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Review of Maximum Likelihood Approach

o We have data X; "= g (x).

@ We model the distribution of these data by a parametric model
{f(x|6);0 € ® C RP}.
@ We estimate 6 by ML; that is

6 = arg max/ (8) where [ (6) := ZZ:1 log f ( Xk| 0)
fcO

o We know that as n — oo then 8 converges towards

6% = argminKL (g (x); f (x|0))
0c®

where

KL (g (x): 7 (x16)) := [ 5 (x)log fg((‘z,) dx
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A Central Limit Theorem

@ Assuming the MLE is asymptotically consistent, then we have

aO) _ale)]  21(0) (-0
) .

0=_""| =
L o 00007
dx>
9*

3 a0
@ The law of large numbers yields
1 d/(0) ( . / 9% log f (x|0)
—— J(0%) = — e
n asae” |y ) &) 0007
@ The CLT yields

10/(0)] b N
\MEWB*HN(O:“G )
where
dlog f (x|6 dlogf (x|6
1(6%) :/g(x) OgaéX| ) ) Ogae(TX| ) ) dx
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@ Using Slutzky's theorem we have
Jn (5— 9*) N0, 171 (07) 1(67) S (67)) .

@ This is sometimes known as the sandwitch variance.
@ When g (x) = f (x| 0") then we have

and the ‘standard’ CLT follows

Vi (8-07) 2N (0,17 (69)
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Evaluating The Statistical Model

e We want to compare our model f <x|§) to g (x).

@ One way consists of evaluating
KL(g(x):f (x]0)) = /g(x) log g (x) dx—/g (x)log f (x|8) d.

and the larger [ g (x)logf <x|5) dx, the closer the model is to the
true one.

@ The crucial issue is to obtain an estimate of
E, [Iogf (X]b\)} = /g(x) log f <x|§) dx.

@ Clearly an estimate of [E, [Iog f (X]@)} is n=t/ (5) and an estimate
of nEg [log £ (X|0)] is 1(8).
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Selecting a Model

@ In practice, it is difficult to precisely capture the true structure of
given phenomena from a limited number of data.

@ Often several candidate statistical models are selected and we want to
select the model that closely approximates the true distribution of the
data.

e Given m candidate models {f; (x|6;);i =1,..., m} and the
associated ML estimates 6;, a simple solution would consist of
selecting the model j where

j= arg max i (5,) ;

i.e. picking the model for which KL (g (x); f; (X|§,>) is the
smallest.
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Be Careful!

@ This approach does not provide a fair comparison of models.

@ The quantity /; ( 8; ) contains a bias as an estimator of
nE, [Iogf,- (X|§,)}

@ The reason is that the data Xj, ..., X, are used twice: to estimate 5,-
and to approximate the expectation with respect to g.

@ We will show that the size of the bias depends on the size p of the
parameter 6.
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Relationship between log-likelihood and expected

log-likelihood

@ Let us denote 07 = argmin KL (g (x) ; f; (x| 8;)) the ‘true’ parameter.
@ We necessarily have

Eg [log i ( X[8))] < Eg [log i (X]6))]
whereas
I (@,) > 1 (67).
@ To correct for this bias, we want to estimate
b; (g) =E; [/i (b\,) —nEg [lngi (X!@)H
where remember that
l; (@') =Y logf (Xk|§f>

and /9\,' = /9\,' (Xlzn)-
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Information Criterion

@ The information criterion for model i is defined as
IC(i)=-2 22:1 log f; (Xk|§,-) + 2 {estimator for b; (g)}

e IC(i) is a biased-corrected estimate of minus the expected
log-likelihood.

@ So given a collection of models, we will select the model

Jj = argmin IC (/)
ie{l,...m}
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Derivation of Bias

e We want to estimate the bias b (g) which is given by

E, [/ (5 (Xlzn)) — nE, [log f <X|§(X1;n))H
- K (8 0an) — 1))

D
+Eg [1(87) — nEg [log f (X|67)]]
Dy
+Eg [ [log £ (X|6)] — nEg [log £ ( X|8 (X)) |

~~

Ds
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Calculation of second term

@ We have
D, = Eg[l(67) — nEg [log f (X]6%)]]
- E, [ZZZI log f (Xi| 07) — nE, [logf(xye*)]]
0

@ No bias for this term...

Arnaud Doucet () February 2008 11 / 34



Calculation of third term

@ Let us denote % R
7 (8) = Eg [logf (X]8)].

@ By performing a Taylor expansion around 6%, we obtain

1) =nio 250

T = 2
(o) (0-0) S

-0

0

o As 8%7(99)’9* = 0 then

where

00007 00007

) _ —/g(x) 9% log f (x| 0)

0*
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o It follows that

D; =

@ We have from the CLT established previously we have

>
~—
R

E, {(5—9*) (5—9*” ~ %J(G*)_II(G*)J( *

Ds ~ %tr{l (9*)J(9*)*1}
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Calculation of first term

@ We have

1(6) :,(§>+a/@ <9_§>+} <9_5>T 91 (6)
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Estimate of the Bias

@ We have
b(g) = Di+Dy+Ds
~ 1 * x\—1 1 * *\—1
~ e {10000 f o+ e {10007
- tr{/(e*)J(e*)*l}
o Let / and J be consistent estimate of / (8*) and J (6*), say
~ alogf(Xk\G) dlog f (Xk|0)
I = *Zk 1

3 00"
)= _EZH 26007

0

0° Iogf(Xk|9)

then we can estimate the bias through

b(g)=tr <77_1>
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Information Criterion

@ We have for the information criterion for model i
IC (i) = =2 Yy, log f; ( Xi|8;) +2tr (7577

o Assuming g (x) = f; (x| 07) then ; (87) = J; (67) " so bi (g) = pi
(where p; is the dimension of 6;) so in this case

AIC (i) = —2Y "7 log (Xk|§,) +2p;.
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Checking the Equality of Two Discrete Distributions

@ Assume we have two sets of data each having k categories and

where we have ny + - - - + nx = n observations for the first dataset

Category 1 2 k
Datasetl | ni | m ny
Dataset2 | my | my my

and mq + - - - + my = m for the second.

@ We assume these datasets follow the multinomial distributions

n!
P(n1,'~' ,nk|P1,"~ ,Pk) =
m
m!
p(mlr"'rmk‘qlv"'qu) — "
ml'---
e We want to check whether p1, -+, px # q1, - - -
Pty Pk =41, Gk
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@ Assume the two distributions are different then

k
I(p1:k: q1:k) = logn!— Z (log nj! + nj log pj)
j=1
k
+ log m! — Z (log m;! 4+ mjlog q;)
j=1

@ We have the MLE

e So
I (Prk Gu:k) = C+ Z (nj Iog | 4 m;log —)
j=
with C = log n! 4 log m! — ijl (log nj! + log m;!) and

AIC = —2 <C+Z(n,|og +m,|og)> +a(k—1)
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@ If we assume the two distributions are equal then

k
)=C— Z nj + m;) log r;
j=1
and
R n; —+ m;j
rJ- = -
n+m
@ We have
k
— nj + m;
and
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@ Consider the following data

Category 1 2 3 4 |5
Data set 1 | 304 | 800 | 400 | 57 | 323
Dataset 2 | 174 | 509 | 362 | 80 | 214

@ From this table we can deduce

Category | 1 2 3 4 5

pj 0.16 | 0.42 | 0.21 | 0.03 | 0.17
qj 0.13 1 0.38 | 0.27 | 0.06 | 0.16
T 0.15 ] 0.41 | 0.24 | 0.04 | 0.17
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@ Ignoring the constant C, the maximum log-likelihood of the models
are

k n; mj
Model 1 : Y (njlog ™ + mylog °~ ) = —4567.36,
= n n

k
n; + m;
Model 2 i+ mj)| L7 | = —4585.61.
ode J;(nj+mj) og< n+m> 585.6
@ The number of free parameters of the models is 2 (k — 1) = 8 in
model 1 and 4 in model 2. So it follows that AIC for model 1 and

model 2 is respectively 9150,73 and 9179,22 so AIC selects Model 1.
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Determining the number of bin size of an histogram

@ Histograms are use for representing the properties of a set of
observations obtained from either a discrete or continuous
distribution.

@ Assume we have a histogram {ny, my, ..., nx } where k is refer to as
the bin size.

o If k is too large or too small, then it is difficult to capture the
characteristics of the true distribution.

@ We can think of an histogram as a model specified by a multinomial
distribution

n!

p(nly...'nk’ply...vpk):mpfl...ka

where ny +---+nc=n, pr+---+pc =1
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o In this case, we have seen that the MLE is p; = n—,j and
_ k nj
I(prxk) = C+ Z n; Iog;
j=1

with C = logn! — 2};1 log n;!

@ We have k — 1 free parameters so

k n
A/C:—Q{C—I—anlog;}+2(k—1).

Jj=1

@ We want to compare this model to a model with lower resolutions.
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@ To compare the histogram model with a simpler one, we may assume
p2j—1 = poj for j = 1,....m and for sake of simplicity, we consider here

k = 2m. In this case, the new MLE is pyj_1 = ppj = "21%:"2’
@ In this case, the AIC is given by
m . .
AlC = —2{C+ Z(nzj_l —|—n2j)|ogn2jl2:n2j} +2(m— 1).
j=1

@ Similarly we can consider the histogram with m bins where k = 4m.

o We apply this to galaxy data for which AlIC selects 14

bin size 28 14 7
log-like | -189.19 | -197.71 | -209.52
AlC 432.38 | 421.43 | 431.03
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Application to Polynomial Regression

@ We are given n observations {x;, y;}.

@ We want to use the following model

y =Byt Bix+ B+ ...+ Bx+e e~ N(0,0%)

where k is unknown.
@ We have 0 = (,80:,(,(72) and

n k 2
/(9):—§Iog (2rt0?) 12; < (Zoﬁmxjm>>

@ We can easily establish that

/(@) — —g log (27[&2) -
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Experimental Results

@ In this case for the polynomial model of order k we have k 4 2
unknown parameters so

AIC (k) = n (log 27 + 1) + nlog&* + 2 (k +2)

@ This yields

K 0 1 2 3 4 5 6 7
/(ék) 2041 | 31.10 | 4151 | 4252 | 43.75 | 44.44 | 45.00 | 45.45
AIC | -40.81 | -56.38 | -75.03 | -75.04 | -75.50 | -74.89 | -74.00 | -72.89

@ AIC selects model 4.
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Application to Daily Temperature Data

@ Daily minimum temperatures y; in January averaged from 1971
through 2000 for city i

@ xj1 latitudes, xj» longitudes and x;3 altitudes.

@ A standard model is
Yi = ao + aixjy + axxj2 + asxjz + ¢&;

where g; ~ N (0,0’2).
@ But we would also like to compare models where some of the
explanatory variables are omitted.
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o We have

AIC (model) = n (log 27t + 1) + nlog & + 2 (nb. explanatority var. + 2)

@ This yields

model | x1,x3 | x1,X0, X3 | X1, X0 X1 X0, X3 X5 X3
G’ 149 | 1.48 511 |554 [569 |[7.81 |[19.96
AIC 88.92 | 90.81 119.71 | 119.73 | 122.43 | 128.35 | 151.88

@ We select the model

yi = 40.49 — 1.11x;;1 — 0.010x;3 + ¢;

with & ~ N (0,1.49).
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Selection of Order of Autoregressive Model

@ We have the following model

m
id.
V=Y aiyk—i+ex &~ /\/’(0,02) .

i=1

@ Assuming we have data y1, y», ..., ¥» and that yo,y_1, ..., yi—m are
deterministic then we can easily obtain the MLE estimate and check

that " n n
@ Since the model with order m has m + 1 unknown parameters then

AIC (m) = n(log2m +1) 4 nlog&® +2 (m+1)
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Application to Canadian Lynx Data

@ This corresponds to the logarithms of the annual numbers of lynx
trapped from 1821 to 1934; n = 114 observations.

@ We try 20 candidate models and m = 11 is selected using AIC.
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Detection of Structural Changes

@ We some times encounter the situation in which the stochastic
structure of the data changes at a certain time or location.

@ Let us start with a simple model where

Y” ~ N (Vn’gz)

. 01 ifn<k
Pa = 6, ifn>k
where k is the unknown so-called changepoint.
@ We have N data and, for the model k, the likelihood is

L(91,92,0’ Hk 1N Yn;91,0’2) HrI:I:kN(}/n;GQ,0’2)

and
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@ It can be easily established that

R 1 k=t R K N
01 = kfr;)/nv szmng)/n,
N 1 k—1 N2 N N2
(72 - N{f;(}/n_(h) +n_X:k<Yn_92> }

@ So we have the maximum log-likelihood given by

o N R N
/(91,92,02) — —3 log (27w2) -5
where we emphasize that 72 is a function of k,
@ The AIC criterion is given by
AIC = Nlog (27162) FN+2x3

and the changepoint k can be automatically determined by finding
the value of k that gives the smallest AIC.
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Application to Factor Analysis

-
@ Suppose we have x = (xi,...,X,) a vector of mean y and
variance-covariance 2.

@ The factor analysis model is
x=pu+Lf+e¢

where L is a p x m matrix of factor loadings whereas f = (fi, ..., fm)T
and ¢ = (e, ..., 8P)T are unobserved random vectors assumed to
satisfy
E[f] = 0, Cov|f]=In,
E [e] 0, Covle] =¥ = diag (¥1,.... ¥p).,
Cov|f,e] = 0.

@ It then follows that
Y=LLT+Y¥.
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@ Let S denote the sample covariance.

@ Under a normal assumption for f and ¢, it can be shown that the ML
estimates of L and ¥ can be obtained by minimizing

log |Z| — log | S| +tr (7'S) — p

subject to LT¥~1L being a diagonal matrix.

@ In this case, we have
AIC(m) = n {plog (271) + log ‘2‘ +tr (2_15)}

+2{p(m+1) = mim—1]
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