Stat 461-561: Solutions Exercises 2

January 24, 2007

Exercise 7.20

 \bullet Let

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n x_i}.$$

So we have

$$\mathbb{E}\left(\widehat{\boldsymbol{\beta}}_{1}\right) = \frac{\sum_{i=1}^{n} \mathbb{E}\left[Y_{i}\right]}{\sum_{i=1}^{n} x_{i}} = \frac{\sum_{i=1}^{n} \boldsymbol{\beta} x_{i}}{\sum_{i=1}^{n} x_{i}} = \boldsymbol{\beta}.$$

• We have

$$var\left[\widehat{\beta}_{1}\right] = \left(\sum_{i=1}^{n} x_{i}\right)^{-2} \sum_{i=1}^{n} var\left[Y_{i}\right]$$

where

$$var[Y_i] = \sigma^2$$

SO

$$var\left[\widehat{\beta}_{1}\right] = \frac{n\sigma^{2}}{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}.$$

For the MLE (see solutions Exercises 1), we have

$$var\left[\widehat{\beta}_{MLE}\right] = \frac{\sigma^2}{\left(\sum_{i=1}^n x_i^2\right)}.$$

It follows that

$$var\left[\widehat{\boldsymbol{\beta}}_{MLE}\right] \leq var\left[\widehat{\boldsymbol{\beta}}_{1}\right]$$

as

$$\left(\sum_{i=1}^{n} x_i\right)^2 = \left(\sum_{i=1}^{n} x_i \cdot 1\right)^2 \le \sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} 1 = n \sum_{i=1}^{n} x_i^2$$

by Cauchy-Schwartz inequality.

Exercise 7.21

 \bullet Let

$$\widehat{\beta}_2 = \frac{1}{n} \sum_{i=1}^n \frac{Y_i}{x_i}$$

then

$$\mathbb{E}\left(\widehat{\beta}_{2}\right) = \frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{E}\left[Y_{i}\right]}{x_{i}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\beta x_{i}}{x_{i}}$$
$$= \beta.$$

• We have

$$var\left(\widehat{\beta}_{2}\right) = \frac{1}{n^{2}} \sum_{i=1}^{n} \frac{var\left[Y_{i}\right]}{x_{i}^{2}} = \frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}.$$

To show that

$$var\left(\widehat{\boldsymbol{\beta}}_{2}\right) \geq var\left(\widehat{\boldsymbol{\beta}}_{MLE}\right)$$

is easy as

$$n^{2} = \left(\sum_{i=1}^{n} \frac{x_{i}^{2}}{x_{i}^{2}}\right)^{2} \le \left(\sum_{i=1}^{n} \frac{1}{x_{i}^{2}}\right) \left(\sum_{i=1}^{n} x_{i}^{2}\right)$$

by Cauchy-Schwartz. So

$$var\left(\widehat{\beta}_{2}\right) = \frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}$$

$$\geq \frac{\sigma^{2}}{\left(\sum_{i=1}^{n} \frac{1}{x_{i}^{2}}\right) \left(\sum_{i=1}^{n} x_{i}^{2}\right)} \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}$$

$$\geq \frac{\sigma^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)}$$

$$= var\left(\widehat{\beta}_{MLE}\right).$$

We cannot show that

$$var\left(\widehat{\beta}_{2}\right) \geq var\left(\widehat{\beta}_{1}\right) \text{ or } var\left(\widehat{\beta}_{2}\right) \leq var\left(\widehat{\beta}_{1}\right)$$

as $var\left(\widehat{\beta}_{2}\right) = \infty$ and $var\left(\widehat{\beta}_{1}\right) < \infty$ if there exists i such that $x_{i} = 0$ and $\sum_{i=1}^{n} x_{i} \neq 0$ whereas $var\left(\widehat{\beta}_{2}\right) < \infty$ and $var\left(\widehat{\beta}_{1}\right) = \infty$ if $\sum_{i=1}^{n} x_{i} = 0$ but $x_{i}^{2} > 0$ for i = 1, ..., n.

Exercise 7.27

• We have

$$\log f(x_1, y_1, ..., x_n, y_n | \beta, \tau_1, ..., \tau_n)$$

$$= -(\beta + 1) \sum_{i=1}^{n} \tau_i + \left(\sum_{i=1}^{n} y_i\right) \log \beta + \left(\sum_{i=1}^{n} (y_i + x_i) \log (\tau_i)\right) - \sum_{i=1}^{n} \log (x_i! y_i!)$$

so by differentiating the log-likelihood with respect to β and τ_i

$$-\sum_{i=1}^{n} \tau_i + \frac{(\sum_{i=1}^{n} y_i)}{\beta} = 0,$$

$$-(\beta + 1) + \frac{(y_i + x_i)}{\tau_i} = 0.$$

So we obtain from the second equation

$$\widehat{\tau}_i = \frac{(y_i + x_i)}{\left(\widehat{\beta} + 1\right)}.$$

Plugging this equation in the first equation, we obtain

$$-\sum_{i=1}^{n} \frac{(y_i + x_i)}{\left(\widehat{\beta} + 1\right)} + \frac{\left(\sum_{i=1}^{n} y_i\right)}{\widehat{\beta}} = 0$$

and the result follows

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i}.$$

• In the limit, we have the three fixed point equations

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} y_i}{\widehat{\tau}_1 + \sum_{i=2}^{n} x_i},$$

$$\widehat{\tau}_1 = \frac{\widehat{\tau}_1 + y_1}{\widehat{\beta} + 1},$$

$$\widehat{\tau}_j = \frac{x_j + y_j}{\widehat{\beta} + 1} \text{ for } j = 2, ..., n.$$

We can solve the 2nd equation, this yields

$$\widehat{\tau}_1\widehat{\beta} = y_1.$$

The 3rd equation yields

$$x_j + y_j = \widehat{\tau}_j \left(\widehat{\beta} + 1 \right)$$

and the first follows directly.

• Direct as calculations are similar to the first question, except that x_1 is omitted.

Exercise 7.29

• Follows directly from the definition of Poisson and multinomial distributions, i.e. we have

$$f(\mathbf{x}, \mathbf{y} | \beta, \boldsymbol{\tau}) = \left[\prod_{i=1}^{n} \frac{e^{-m\beta\tau_{i}} (m\beta\tau_{i})^{y_{i}}}{y_{i}!} \right] \frac{m!}{\prod_{i=1}^{n} x_{i}!} \prod_{i=1}^{n} \tau_{i}^{x_{i}}$$

(there is a typo in C&B p. 360 as m! is not inside the product).

• We have

$$\log f(\mathbf{x}, \mathbf{y} | \beta, \boldsymbol{\tau}) = -m\beta \sum_{i=1}^{n} \tau_i + \left(\sum_{i=1}^{n} y_i\right) \log m\beta + \sum_{i=1}^{n} (y_i + x_i) \log (\tau_i)$$
$$-\sum_{i=1}^{n} \log (x_i! y_i!) - \log m!$$

so by differentiating with respect to β and τ_i

$$-m\sum_{i=1}^{n} \tau_i + \frac{\left(\sum_{i=1}^{n} y_i\right)}{\beta} = 0,$$

$$-m\beta + \frac{y_i + x_i}{\tau_i} = 0.$$

However, do not forget that we have the constraint $\sum_{i=1}^{n} \tau_i = 1$ so by plugging this into the first equation

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i},$$

and the result follows for $\hat{\tau}_i$. An alternative, maybe "cleaner", way to do it consists of using a Lagrange multiplier technique as discussed during the lecture.

• We reuse a technique similar to Example 7.2.19 in C&B and the result follows.

Exercise 7.30

• We have

$$f(\mathbf{x}, \mathbf{z}|p) = \prod_{i=1}^{n} f(x_i, z_i|p)$$

$$= \prod_{i=1}^{n} f(z_i|p) f(x_i|p, z_i)$$

$$= \prod_{i=1}^{n} [pf(x_i)]^{z_i} [(1-p) g(x_i)]^{1-z_i}.$$

• We have

$$f(\mathbf{z}|p,\mathbf{x}) = \prod_{i=1}^{n} f(z_i|p,x_i)$$

where

$$f(z_{i}|p,x_{i}) = \frac{f(z_{i},x_{i}|p)}{f(x_{i}|p)} = \frac{[pf(x_{i})]^{z_{i}}[(1-p)g(x_{i})]^{1-z_{i}}}{pf(x_{i}) + (1-p)g(x_{i})}$$

so $Z_i|x_i, p$ is a Bernoulli with success probability $\frac{pf(x_i)}{pf(x_i)+(1-p)g(x_i)}$.

• We have

$$Q\left(p, p^{(r)}\right) = \sum_{z_{1:n}} \log \left(\prod_{i=1}^{n} \left[pf\left(x_{i}\right) \right]^{z_{i}} \left[(1-p) g\left(x_{i}\right) \right]^{1-z_{i}} \right) \prod_{i=1}^{n} f\left(z_{i} \mid p, x_{i}\right)$$

$$= \log \left(p\right) \sum_{i=1}^{n} f\left(z_{i} = 1 \mid p^{(r)}, x_{i}\right) + \sum_{i=1}^{n} f\left(z_{i} = 1 \mid p^{(r)}, x_{i}\right) \log f\left(x_{i}\right)$$

$$+ \log \left(1-p\right) \sum_{i=1}^{n} f\left(z_{i} = 0 \mid p^{(r)}, x_{i}\right) + \sum_{i=1}^{n} f\left(z_{i} = 0 \mid p^{(r)}, x_{i}\right) \log g\left(x_{i}\right)$$

By differentiating with respect to p

$$\frac{\sum_{i=1}^{n} f(z_{i} = 1 | p^{(r)}, x_{i})}{n} = \frac{\sum_{i=1}^{n} f(z_{i} = 0 | p^{(r)}, x_{i})}{1 - n}$$

$$\mathbf{SO}$$

$$p^{(r+1)} = \frac{\sum_{i=1}^{n} f(z_i = 1 | p^{(r)}, x_i)}{\sum_{i=1}^{n} f(z_i = 1 | p^{(r)}, x_i) + \sum_{i=1}^{n} f(z_i = 0 | p^{(r)}, x_i)}$$

$$= \frac{1}{n} \sum_{i=1}^{n} f(z_i = 1 | p^{(r)}, x_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{p^{(r)} f(x_i)}{p^{(r)} f(x_i) + (1 - p^{(r)}) g(x_i)}.$$