Stat 461-561: Solutions Exercises 2

January 24, 2007

Exercise 7.20
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For the MLE (see solutions Exercises 1), we have
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by Cauchy-Schwartz inequality.

Exercise 7.21
o Let
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e We have

To show that

is easy as

by Cauchy-Schwartz. So
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We cannot show that

var (,/8\2) > var (,/6’\1> or var (BQ) <wvar (Bl)
as var (@) = oo and var (Bl) < oo if there exists ¢ such that z; = 0and > ; x; # 0
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Exercise 7.27
e We have
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so by differentiating the log-likelihood with respect to 8 and 7;
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So we obtain from the second equation
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Plugging this equation in the first equation, we obtain
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and the result follows "
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e In the limit, we have the three fixed point equations
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We can solve the 2nd equation, this yields

718 = y1.
The 3rd equation yields
zj+y; =75 (B+1)
and the first follows directly.

e Direct as calculations are similar to the first question, except that x1 is omitted.

Exercise 7.29
e Follows directly from the definition of Poisson and multinomial distributions,
i.e. we have
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(there is a typo in C&B p. 360 as m! is not inside the product).
e We have
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so by differentiating with respect to 5 and 7;
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However, do not forget that we have the constraint » ;" ; 7; = 1 so by plugging this
into the first equation
S i Yi

8=
Do i
and the result follows for 7;. An alternative, maybe “cleaner”, way to do it consists

of using a Lagrange multiplier technique as discussed during the lecture.
e We reuse a technique similar to Example 7.2.19 in C&B and the result follows.

Exercise 7.30

e We have
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so Z;| z;,p is a Bernoulli with success probability m.
e We have ‘
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By differentiating with respect to p

D f (z, = 1’P(T)axi) _ D f (z, = OIP(T)ﬂxi)

D 1—p




SO

(r+1)

STAT 461-561: SOLUTIONS EXERCISES 2

Z?:1 f (Zi = ]-‘p(r))xi)

S f(zi=1pM,z) + 30 f (2 =0[p™),

1 0 ()
D Doy e g ) T

zlp




