads. Is it biased?

Let θ be the proba of having a head then we can test H0 : θ = 1
2

versus H1 : θ � U
� 1
2 , 1
�
using

Bπ
10 =

2
R 1
1
2

θx (1� θ)n�x dθ� 1
2

�x �
1� 1

2

�n�x
or H0 : θ = 1

2 versus H1 : θ � U [0, 1] using

Bπ
10 =

R 1
0 θx (1� θ)n�x dθ� 1
2

�x �
1� 1

2

�n�x =
2nΓ (x + 1) Γ (n+ 1� x)

Γ (n+ 2)
.
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Example: Gaussian model

Xi j θ iid� N (θ, 1) ,

π0 (θ) = δ0 (θ) , π1 (θ) = N
�
0, τ2

�
In this case we have

Bπ
01 =

π (x jH0)
π (x jH1)

=
�
1+ τ2

�n/2
exp

 
�τ2 (∑n

i=1 xi )
2

2 (1+ τ2)

!
.
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Figure: log10 (B01) for data generated from N (0, 1) (left) and N (0.25, 1)
(right)
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Bayes factors are not limited to the comparison of models with the
same parameter space.

Assume you have some data and two statistical models.

Under H0, θ0 2 Θ0, the prior is π0 (θ0) and the likelihood is
f0 (x j θ0) . Under H1, θ1 2 Θ1, the prior is π1 (θ1) and the likelihood
is f1 (x j θ1) then

Bπ
10 =

π (x jH1)
π (x jH0)

=

R
f1 (x j θ1)π1 (θ1) dθ1R
f0 (x j θ0)π0 (θ0) dθ0

One can have Θ0 = R and Θ1 = R1000.

In this case you have a parameter space Θ = Θ0 [Θ1 which is the
union two subspaces of di¤erent dimensions.
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We can straightforwardly extend this hypothesis approach to model
selection.

Assume you have a countable collection of hypothesis/models fHig .
For each modelMi , you have a prior πi (θi ) on Θi and a likelihood
function fi (x j θi ) .
You attribute a prior probability π (i) to each hypothesis/model Hi .

The parameter space is [
i
fig �Θi and the prior on this space is

π (i , θ) = π (i)πi (θi ) .
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Lindleys�paradox

Testing hypothesis in a Bayesian way is attractive.... but be careful to
vague priors!!!
Assume you have X j

�
µ, σ2

�
� N

�
µ, σ2

�
where σ2 is assumed

known but µ (the parameter θ) is unknown. We want to test
H0 : µ = 0 vs H1 : µ � N

�
0, τ2

�
then

Bπ
10 (x) =

π (x jH1)
π (x jH0)

=

R
N
�
x ; µ, σ2

�
N
�
µ; 0, τ2

�
dµ

f (x j 0)

=
σp

σ2 + τ2
exp

�
τ2x2

2σ2 (σ2 + τ2)

�
!

τ2!∞
0

Vague priors should be banned for Bayesian hypothesis testing/model
selection.
Alternative apporaches have been proposed to overcome this problem.
For example, intrinsic Bayes factors consist in replacing the improper
prior by a proper posterior distribution computed using a small
number of data points.
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Con�dence Regions

We are interested in deriving con�dence regions, that is regions that
contain the �most likely values�for the parameter.
In classical statistics, and for an univariate problem, the con�dence
interval at level α is of the formhbθ � zα/2bσ,bθ + zα/2bσi
where bθ is the classical estimator (say MLE) and bσ is an estimate of
its standard deviation.
In this frequentist perspective, the true value of the parameter is
�xed, and the con�dence interval is random, having a probability of
(1� α) to actually contain this true value (when we repeat the same
experiment a great number of times).
It is not possible to interpret (1� α) as the probability that the
parameter lies in the con�dence interval for the considered
experiment.
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Credibility Regions

The Bayesian viewpoint allows for a conceptually simpler
determination of �con�dence regions�.
De�nition: A subset C of the parameter space is a 100 (1� α)%
credible region for θ if and only if

π ( θ 2 C j x) = 1� α.

There is usually obviously an in�nity of credible regions for a given
level.
One may restrict ourselves to the credible interval centred at a given
Bayesian point estimate (e.g. posterior mean, median, etc.) but this
is arbitrary and does not make much sense when the posterior is not
symmetric around this particular value. Such intervals may even not
exist.
Example: Assume that the posterior distribution is Be (1, 30) then
the posterior mean is 1/31, and the posterior probability of being
above 1/31 is approx. 0.37, therefore credible intervals centred at
1/31 exists only if 1� α is smaller than 0.74.
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Highest posterior density regions

A more satisfactory approach is to restrict our attention to the
credible set that countains the �most likely values�/
De�nition: The subset Cα (x) of the parameter space is a highest
posterior density (HPD) region at level α if and only if it is of the form

Cα (x) = fθ 2 Θ : π ( θj x) > γg
where γ is chosen so that π ( θ 2 Cα (x)j x) = 1� α.
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Figure: HPD for the Beta(1, 30) and α = 0.05.
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In well-behaved cases, there exists exactly one HPD region for a given
con�dence level.

One can show that the HPD region at level α is the credible interval
of minimal width (or minimal surface/volume in a
bivariate/multivariate setting).

The issue of setting α remains, with the obvious trade-o¤ that small
values give large regions, while large values lead to restrictive regions.
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The Regression Problem

Regression problem: Determining the relationship between some
response variable Y and a set of predictor variables X = (X1, ...,Xp) .
The most common form of structural assumption is that the
responses are assumed to be related through some deterministic
function f and some additive random error component ε so that

Y = f (X) + ε

where ε is a zero-mean error distribution.

Typically X is observed and we have

E [Y jX = x] = f (x) .

We are interested in determining f over some range of plausible
predictor values.
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We have no way of determining its analytic form exactly, even if one
actually exists.

We must content ourselves with �nding approximations which are
close to the truth.

To do this we must make use of the observed dataset
D = fyi , xigni=1 .
A simple and much used approximation of f consists of using

g (x) = β0 + β1x1 + � � �+ βpxp .

More generall, we shall make use of the more general basis function
models

g (x) =
k

∑
i=1

βiBi (x) ;

the linear model being just a special case where k = p + 1,
B1 (x) = 1 and Bi (x) = xi�1.
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Bayesian Linear Model

We have approximated f by g so we get the model

yi =
k

∑
j=1

βjBj (xi ) + εi , i = 1, ..., n

In matrix notation
Y = Bβ+ ε

where Y = (y1, ..., yn)
T, ε = (ε1, ..., εn)

T and the design matrix

B =

0B@ B1 (x1) � � � Bk (x1)
...

. . .
...

B1 (xn) � � � Bk (xn)

1CA
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We make the assumption that

εi
iid� N

�
0, σ2

�
This de�nes the likelihood

f
�
D j β, σ2

�
= N

�
Y;Bβ, σ2In

�
.

The MLE of
�

β, σ2
�
is given by

bβ =
�
BTB

��1
BTY,

bσ2 =
1
n

�
Y�Bbβ�T �Y�Bbβ� .

The MLE of β can be extremely unstable as BTB is becoming
singular when covariates are co-linear.
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We consider the following prior distribution

π
�

β, σ2
�
= π

�
βj σ2

�
π
�
σ2
�

where

π
�
σ2
�
= IG

�
σ2; a, b

�
,

π
�

βj σ2
�
= N

�
β;m, σ2V

�
.

We can show that the posterior satis�es

π
�

β, σ2
��D� = N �

β;m�, σ2V �
�
IG
�
σ2; a�, b�

�
where

V � =
�
V�1 +BTB

��1
m� = V �

�
V�1m0 +BTY

��1
,

a� = a+ n/2,

b� = b+
�
mTV�1m+YTY�m�TV ��1m�

�
/2.
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Clearly for vague priors, we have

m� ! bβ
Also YTY�m�TV ��1m� is equal to the residual sum of squares
when a, b ! 0.
Assuming we are interested in predicting y at a new design point x,
we have

p (y jD, x) =
Z
N
�
y ;BT (x) β, σ2

�
π
�

β, σ2
��D� dβdσ2

= St
�
y ;BT (x)m�, b�

�
I + BT (x)V �B (x)

�
, a�
�

where for Y � St (µ, υ, c)

p (y) =
Γ
� 1
2 (c + 1)

�
Γ
� 1
2c
�p

υπ

(
1+

(y � µ)2

υ

)�(c+1)/2
which has mean µ and variance υ/ (c � 2) (for c > 2), c being
known at the degrees of freedom.
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The Bayesian linear model with uncertainty in the regression variance
leads to Student predictive distributions.

Student distributions have thicker tails than Gaussian for the same
location and scale parameters, hence we can expect greater
robustness.

For reasonable samples size, n > 100 then a� > 100 and the Student
and Gaussian are almost similar.
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Bayesian Model Selection

It is often the case that we have a competing number of Bayesian
linear models/hypothesis sayM1, ....,MM where

Mi : Y = Bi βi + ε

with πi
�

β, σ2
�
= N

�
β;mi , σ2Vi

�
IG
�
σ2; a, b

�
where mi is of

dimension ki
We can put a prior distribution on

]m

i=1
fMig �Θi of the form

π (M, θ) = π (M)πM (θ)

to establish the expression of

π (M, θjD) = f (D jM, θ)πM (θ)π (M)

∑M
i=1

R
Θi
f (D jMi , θ)πMi (θ) dθ.π (Mi )

from which we can deduce

π (MjD) = π (D jM)π (M)

∑M
i=1 π (D jMi )π (Mi )

.
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In the Bayesian linear model case, we have

π (D jMi ) =
Z
f
�
D j β, σ2,Mi

�
π
�

β, σ2
��Mi

�
dβdσ2

=
ba

πn/2Γ (a)
jV �i j

1/2 Γ (a�i )

jVi j1/2 (b�i )
a�i
.

When computing the Bayes factor we obtain

π (D jMi )

π (D jMj )
=
jVj j1/2 jV �i j

1/2 Γ (a�i )
�
b�j
�a�j

jVi j1/2
���V �j ���1/2

Γ
�
a�j
�
(b�i )

a�i
.

Essentially Bayesian model selection can be performed analytically in
the linear model case... when not too many models have to be
assessed.
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Example: Consider the following polynomial regression problem where
for any (xi , yi ) 2 R�R.

MM : yi =
M

∑
k=0

βkx
k
i + εi

If j is too large then there will be over�tting if we use MLE.
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Figure: As M increases, the model over�ts in a MLE framework.
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We select VM = δ2IM+1 where δ2 = 10, a = b = 1.

In this case, we have ΘM = RM+1 �R+.

For M 2 f0, ...,Mmaxg, we can de�ne π (MM ) =
1

Mmax+1
.
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We have assumed here that δ2 was �xed and set to δ2 = 1.

As δ2 ! ∞, the prior on β is getting vague but then

lim
δ2!∞

π (M0jD) = 1

as for M � 1

π (D jM0)

π (D jMM )
=

��δ2IM+1��1/2 ��δ�2IM+1 +BTMBM ���1/2
Γ (a�0) (b

�
M )

a�M

δ
��δ�2 +BT0B0��1/2

Γ (a�M ) (b
�
0 )
a�0

!
δ2!∞

∞

Do not use vague priors for model selection!!!
For a robust model, select a random δ2 and estimate it from the data.
However, numerical methods are then necessary.
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Bayesian Information Criterion

Bayesian model selection is a �exible and principled approach but can
be di¢ cult to implement if the marginal likelihoods do not admit a
closed form expression.

When a large number of data is available, it is possible to
approximate these marginal likelihood terms.

This simple but powerful approach was proposed by Schwarz (1978)
and is very popular in the literature.
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Let us consider a Bayesian model where Xi
i.i.d.� f (x j θ) and we

consider the prior π (θ) on Θ � Rd .
The marginal likelihood of n observations is given by

π (x1:n) =
Z
f (x1:n j θ)π (θ) dθ.

and we use the following notation

g (θ) = log (f (x1:n j θ)π (θ)) .

We perform a Taylor expansion about bθ the posterior mode; i.e. the
value of θ maximizing g (θ) .

g (θ) = g
�bθ�+ �θ � bθ�T g 0 �bθ�+ 1

2

�
θ � bθ�T g 00 �bθ� �θ � bθ�

+o
�θ � bθ2�

where

g 0 (θ) =
�

∂g (θ)
∂θ1

, ...,
∂g (θ)

∂θd

�T
,
�
g 00 (θ)

�
i ,j =

∂2g (θ)
∂θi∂θj

.
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Because g 0
�bθ� = 0 then
g (θ) � g

�bθ�+ 1
2

�
θ � bθ�T g 00 �bθ� �θ � bθ� .

This approximation will not be good unless θ is close to bθ. However,
when n is large, g (θ) is concentrated around its maximum and
declines fast as one moves away from bθ, so that only values from θ
close to bθ will contribute much to the marginal likelihood.
It follows that

π (x1:n) =
Z
exp (g (θ)) dθ

� exp
�
g
�bθ�� Z exp�1

2

�
θ � bθ�T g 00 �bθ� �θ � bθ�� dθ

= exp
�
g
�bθ�� (2π)d/2 jAj�1/2

where A = �g 00
�bθ� . This is the so-called Laplace approximation.
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Under regularity assumptions, the error is of order O
�
n�1

�
and we

have

logπ (x1:n) = log f
�
x1:n jbθ�+ logπ

�bθ�
+
d
2
log (2π)� 1

2
log (jAj) +O

�
n�1

�
.

Remember that O (n�α) represents any quantity such that
nαO (n�α) � Cst as n! ∞.
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For large samples, we have bθ � θMLE and

[A]i ,j = �
∂2g (θ)
∂θi∂θj

= �∂2 logπ (θ)

∂θi∂θj
�

n

∑
i=1

∂2 log f (Xi j θ)
∂θi∂θj

so
A � nI

where I is

[I ]i ,j = � EX

�
∂2 log f (X j θ)

∂θi∂θj

�����
θMLE

.

I is the Fisher information matrix if the model is correctly speci�ed.
Thus it follows that

jAj � nd jI j
These two approximations introduce an O

�
n�1/2� error and

logπ (x1:n) = log f (x1:n j θMLE ) + logπ (θMLE )

+
d
2
log (2π)� d

2
log n� 1

2
log (jI j) +O

�
n�1/2

�
.
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We have log f (x1:n j θMLE ) of order O (n) , d2 log n of order O (log n)
whereas the other terms are of order O (1) or less.

Hence we can conclude that

logπ (x1:n) = log f (x1:n j θMLE )�
d
2
log n+O (1) .

This equation means that in general the approximation error does not
vanish even with an in�nite number of data. This is not crucial as the
other terms will go to in�nity as n! ∞ and will dominate the O (1)
term; i.e. the error will tend toward zero as a proportion of
logπ (x1:n), ensuring that the error will not a¤ect the conclusion
reached.

Moreover empirical experience has found that in many scenarios of
interest the error is of a much smaller order of magnitude.
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Consider the case where

π (θ) = N
�
θ; θMLE , I

�1�
so that, roughly speaking, the prior distribution contains the same
amout of information as would, on average, a single observation.

In this case we have

logπ (θMLE ) = �
d
2
log (2π) +

1
2
log jI j

so

logπ (x1:n) = log f (x1:n j θMLE )�
d
2
log n+O

�
n�1/2

�
.

In this case, the approximation error is of order O
�
n�1/2� .
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The approximation of logπ (x1:n) can be used to approximate the
Bayes factor

B21 =
π (x1:n jM2)

π (x1:n jM1)
=

R
f2 (x1:n j θ2)π2 (θ2) dθ2R
f1 (x1:n j θ1)π1 (θ1) dθ1

where θ1 2 Rd1 and θ2 2 Rd2 .
We have

2 logB21 � 2 (log f (x1:n j θ2,MLE )� log f (x1:n j θ1,MLE ))
� (d2 � d1) log n.

We can see that BIC penalized the number of parameters, this
prevents over�tting.
We can also compute the approximate posterior probabilities

π (Mk j x1:n) ∝ π (Mk )π (x1:n jMk )

∝ π (Mk ) exp
�
log f (x1:n j θk ,MLE )�

dk
2
log n

�
∝ π (Mk ) n

�dk/2f (x1:n j θk ,MLE )
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Example. Consider the following autoregressive (AR) time series
model

Mp : Xn =
p

∑
i=1
aiXn�i + σεn

where Vn
i.i.d.� N (0, 1) . The AR (a1, ..., ap) coe¢ cients and σ2 are

unknown.

Clearly the larger p the better the �t to the data. We want to
determine the model order p 2 f0, ..., pmaxg .
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For the data xpmax :T , we can rewrite the model in the matrix-vector
form

Mp : X = Bpa+ ε

where X = (xpmax , ..., xT )
T, a = (a1, ..., ap)

T , ε = (εpmax , ..., εT )
T and

the design matrix

Bp=

0BBBBBB@
xpmax�1 � � � xpmax�p
...

...
xn�1 � � � xn�p
...

...
xT�1 � � � xT�p

1CCCCCCA
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For each candidate model Mp , we can easily come up with the MLE
θMLE =

�
aMLE,σ2MLE

�
and hence obtain

π (xpmax :T jMp) � log f (xpmax :T j θMLE )�
p + 1
2

log (T � pmax + 1) .

Alternatively, we can do a conjugate analysis by setting a
normal-inverse Gamma prior on

�
a,σ2

�
. Hence, we can compute

analytically π
�
a,σ2

�� xpmax :T � and π (xpmax :T jMp) for such a prior.

We select pmax = 20 and compared BIC to MMAP when δ2 = 10 on
100 realizations of a 3rd order AR process (roots at 0.9 and 0.5 �j
0.85π and σ2 = 10).
Number of occurrences where the true model order k = 3 is selected

T 35 50 75 100 200 300
AIC 20 31 49 59 74 76
BIC 19 30 46 57 76 94
MMAP 23 33 49 64 78 95
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Akaike Information Criterion

An alternative non-Bayesian approach to BIC is the celebrated AIC.

In this framework, we select the model minimizing

AIC = �2 log f (x1:n j θMLE ) + 2d

in contrast with BIC where we minimize

�2 log f (x1:n j θMLE ) + d log n.

Contrary to BIC, AIC is typically not asymptotically consistent...
although this does not mean very much!

AD () March 2008 82 / 89



We outline here the derivation of AIC which is based on the KL

I (g ; f ) =
Z
g (x) log

g (x)
f (x)

dx

which is such that I (g ; f ) � 0 and I (g ; f ) = 0 i¤ g (x) = f (x) .
Assuming we have a family of candidate models fm (x) = f (x j θm),
m = 1, ...,M, to model the true distribution g of the observations
then we want to select the model m minimizing I (g ; fm) or
equivalently maximizing Z

g (x) log fm (x) dx .

Now assume we have n observations Xi
i.i.d.� g (x). We haveZ

g (x) log f (x j θm) dx �
1
n

n

∑
i=1
log f (xi j θm) .
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However, in almost all the applications, θm is unknown and needs to
be estimated from the data.

It is natural to estimate θm using ML and then plug bθm to obtain the
estimate of the KL

1
n

n

∑
i=1
log f

�
xi jbθm� .

However, we have

EX

"
1
n

n

∑
i=1
log f

�
Xi jbθm�

#
6= EX

�
EY log f

�
Y jbθm��

as the same dataset was used twice for the estimation of the
parameters and for the estimation of the expected log-likelihood.

AIC is an approximate correction for this bias.
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To simplify notation, we suppress further on the model index m.

We introduce the bias

B = EX

 
EY log f

�
Y jbθ�� 1

n

n

∑
i=1
log f

�
Xi jbθ�

!
= EX

�
EY log f

�
Y jbθ��EY log f (Y j θ0)

�
| {z }

B1

+EX

 
EY log f (Y j θ0)�

1
n

n

∑
i=1
log f (Xi j θ0)

!
| {z }

B2

+EX

 
1
n

n

∑
i=1
log f (Xi j θ0)�

1
n

n

∑
i=1
log f

�
Xi jbθ�

!
| {z }

B3

where θ0 maximizes EY log f (Y j θ) .
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We have

EY log f
�
Y jbθ��EY log f (Y j θ0)

�
�

∂

∂θ
EY log f (Y j θ0)

�T �bθ � θ0
�

+
1
2

�bθ � θ0
�T ∂2

∂θ∂θT
EY log f (Y j θ0)

�bθ � θ0
�

where J = � ∂2

∂θ∂θT
EY (log f (Y j θ0)) .

We have seen in class before that
p
N
�bθ � θ0

�
) N

�
0, J�1IJ

�
,

I = EY

�
∂ log f (Y jθ0)

∂θ

�
∂ log f (Y jθ0)

∂θ

�T�
so

EX

��bθ � θ0
�T
J
�bθ � θ0

��
=
1
n
trace

�
IJ�1

�
.

Finally we have

B1 � �
1
2n
trace

�
IJ�1

�
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We have

B2 = EX

 
EY log f (Y j θ0)�

1
n

n

∑
i=1
log f (Xi j θ0)

!
= 0

Now
1
n

n

∑
i=1
log f (Xi j θ0)�

1
n

n

∑
i=1
log f

�
Xi jbθ�

�

0@1
n

n

∑
i=1

∂ log f
�
Xi jbθ�

∂θ

1AT �
θ0 � bθ�

+
1
2

�
θ0 � bθ�T

0@1
n

n

∑
i=1

∂2 log f
�
Xi jbθ�

∂θ∂θT

1A�θ0 � bθ� .
The law of large numbers yields0@1

n

n

∑
i=1

∂2 log f
�
Xi jbθ�

∂θ∂θT

1A! �J
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Now taking the expectation with respect to fXig

B3 = EX

 
1
n

n

∑
i=1
log f (Xi j θ0)�EY log f

�
Y jbθ�!

� �1
2

EX

��
θ0 � bθ�T J �θ0 � bθ��

� � 1
2n
trace

�
IJ�1

�
.

It follows that

B = B1 + B2 + B3

� �1
n
trace

�
IJ�1

�
.

In the special situation where the true distribution belongs to the
family of models (!!), then we have I = J and

B = �1
n
trace

�
IJ�1

�
= �1

n
trace (Id) = �d

n

where Id is the identity matrix of size d � d where θ 2 Rd .
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To conclude, we have

EX

�
EY log f

�
Y jbθm�� = B +EX

"
1
n

n

∑
i=1
log f

�
Xi jbθm�

#
� 1

n

�
log f

�
x1:n jbθm�� d�

Maximizing this quantity over m is equivalent to minimizing

AIC = �2 log f
�
x1:n jbθm�+ 2d .

Since its introduction in the mid-70s, many variations have been
proposed.
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