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Simpson�s Paradox: Sex Bias in Graduate Admissions?

The University of California at Berkeley was sued for bias against
women who had applied for admission to graduate schools there. The
admission �gures for the fall of 1973 showed that men applying were
more likely than women to be admitted, and the di¤erence was so
large that it was unlikely to be due to chance.

The evidence looks really compelling.

Applicants % admitted
Men 8442 44%
Women 4321 35%

If we consider the event A =�Admitted�, B =�Be a woman�,
Bc =�Be a man�, we have

P (AjB) � P (AjBc ) .

Was Berkeley really biased?
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Simpson�s Paradox: Sex Bias in Graduate Admissions?

Let us examine more carefully the data by examining admissions in
some representative departments

Depart. Men Women
% in % in

1 63 68
2 33 35
3 6 7

Whatever the department to which they apply, women have an higher
probability of getting in than men; i.e. we have for any event
Ci = fapply to department ig

P (AjB \ Ci ) � P (AjBc \ Ci )

and still overall
P (AjB) � P (AjBc )
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Simpson�s Paradox: Sex Bias in Graduate Admissions?

Let us examine even more carefully the data

Depart. Men Women
Appli. % in Appli. % in

1 560 63 25 68
2 417 33 375 35
3 272 6 341 7
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Simpson�s Paradox: Sex Bias in Graduate Admissions?

The mathematical reason is that P (AjB \ Ci ) � P (AjBc \ Ci )
does NOT indeed imply P (AjB) � P (AjBc ) as

P (AjB) =
n

∑
i=1
P (AjB \ Ci )P (Ci jB) ,

P (AjBc ) =
n

∑
i=1
P (AjBc \ Ci )P (Ci jBc ) ,

It highly depends on the proba of applying to department i given you
are a woman/man .

The reason is that women tended to apply to competitive
departments with low rates of admission, whereas men tended to
apply to less-competitive departments with high rates of admission.
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Proof of expression for conditional proba

This is very similar to proof of P (A) = ∑n
i=1 P (AjCi )P (Ci ) .

We have
P (AjB) = P (A\ ([ni=1Ci )jB)

and A\ ([ni=1Ci ) = [ni=1 (A\ Ci ) where (A\ Ci ) \ (A\ Cj ) = ?
for i 6= j so

P (AjB) =
n

∑
i=1
P (A\ Ci jB)

where by the de�nition of conditional proba

P (A\ Ci jB) =
P (A\ Ci \ B)

P (B)

=
P (A\ Ci \ B)
P (Ci \ B)

P (Ci \ B)
P (B)

= P (AjB \ Ci )P (Ci jB) .

AD () Feb. 2010 6 / 16



Simpson�s Paradox: A �Smoking�Example

In 1972-1994 a survey of the electoral roll, largely concerned with
smoking habits and survival rates was carried out in Wichkham, a
mixed urban and rural district near Newcastle upon Tyne, in the UK.
Twenty years later, a follow-up study was conducted.
Relationship between smoking habits and 20-year survival in 401
women aged 55-74.

Smoker Non-Smoker
Dead 80 141
Alive 71 109

Introducing A=�die�, B = "smoking�, we have

P (AjB) =
80

80+ 71
= 0.53,

P (AjBc ) =
141

141+ 109
= 0.56.

Does smoking really help living longer?
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Simpson�s Paradox: A �Smoking�Example

Now lets look more precisely at the data. We have an additional
variable related to the age.
We have

Age 55-64 Smoker Non-Smoker
Dead 51=44% 40=33%
Alive 64=56% 81=67%

j
Age 65-74 Smoker Non-Smoker
Dead 29=80% 101=78%
Alive 7=20% 28=22%

For both age class, the survival rate is smaller for the non-smokers.
Mathematically, this means that if we introduce
C = fage between 55-64g and then C c = fage between 65-74g then
we have as expected

P (AjB \ C ) � P (AjBc \ C ) ,
P (AjB \ C c ) � P (AjBc \ C c )

but still we have
P (AjB) � P (AjBc ) .
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Simpson�s Paradox: A �Smoking�Example

This should not be a surprise as

P (AjB) = P (AjB \ C )P (C jB) + P (AjB \ C c )P (C c jB) ,
P (AjBc ) = P (AjBc \ C )P (C jBc ) + P (AjC c \ Bc )P (C c jBc ) ,

so the results depend on P (C jB) ,P (C c jB),P (C jBc ) ,P (C c jBc )
i.e. that is the proba of being in a given age given smoking or not!

The �paradox�occurs as a higher proportion of non-smokers studied
belong to older age groups, in which survival rates for both smokers
and non-smokers are signi�cantly lower compared to younger age
groups.

In other words, most of the smokers have died o¤ before reaching the
older age classes and so the higher number of deaths (in absolute
numbers) for the non-smokers in the older age classes has obscured
the result.
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Random Variables

In many scenarios, we are interested in a function of the outcome as
opposed to the actual outcome; e.g. we are interested in the sum of
two dice and not in the separate values of each die or, when we �ip a
coin, we want to know the number of tails.

Real-valued functions de�ned on the sample space are random
variables; e.g. number of gold medals by Canadian athletes at
Olympics, your score at the SAT test etc.

Example: We are tossing 3 times a fair coin. If we call X the number
of heads obtained, then it is a random variables such that

P fX = 0g = P (fT ,T ,Tg) =
� 1
2

�3
= 1

8 ,
P fX = 1g = P (fT ,T ,Hg , fT ,H,Tg , fH,T ,Tg) = 3

8 ,
P fX = 2g = P (fT ,H,Hg , fH,T ,Hg , fH,H,Tg) = 3

8 ,
P fX = 3g = P (fH,H,Hg) = 1

8 .
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Examples

Coin Toss: For a coin toss, the possible events are heads or tails.
The number of heads appearing in one fair coin toss can be described
using the following random variable:

X =
�
0 if head
1 if tail

and P (X = 0) = P (X = 1) =
1
2

Remark: Note that we could de�ne completely arbitrary random
variable such as X = 10 if heads and X = π is tail. This is of no
�practical� interest but possible conceptually.
Rolling a fair die: A random variable can also be used to describe
the process of rolling a fair dice and the possible outcomes. The most
obvious representation is to take the set f1, 2, 3, 4, 5, 6g as the sample
space, de�ning the random variable X as the number rolled. In this
case,

X = i if a i is rolled and P (X = i) =
1
6
for i = 1, ..., 6.
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Example

Assume you have trials consisting of sitting an exam. You have proba
p of passing the exam. If you fail, you sit the exam again. These
trials are considered independent as you never bother revising the
material. We denote X the number of exams you need to sit before
passing the subject.
We have

P (X = 1) = P (Pass) = p,

P (X = 2) = P (Fail ,Passg) = (1� p) p,
....

P (X = n) = P(Fail , ...,Fail| {z }
n�1 times

,Pass) = (1� p)n�1 p.

You can check that
∞

∑
k=1

P (X = k) =
∞

∑
k=1

(1� p)k�1 p = 1.
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Example: Roulette Wheel

The pockets of the roulette wheel are numbered from 1 to 36. In
number ranges from 1 to 10 and 19 to 28, odd numbers are red and
even are black. In ranges from 11 to 18 and 29 to 36, odd numbers
are black and even are red. There is two green pockets numbered 0
and 00.
Red/Black: If you bet 1$ on red, the payout is 1$ if it is red. Let X1
denotes the payout

P (X1 = 1) = P (red) = 18
18+18+2 = 0.4737

P (X1 = �1) = 1� P (X = 1) = 0.5263
as red=f1, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36g.
Straight up: you bet 1$ on any pocket 0,00,1,2,...,36. The payout is
is 35$ if you are right. Let X2 denotes the payout

P (X2 = 35) = P (outcome is the pocket bet on) =
1
38
,

P (X2 = �1) = P (outcome is not on the pocket bet on) =
37
38
.
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Example: Roulette Wheel

Split bet: you bet 1$ on 11 or 14. The payout is 17$ if you are right.
Let X3 denotes the payout

P (X3 = 17) = P (outcome is 11 or 14) =
2
38
,

P (X3 = �1) = P (outcome is neither 11 nor 14) =
36
38
.

Street bet: you 1$ on 1,2,3 or 4,5,6 or... or 19,20,21. Say you bet on
19,20,21. The payout is 11$ if you are right. Let X4 denotes the
payout

P (X4 = 11) = P (outcome is 19, 20 or 21) =
3
38
,

P (X4 = �1) = P (outcome is not 19, 20 or 21) =
35
38
.
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Discrete Random Variables

A random variable (r.v.) X which can take at most a countable
number of possible values is said to be discrete.

The probability mass function of X is denoted by

p (a) = P (X = a) .

If X can take the values fx1, x2, ...g then

p (xi ) � 0 and
∞

∑
i=1
p (xi ) = 1

Cumulative distribution function is

F (a) = P (X � a) = ∑
x :x�a

p (x) .
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Example: Poisson distribution

Assume X is a discrete r.v. taking values f0, 1, 2, ...g where
p (i) = Cλi/i ! with λ > 0. 1) Find the expression of C , 2) Compute
P (X = 0) and P (X � 2)
We have

∞

∑
i=0
p (i) = C

∞

∑
i=1

λi/i ! = 1

but eλ = ∑∞
i=1 λi/i ! so

C = e�λ.

It follows that P (X = 0) = e�λ λ0

0! = e
�λ and

P (X � 2) = 1� P (X < 2) = 1� P (X = 0)� P (X = 1)
= 1� e�λ � λe�λ.
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