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Exercise 2 Changepoint detection.
(a) Derive the Gibbs sampler to sample from the posterior distribution

� (k; �; �; b1; b2jx1:m) :

We have

� (k; �; �; b1; b2jx1:m)
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and we use the convention
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We have
� (�jx1:m; k; �; b1; b2) = � (�jx1:k; b1)
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Similarly, we have for k < m

� (�jx1:m; k; �; b1; b2) = � (�jxk+1:m; b2)
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and if k = m

� (�jx1:m; k; �; b1; b2) = � (�j b2)
= Gamma (�; a2; b2) :

We have
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We also have for k = 1; :::;m

� (kjx1:m; �; �; b1; b2) =
f (x1:mj k; �; �; b1; b2)Pm

j=1 f (x1:mj k = j; �; �; b1; b2)
:

(b) Is it not possible to select an improper prior for � as

� (�jx1:m) =
mX
i=1

� (�; k = ijx1:m)

=

mX
i=1

� (�jx1:m; k = i)� (k = ijx1:m) :

But if there is no changepoint (i.e. k = m) then � (�jx1:m; k = i) = � (�) which is
improper.

Exercise 3. This was covered during the course (Baseball data).
Exercise 4. Brook�s formula. Consider the following conditional distributions

� (�2j �1) and � (�1j �2) which are assumed strictly positive for any �1; �2:
(a) We have
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the expression of � (�1; �2) up to a normalizing constant.
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(c) Are the marginal distributions � (�1) and � (�2) Gaussians?
The marginals are clearly not Gaussian due to the term �21�

2
2:

Exercise 5. Two-stage Gibbs sampler. In the case of the two-stage Gibbs sam-
pler, the relationship between the Gibbs sampler and the Metropolis-Hastings algo-
rithm becomes particularly clear. If we have the bivariate Gibbs sampler X � � (xj y)
and Y � � (yjx), consider the X chain alone and show:

(a) its transition kernel is given by K (x; x0) =
R
� (yjx)� (x0j y) dy:

The joint distribution of (y; x0) given x is

� (yjx)�
�
x0
�� y� :

So integrating out the variable y, we have

K
�
x; x0

�
=

Z
� (yjx)�

�
x0
�� y� dy:

(b) show that �(x
0)K(x0;x)

�(x)K(x;x0) = 1 so a Metropolis-Hastings with proposal K (x
0; x) is

always accepted.
We have

� (x)K
�
x; x0

�
= � (x)
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�
:

Exercise 6. Binomial model. For i = 1; 2; 3; consider Yi = X1i +X2i with

X1i � B (n1i; �1) ; X2i � B (n2i; �2) :

(a) Give the likelihood for n1i = 5; 6; 3; n2i = 5; 4; 6 and yi = 7; 5; 6.
We can compute the distribution of the observations as follows

3Y
i=1

24X
ji

�
n1i
ji

��
n2i
yi � ji

�
�ji1 (1� �1)

n1i�ji �yi�ji2 (1� �2)n2i�yi+ji
35

where max f0; yi � n2ig � ji � min fn1i; yig :
(b) For a uniform prior on (�1; �2), derive the Gibbs sampler.
To implement the Gibbs sampler, we introduce missing data and sample from

� (�1; �2; x1;1:3; x2;1:3j y1:3)

where xi;1:3 = (xi1; xi2; xi3). We have

� (�1; �2j y1:3; x1;1:3; x2;1:3) = � (�1; �2jx1;1:3; x2;1:3)
= � (�1jx1;1:3)� (�2jx2;1:3)



Stat 461-561: Exercises 6 4

where

� (�ijxi;1:3) /
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Now we have

� (x1;1:3; x2;1:3j y1:3; �1; �2)

=
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�
or equivalently

� (x1;ij yi; �1; �2) = Bin
�
yi;

ni1�1
ni1�1 + ni2�2

�
(c) Examine whether an alternative parameterization or a MH algorithm may

speed up convergence.
There is no clear cut answer to this question. It might be interesting to use the

logit (log-odds) reparameterization, that is

�i = log

�
�i

1� �i

�
:

Also it is not necessary to introduce missing data and it could be possible alternatively
to use the MH algorithm to sample directly from � (�1; �2j y1:3) :

Exercise 7. More two-stage Gibbs sampler. For the Gibbs sampler

Xj y � N
�
�y; 1� �2

�
; Y jx � N

�
�x; 1� �2

�
:

(a) Show that for the X chain, the transition kernel is

K
�
x0; x

�
=

1

2� (1� �2)

Z
exp

 
� (x� �y)

2

2 (1� �2)

!
exp

 
�(y � �x

0)2

2 (1� �2)

!
dy:

This follows straightforwardly from the fact that

K
�
x0; x

�
=

Z
�
�
yjx0

�
� (xj y) dy:

(b) Show that N (0; 1) is the invariant distribution of the X chain.
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Assume that X 0 � N (0; 1) then as

Y jx0 � N
�
�x0; 1� �2

�
we have

E
�
Y jx0

�
= �x0;

V
�
Y jx0

�
= 1� �2

so

E [Y ] = E
�
E
�
Y jX 0�� = �E �X 0� = 0;

V [Y ] = E
�
V
�
Y jX 0��+ V �E �Y jX 0��

= 1� �2 + �2V
�
X 0�

= 1:

Similarly we show that Xj y � N
�
�y; 1� �2

�
is such that E [X] = 0 and V [X] = 1:As

X is Gaussian then this proves that N (0; 1) is the invariant distribution of K (x0; x).
Alternatively, you could just check it by showing thatZ

N
�
x0; 0; 1

�
K
�
x0; x

�
dx = N

�
x0; 0; 1

�
:

(c) It follows directly by completing the square in y and integrating with respect
to y.

(d) We have Xk = �2Xk�1 +Uk (k = 1; 2; :::) where Uk
i.i.d.� N

�
0; 1� �4

�
directly

because of (c). Now we have

E [X1] = E
�
�2X0 + U1

�
= �2E [X0] + E [U1]
= 0

if E [X0] = 0 and by induction E [Xk] = 0:
We have

cov (X0; X1) = E [X0X1]� E [X0]E [X1]
= �2E

�
X2
0

�
= �2:

Assume we have cov (X0; Xk) = �2k then

cov (X0; Xk+1) = E [X0Xk+1]
= �2E [X0Xk] + E [X0Uk]
= �2E [X0Xk] + E [X0]E [Uk]
= �2(k+1):


