Stat 461-561: Exercises 6

Exercise 2 Changepoint detection.
(a) Derive the Gibbs sampler to sample from the posterior distribution
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We also have for k=1,...,m
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(b) Is it not possible to select an improper prior for A as
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But if there is no changepoint (i.e. k& = m) then 7 (A| z1.m,k =) = 7 (\) which is
improper.

Exercise 3. This was covered during the course (Baseball data).

Exercise 4. Brook’s formula. Consider the following conditional distributions
7 (02]61) and 7 (01| 62) which are assumed strictly positive for any 601, 05.

(a) We have
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(b) Given 7 (0]61) = N (92; 0, ﬁ) and 7 (01]0) = N (01, 0, 1+92) establish
the expression of 7 (01,62) up to a normalizing constant.
We select (09,6’3) = (0,0) and
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(c) Are the marginal distributions 7 (1) and 7 (f2) Gaussians?

The marginals are clearly not Gaussian due to the term 6363

Exercise 5. Two-stage Gibbs sampler. In the case of the two-stage Gibbs sam-
pler, the relationship between the Gibbs sampler and the Metropolis-Hastings algo-
rithm becomes particularly clear. If we have the bivariate Gibbs sampler X ~ 7 (z|y)
and Y ~ 7 (y|x), consider the X chain alone and show:

(a) its transition kernel is given by K = [7(y|z) 2 |y)dy

The joint distribution of (y,z’) glven x is

m(ylz)m (2’| y) .

So integrating out the variable y, we have
K (.a') = [ x(slo)m (/]9) dy

(b) show that % 1 so a Metropolis-Hastings with proposal K (2/, x) is
always accepted.
We have

T (z) K (z,2)
= 7 (@) [ 7 (o) 7 («]v) dy
_ m)/wy);(ymm )

m(z ™ (y)
= 7 (&) [ w (el (sl+') dy

= 7 (a:’) K (x/,:c) .
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Y

Exercise 6. Binomial model. For ¢ = 1, 2,3, consider Y; = X1; + Xo; with
X1; ~ B(nii,01), Xoi ~ B(ng;, 02).
(a) Give the likelihood for ny; = 5,6, 3, ng; = 5,4,6 and y; = 7,5, 6.

We can compute the distribution of the observations as follows
H Z < .11 > < 2i . ) 9311' (1 _ el)nu—ﬁ ggi—h (1 _ 02)n2i_yi+]i
=17 Ji Yi — Ji

where max {0, Yi — ngi} § ]Z S min {nli, yz} .
(b) For a uniform prior on (61, 62), derive the Gibbs sampler.
To implement the Gibbs sampler, we introduce missing data and sample from

7 (01,602, 21.1:3, ©2,1:3| Y1:3)
where ;1.3 = (241, Zi2, i3). We have

(01,02 y1:3,71,1:3,22,1:3) = 7 (01,02 21,1:3,2,1:3)
= 7 (61| z1,1:3) 7 (02] 22,1:3)
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where
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or equivalently

) n;10
7 (21,4| vi,01,602) = Bin <yi, M)

(c) Examine whether an alternative parameterization or a MH algorithm may
speed up convergence.

There is no clear cut answer to this question. It might be interesting to use the
logit (log-odds) reparameterization, that is

=1 02
pi=log | - |-

Also it is not necessary to introduce missing data and it could be possible alternatively
to use the MH algorithm to sample directly from m (601, 602|y1.3) .
Exercise 7. More two-stage Gibbs sampler. For the Gibbs sampler

X|y~N(py,1-p*), Y|z ~N (pz,1-p%).

(a) Show that for the X chain, the transition kernel is

K () = 1/exp L@l o (=)
’ 2m (1 - p?) 2(1-p%) 2(1-p%) ) 7
This follows straightforwardly from the fact that
K (2 z) = /W(y\w')ﬁ(x\y) dy.

(b) Show that A (0, 1) is the invariant distribution of the X chain.
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Assume that X’ ~ A (0,1) then as
Yia' ~ N (pz/,1 - p?)
we have

E[Y]2] = pa,
V[Y|d] = 1—p?

SO

E[Y] = E[E[Y|X']] =pE[X'] =0,
VY] = E[V[Y|X']]+VI[E[Y|X']]
= 1-p*+p°V[X']
= L

Similarly we show that X|y ~ N (py,1 — p?) is such that E[X] = 0 and V [X] = 1. As
X is Gaussian then this proves that N (0,1) is the invariant distribution of K (2, z).
Alternatively, you could just check it by showing that

/N(m';O,l)K(m',x)dw:N(ac';O,l).

(c) It follows directly by completing the square in y and integrating with respect
to y.

(d) We have X, = p? X1 + U (k = 1,2,...) where U}, Ve (0,1 — p*) directly
because of (c). Now we have

E[X:] = E[p*Xo+ Ui
= ,02E [Xo] + E[U1]
= 0

if E[Xo] = 0 and by induction E [X}] = 0.
We have

cov (X(), Xl) = E [X()Xl] —E [Xo] E [Xl]
p°E [Xg] = p2.

Assume we have cov (Xg, Xj) = p?* then

cov (Xo, Xk-Jrl) = [E [XOXk+1]
P’B [ Xo Xy + B [XoUy)
p°B [XoXi] + B [Xo] E[Uy]

_ D),



