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Review of Maximum Likelihood Approach

We have data Xi
i.i.d.� g (x).

We model the distribution of these data by a parametric model
ff (x j θ) ; θ 2 Θ � Rpg.
We estimate θ by ML; that is

bθ = argmax
θ2Θ

l (θ) where l (θ) := ∑n
k=1 log f (Xk j θ)

We know that as n! ∞ then bθ converges towards
θ� = argmin

θ2Θ
KL (g (x) ; f (x j θ))

where

KL (g (x) ; f (x j θ)) :=
Z
g (x) log

g (x)
f (x j θ)dx
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A Central Limit Theorem

Assuming the MLE is asymptotically consistent, then we have

0 =
∂l (θ)

∂θ

����bθ = ∂l (θ)
∂θ

����
θ�
+

∂2l (θ)

∂θ∂θT

����
θ�

�bθ � θ�
�
+ ...

The law of large numbers yields

�1
n

∂l (θ)

∂θ∂θT

����
θ�
!
�
J (θ�) := �

Z
g (x)

∂2 log f (x j θ)
∂θ∂θT

����
θ�
dx
�

The CLT yields

p
n
1
n

∂l (θ)
∂θ

����
θ�

D! N (0, I (θ�))

where

I (θ�) =
Z
g (x)

∂ log f (x j θ)
∂θ

����
θ�

∂ log f (x j θ)
∂θT

����
θ�
dx
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Using Slutzky�s theorem we have

p
n
�bθ � θ�

�
D! N

�
0, J�1 (θ�) I (θ�) J�1 (θ�)

�
.

This is sometimes known as the sandwitch variance.

When g (x) = f (x j θ�) then we have

J (θ�) = I (θ�)

and the �standard�CLT follows

p
n
�bθ � θ�

�
D! N

�
0, I�1 (θ�)

�
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Evaluating The Statistical Model

We want to compare our model f
�
x jbθ� to g (x).

One way consists of evaluating

KL
�
g (x) ; f

�
x jbθ�� = Z

g (x) log g (x) dx�
Z
g (x) log f

�
x jbθ� dx .

and the larger
R
g (x) log f

�
x jbθ� dx , the closer the model is to the

true one.

The crucial issue is to obtain an estimate of

Eg

h
log f

�
X jbθ�i = Z

g (x) log f
�
x jbθ� dx .

Clearly an estimate of Eg

h
log f

�
X jbθ�i is n�1l �bθ� and an estimate

of nEg

h
log f

�
X jbθ�i is l �bθ�.
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Selecting a Model

In practice, it is di¢ cult to precisely capture the true structure of
given phenomena from a limited number of data.

Often several candidate statistical models are selected and we want to
select the model that closely approximates the true distribution of the
data.

Given m candidate models ffi (x j θi ) ; i = 1, ...,mg and the
associated ML estimates bθi , a simple solution would consist of
selecting the model j where

j = argmax
i2f1,...,mg

li
�bθi� ;

i.e. picking the model for which KL
�
g (x) ; fi

�
x jbθi�� is the

smallest.
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Be Careful!

This approach does not provide a fair comparison of models.

The quantity li
�bθi� contains a bias as an estimator of

nEg

h
log fi

�
X jbθi�i.

The reason is that the data X1, ...,Xn are used twice: to estimate bθi
and to approximate the expectation with respect to g .

We will show that the size of the bias depends on the size p of the
parameter θ.
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Relationship between log-likelihood and expected
log-likelihood

Let us denote θ�i = argminKL (g (x) ; fi (x j θi )) the �true�parameter.
We necessarily have

Eg

h
log fi

�
X jbθi�i � Eg [log fi (X j θ�i )]

whereas
li
�bθi� � li (θ�i ) .

To correct for this bias, we want to estimate

bi (g) = Eg

h
li
�bθi�� nEg

h
log fi

�
X jbθi�ii

where remember that

li
�bθi� = ∑n

k=1 log fi
�
Xk jbθi�

and bθi = bθi (X1:n).

Arnaud Doucet () February 2008 8 / 34



Information Criterion

The information criterion for model i is de�ned as

IC (i) = �2∑n
k=1 log fi

�
Xk jbθi�+ 2 festimator for bi (g)g

IC(i) is a biased-corrected estimate of minus the expected
log-likelihood.

So given a collection of models, we will select the model

j = argmin
i2f1,...,mg

IC (i)
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Derivation of Bias

We want to estimate the bias b (g) which is given by

Eg

h
l
�bθ (X1:n)

�
� nEg

h
log f

�
X jbθ (X1:n)

�ii
= Eg

h
l
�bθ (X1:n)

�
� l (θ�)

i
| {z }

D1

+Eg [l (θ
�)� nEg [log f (X j θ�)]]| {z }

D2

+Eg

h
nEg [log f (X j θ�)]� nEg

h
log f

�
X jbθ (X1:n)

�ii
| {z }

D3

Arnaud Doucet () February 2008 10 / 34



Calculation of second term

We have

D2 = Eg [l (θ
�)� nEg [log f (X j θ�)]]

= Eg

h
∑n
k=1 log f (Xk j θ

�)� nEg [log f (X j θ�)]
i

= 0

No bias for this term...
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Calculation of third term

Let us denote
η
�bθ� = Eg

h
log f

�
X jbθ�i .

By performing a Taylor expansion around θ�, we obtain

η
�bθ� = η (θ�)+

∂η (θ)

∂θ

����T
θ�

�bθ � θ�
�
+
1
2

�bθ � θ�
�T ∂2η (θ)

∂θ∂θT

����
θ�

�bθ � θ�
�
+ � � �

As ∂η(θ)
∂θ

���
θ�
= 0 then

η
�bθ� � η (θ�)� 1

2

�bθ � θ�
�T
J (θ�)

�bθ � θ�
�

where

J (θ�) = � ∂2η (θ)

∂θ∂θT

����
θ�
= �

Z
g (x)

∂2 log f (x j θ)
∂θ∂θT

����
θ�
dx
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It follows that

D3 = Eg

h
n
�

η (θ�)� η
�bθ��i

� n
2

Eg

��bθ � θ�
�T
J (θ�)

�bθ � θ�
��

=
n
2

Eg

�
tr
�
J (θ�)

�bθ � θ�
� �bθ � θ�

�T��
=

n
2
tr
�
J (θ�)Eg

��bθ � θ�
� �bθ � θ�

�T��
We have from the CLT established previously we have

Eg

��bθ � θ�
� �bθ � θ�

�T�
� 1
n
J (θ�)�1 I (θ�) J (θ�)�1

so
D3 �

1
2
tr
n
I (θ�) J (θ�)�1

o
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Calculation of �rst term

We have

l (θ) = l
�bθ�+ ∂l (θ)

∂θ

����Tbθ
�

θ � bθ�+ 1
2

�
θ � bθ�T ∂2l (θ)

∂θ∂θT

����bθ
�

θ � bθ�+ ...
so

l (θ�)� l
�bθ� � �n

2

�
θ� � bθ�T J (θ�) �θ� � bθ�

D1 = Eg

h
l
�bθ (X1:n)

�
� l (θ�)

i
� n

2
Eg

��
θ� � bθ�T J (θ�) �θ� � bθ��

=
n
2

Eg

�
J (θ�) tr

��
θ� � bθ�T �θ� � bθ���

=
1
2
tr
�
I (θ�) J (θ�)�1

�
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Estimate of the Bias

We have

b (g) = D1 +D2 +D3

� 1
2
tr
n
I (θ�) J (θ�)�1

o
+ 0+

1
2
tr
n
I (θ�) J (θ�)�1

o
= tr

n
I (θ�) J (θ�)�1

o
Let bI and bJ be consistent estimate of I (θ�) and J (θ�), say

bI =
1
n ∑n

k=1

∂ log f (Xk j θ)
∂θ

����bθ ∂ log f (Xk j θ)
∂θT

����bθ ,bJ = �1
n ∑n

k=1

∂2 log f (Xk j θ)
∂θ∂θT

����bθ
then we can estimate the bias throughbb (g) = tr�bIbJ�1�
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Information Criterion

We have for the information criterion for model i

IC (i) = �2∑n
k=1 log fi

�
Xk jbθi�+ 2tr�bIibJ�1i �

Assuming g (x) = fi (x j θ�i ) then Ii (θ�i ) = Ji (θ�i )
�1 so bi (g) = pi

(where pi is the dimension of θi ) so in this case

AIC (i) = �2∑n
k=1 log fi

�
Xk jbθi�+ 2pi .
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Checking the Equality of Two Discrete Distributions

Assume we have two sets of data each having k categories and

Category 1 2 � � � k
Data set 1 n1 n2 � � � nk
Data set 2 m1 m2 � � � mk

where we have n1 + � � �+ nk = n observations for the �rst dataset
and m1 + � � �+mk = m for the second.

We assume these datasets follow the multinomial distributions

p (n1, � � � , nk j p1, � � � , pk ) =
n!

n1! � � � nk !
pn11 � � � p

nk
k ,

p (m1, � � � ,mk j q1, � � � , qk ) =
m!

m1! � � �mk !
qm11 � � � qmkk

We want to check whether p1, � � � , pk 6= q1, � � � , qk or
p1, � � � , pk = q1, � � � , qk
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Assume the two distributions are di¤erent then

l (p1:k , q1:k ) = log n!�
k

∑
j=1
(log nj !+ nj log pj )

+ logm!�
k

∑
j=1
(logmj !+mj log qj )

We have the MLE bpj = nj
n
, bqj = mj

n
So

l (bp1:k , bq1:k ) = C +
k

∑
j=1

�
nj log

nj
n
+mj log

mj
n

�
with C = log n!+ logm!�∑k

j=1 (log nj !+ logmj !) and

AIC = �2
 
C +

k

∑
j=1

�
nj log

nj
n
+mj log

mj
n

�!
+ 4 (k � 1)
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If we assume the two distributions are equal then

l (r) = C �
k

∑
j=1
(nj +mj ) log rj

and brj = nj +mj
n+m

We have

l (br1:k ) = C +
k

∑
j=1
(nj +mj ) log

�
nj +mj
n+m

�
and

AIC = �2
 
C +

k

∑
j=1
(nj +mj ) log

�
nj +mj
n+m

�!
+ 2 (k � 1)
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Example

Consider the following data

Category 1 2 3 4 5
Data set 1 304 800 400 57 323
Data set 2 174 509 362 80 214

From this table we can deduce

Category 1 2 3 4 5bpj 0.16 0.42 0.21 0.03 0.17bqj 0.13 0.38 0.27 0.06 0.16brj 0.15 0.41 0.24 0.04 0.17
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Ignoring the constant C , the maximum log-likelihood of the models
are

Model 1 :
k

∑
j=1

�
nj log

nj
n
+mj log

mj
n

�
= �4567.36,

Model 2 :
k

∑
j=1
(nj +mj ) log

�
nj +mj
n+m

�
= �4585.61.

The number of free parameters of the models is 2 (k � 1) = 8 in
model 1 and 4 in model 2. So it follows that AIC for model 1 and
model 2 is respectively 9150,73 and 9179,22 so AIC selects Model 1.
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Determining the number of bin size of an histogram

Histograms are use for representing the properties of a set of
observations obtained from either a discrete or continuous
distribution.

Assume we have a histogram fn1, n2, ..., nkg where k is refer to as
the bin size.

If k is too large or too small, then it is di¢ cult to capture the
characteristics of the true distribution.

We can think of an histogram as a model speci�ed by a multinomial
distribution

p (n1, � � � , nk j p1, � � � , pk ) =
n!

n1! � � � nk !
pn11 � � � p

nk
k

where n1 + � � �+ nk = n, p1 + � � �+ pk = 1.
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In this case, we have seen that the MLE is bpj = nj
n and

l (bp1:k ) = C +
k

∑
j=1
nj log

nj
n

with C = log n!�∑k
j=1 log nj !

We have k � 1 free parameters so

AIC = �2
(
C +

k

∑
j=1
nj log

nj
n

)
+ 2 (k � 1) .

We want to compare this model to a model with lower resolutions.
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To compare the histogram model with a simpler one, we may assume
p2j�1 = p2j for j = 1, ....m and for sake of simplicity, we consider here
k = 2m. In this case, the new MLE is bp2j�1 = bp2j = n2j�1+n2j

2n

In this case, the AIC is given by

AIC = �2
(
C +

m

∑
j=1
(n2j�1 + n2j ) log

n2j�1 + n2j
2n

)
+ 2 (m� 1) .

Similarly we can consider the histogram with m bins where k = 4m.

We apply this to galaxy data for which AIC selects 14

bin size 28 14 7
log-like -189.19 -197.71 -209.52
AIC 432.38 421.43 431.03
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Application to Polynomial Regression

We are given n observations fxi , yig.
We want to use the following model

y = β0 + β1x + β2x
2 + . . .+ βkx

k + ε, ε � N
�
0, σ2

�
where k is unknown.

We have θ =
�

β0:k , σ
2
�
and

l (θ) = �n
2
log
�
2πσ2

�
� 1
2σ2

n

∑
j=1

 
yj �

 
k

∑
m=0

βmx
m
j

!!2
We can easily establish that

l
�bθ� = �n

2
log
�
2πbσ2�� n

2
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Experimental Results

In this case for the polynomial model of order k we have k + 2
unknown parameters so

AIC (k) = n (log 2π + 1) + n log bσ2 + 2 (k + 2)
This yields

k 0 1 2 3 4 5 6 7

l
�bθk� 22.41 31.19 41.51 42.52 43.75 44.44 45.00 45.45

AIC -40.81 -56.38 -75.03 -75.04 -75.50 -74.89 -74.00 -72.89

AIC selects model 4.
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Application to Daily Temperature Data

Daily minimum temperatures yi in January averaged from 1971
through 2000 for city i

xi1 latitudes, xi2 longitudes and xi3 altitudes.

A standard model is

yi = a0 + a1xi1 + a2xi2 + a3xi3 + εi

where εi � N
�
0, σ2

�
.

But we would also like to compare models where some of the
explanatory variables are omitted.
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Results

We have

AIC (model) = n (log 2π + 1)+n log bσ2+ 2 (nb. explanatority var.+ 2)
This yields

model x1, x3 x1, x2, x3 x1, x2 x1 x2, x3 x2 x3bσ2 1.49 1.48 5.11 5.54 5.69 7.81 19.96
AIC 88.92 90.81 119.71 119.73 122.43 128.35 151.88

We select the model

yi = 40.49� 1.11xi1 � 0.010xi3 + εi

with εi � N (0, 1.49) .
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Selection of Order of Autoregressive Model

We have the following model

yk =
m

∑
i=1
aiyk�i + εk , εk

i.i.d.� N
�
0, σ2

�
.

Assuming we have data y1, y2, ..., yn and that y0, y�1, ..., y1�m are
deterministic then we can easily obtain the MLE estimate and check
that

l
�bθ� = �n

2
log
�
2πbσ2�� n

2
Since the model with order m has m+ 1 unknown parameters then

AIC (m) = n (log 2π + 1) + n log bσ2 + 2 (m+ 1)
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Application to Canadian Lynx Data

This corresponds to the logarithms of the annual numbers of lynx
trapped from 1821 to 1934; n = 114 observations.

We try 20 candidate models and m = 11 is selected using AIC.
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Detection of Structural Changes

We some times encounter the situation in which the stochastic
structure of the data changes at a certain time or location.

Let us start with a simple model where

Yn � N
�
µn, σ

2�
and

µn =

�
θ1 if n < k
θ2 if n � k

where k is the unknown so-called changepoint.

We have N data and, for the model k, the likelihood is

L
�
θ1, θ2, σ

2� = ∏k�1
n=1 N

�
yn; θ1, σ2

�
∏N

n=k N
�
yn; θ2, σ2

�
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It can be easily established that

bθ1 =
1

k � 1
k�1
∑
n=1

yn, bθ2 = k
N � k + 1

N

∑
n=k

yn,

bσ2 =
1
N

(
k�1
∑
n=1

�
yn � bθ1�2 + N

∑
n=k

�
yn � bθ2�2)

So we have the maximum log-likelihood given by

l
�bθ1,bθ2, bσ2� = �N2 log �2πbσ2�� N

2

where we emphasize that bσ2 is a function of k,
The AIC criterion is given by

AIC = N log
�
2πbσ2�+N + 2� 3

and the changepoint k can be automatically determined by �nding
the value of k that gives the smallest AIC .
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Application to Factor Analysis

Suppose we have x = (x1, ..., xp)
T a vector of mean µ and

variance-covariance Σ.
The factor analysis model is

x = µ+ Lf + ε

where L is a p�m matrix of factor loadings whereas f = (f1, ..., fm)
T

and ε = (ε1, ..., εp)
T are unobserved random vectors assumed to

satisfy

E [f ] = 0, Cov [f ] = Im ,

E [ε] = 0, Cov [ε] = Ψ = diag (Ψ1, ...,Ψp) ,

Cov [f , ε] = 0.

It then follows that
Σ = LLT +Ψ.
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Let S denote the sample covariance.

Under a normal assumption for f and ε, it can be shown that the ML
estimates of L and Ψ can be obtained by minimizing

log jΣj � log jS j+ tr
�
Σ�1S

�
� p

subject to LTΨ�1L being a diagonal matrix.
In this case, we have

AIC (m) = n
n
p log (2π) + log

���bΣ���+ tr �Σ�1S�o
+2
�
p (m+ 1)� 1

2
m (m� 1)

�
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