
Stat 461-561: Exercises 5

In Casella & Berger, Exercises 7.23, 7.24, 7.25 (Week 7) and 8.10, 8.11, 8.53 and
8.54 (Week 8)

Remark: There are several conventions available for parameterising Gamma and
inverse Gamma distributions. I have adopted here the ones from C&B.

Exercise C&B 7.23.
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By integrating out m, we obtain
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Exercise C&B 7.24.
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� We have

� (xi) =

Z
f (xij �i)� (�i) d�i

=

Z
1p
2��

exp

 
�(xi � �i)

2

2�2

!
1p
2��

exp

 
�(�i � �)

2

2�2

!
d�i

where

(xi � �i)2

�2
+
(�i � �)2

�2

= �2i

�
1

�2
+
1

�2

�
� 2�i

� xi
�2
+
�

�2

�
+
x2i
�2
+
�2

�2

= (�i �mi)
2

�
1e�2
�
� m

2
ie�2 + x2i

�2
+
�2

�2



Stat 461-561: Exercises 5 3
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It follows that by integrating out �i, we have
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After rearranging the term in brackets, we obtain
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There is a much simpler way to do this calculations. We can rewrite
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is a Gaussian so we just need to compute its mean and variance to get its distribution
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� Straightforward.
Exercise 1 (Week 7) Let � be a random variable in (0;1) with density
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where �; 
 2 (1;1).
� Calculate the mean and mode of �.
� (�) is a Gamma distribution. We have
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� Suppose that X1; :::; Xn are random variables, which, conditional on �, are
independent and each have the Poisson distribution with parameter �. Find the form
of the posterior density of � given X1 = x1,...,Xn = xn. What is the posterior mean?
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independent and each is exponentially distributed with parameter � where we adopt
the convention f (xj �) = � exp (�x�) 1(0;1) (x). What is the mode of the posterior
distribution of �, given T1 = t1,...,Tn = tn?
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Exercise 2 (Week 7). Let X1,...,Xn
i.i.d.� Poisson (�).

� Let � � Gamma (�; �) be the prior. Show that the posterior is also a Gamma.
Find the posterior mean.
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Trivial.
� Find the Je¤reys�s prior. Find the posterior.
We have
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Exercise 3 (Week 7). Suppose that, conditional on �,X1,...,Xn are i.i.d. N
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This is similar to the �rst part of Ex. 7.25 (corrected above) and the result follows.
Exercise 5 (Week 7). Let X1,...,Xn be i.i.d. N (�; 1=�) and suppose that inde-
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that the conditional posterior distributions � (�jx1; :::; xn; �) and � (� jx1; :::; xn; �)
admit standard forms, namely normal and Gamma, and give their exact expressions.
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