STAT461-561: Delta Method

AD

January 2008

 \bullet Assume first that $\theta \in \mathbb{R}$ and that you have

$$\theta_n \xrightarrow{\mathsf{P}} \theta$$

and

$$\sqrt{n}\left(\theta_{n}-\theta\right)\Rightarrow\mathcal{N}\left(0,\sigma^{2}\left(\theta\right)\right)$$

 \bullet Assume first that $\theta \in \mathbb{R}$ and that you have

$$\theta_n \xrightarrow{\mathsf{P}} \theta$$

and

$$\sqrt{n}\left(\theta_{n}-\theta\right)\Rightarrow\mathcal{N}\left(0,\sigma^{2}\left(\theta\right)\right)$$

• Then we have

$$\sqrt{n}\left(g\left(\theta_{n}\right)-g\left(\theta\right)\right) \Rightarrow \mathcal{N}\left(0,g'\left(\theta\right)^{2}\sigma^{2}\left(\theta\right)\right)$$

Proof

• We use a Taylor's expansion

$$g(\theta_n) = g(\theta) + g'(\overline{\theta}_n)(\theta_n - \theta)$$

where $\overline{\theta}_n$ is on the line between θ and θ_n .

Proof

• We use a Taylor's expansion

$$g(\theta_n) = g(\theta) + g'(\overline{\theta}_n)(\theta_n - \theta)$$

where $\overline{\theta}_n$ is on the line between θ and θ_n .

• Slutzky implies

$$g'\left(\overline{\theta}_{n}\right) \rightarrow g'\left(\theta\right)$$

and

$$(\theta_n - \theta) \Rightarrow \mathcal{N}(0, \sigma^2(\theta))$$

Proof

• We use a Taylor's expansion

$$g(\theta_n) = g(\theta) + g'(\overline{\theta}_n)(\theta_n - \theta)$$

where $\overline{\theta}_n$ is on the line between θ and θ_n .

• Slutzky implies

$$g'\left(\overline{\theta}_{n}\right) \rightarrow g'\left(\theta\right)$$

and

$$(\theta_n - \theta) \Rightarrow \mathcal{N}(0, \sigma^2(\theta))$$

• So Slutzky again yields

$$\sqrt{n}\left(g\left(\theta_{n}\right)-g\left(\theta\right)\right)\Rightarrow\mathcal{N}\left(0,g'\left(\theta\right)^{2}\sigma^{2}\right)$$

 \bullet Assume that $\theta \in \mathbb{R}^d$ and that you have

$$\theta_n \xrightarrow{\mathsf{P}} \theta$$

and

$$\sqrt{n}\left(\theta_{n}-\theta\right)\Rightarrow\mathcal{N}\left(0,\Sigma\left(\theta\right)\right)$$

 \bullet Assume that $\theta \in \mathbb{R}^d$ and that you have

$$\theta_n \xrightarrow{\mathsf{P}} \theta$$

and

$$\sqrt{n}\left(\theta_{n}-\theta\right)\Rightarrow\mathcal{N}\left(0,\Sigma\left(\theta\right)\right)$$

• Now if we have $g: \mathbb{R}^d
ightarrow \mathbb{R}^m$ then

$$\sqrt{n} \left(g \left(\theta_n \right) - g \left(\theta \right) \right) \Rightarrow \mathcal{N} \left(0, \nabla g \left(\theta \right) \Sigma \left(\theta \right) \left(\nabla g \left(\overline{\theta}_n \right) \right)^{\mathsf{T}} \right)$$

where $\nabla g := \left(\frac{\partial g}{\partial \theta_1}, \dots, \frac{\partial g}{\partial \theta_d} \right)^{\mathsf{T}}$ is a $d \times m$ matrix.

• We use a multivariate Taylor's expansion

$$g(\theta_n) = g(\theta) + \nabla g(\overline{\theta}_n)(\theta_n - \theta)$$

where $\overline{\theta}_n$ is on the line between θ and θ_n .

• We use a multivariate Taylor's expansion

$$g(\theta_n) = g(\theta) + \nabla g(\overline{\theta}_n)(\theta_n - \theta)$$

where $\overline{\theta}_n$ is on the line between θ and θ_n .

• Now we have $abla g\left(\overline{ heta}_{n}
ight)
ightarrow
abla g\left(heta
ight)$ and

$$cov (g (\theta_n) - g (\theta)) = cov (\nabla g (\theta) (\theta_n - \theta))$$

= $\nabla g (\theta) cov (\theta_n - \theta) (\nabla g (\theta))^{\mathsf{T}}$

and the result follows.