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Continuous Random Variable

o Let X a (real-valued) continuous r.v.. It is characterized by its pdf
f : IR — [0, 00) which such that for any set A of real numbers

P(XEA):/Af(x)dx.

and its distribution function
X

F(x):Pr(xgx):/ F(y) dy.

—00

@ For any real-valued function g : R — IR, we have

Eg(X) = [ g0 f(x)dx

—00
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Normal Random Variables

@ Also known as Gaussian random variables in the literature.

@ We say that X is a normal r.v. of parameters (;4,(72) if its pdf is

N2
Fl) = 2171(7 &P <_( 2(7?) ) '

@ The normal distribution is often used to describe, at least
approximately, any variable that tends to cluster around the mean;
e.g. the heights of USA males are roughly normally distributed. A
histogram of male heights will appear similar to a bell curve, with the
correspondence becoming closer if more data are used.
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Properties of Normal Random Variables

@ It can indeed be checked that

/oo exp (—(X_W> dx = V2.

oo 202

@ We have also
E(X)=mu

and
Var (X) = o°

o Hence y is referred to as the mean and ¢ as the variance.
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The 68-95-99.7 Rule

o We have
P(u—oc<X<u+o) ~ 068,
P(u—20<X<u+20) =~ 0.95,
P(p—3c<X<u+3c) ~ 0.997.

@ This helps doing quickly some approximate calculations.

@ The distribution of the scores of the more than 1.3 million high school
seniors in 2002 who took the SAT verbal exam is close to normal with
(p,0?) = (504, 1112).

@ Hence 95% of the SAT scores are between 504 — 222 = 282 and
504 + 222 = 276. The other 5% of scores lie outside this range.
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Properties of Normal Random Variables

o Let X be a normal r.v. of parameters (1, 0%) and consider the new

r.v. Y such that
Y=aX+b

then we know that

E(Y) = aE(X)+b=au+b,
Var (Y) = a?Var(X) = a’c.

@ A much stronger result is true, Y is a normal r.v. of parameters
(ap + b, a°0?).
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Properties of Normal Random Variables

@ For a > 0, we have

P(ng):P(aX—l—bS)/)ZP(XSy_b>:FX (y_b>_

o The chain rule tells us that [u (v (y))] = v/ (y) - (v (y)) so
v () =3 (%5°)
11 (- _ 1 (y—b—ap)’
= 2 2me P (— 2072 = Varea P (‘ymT)
@ For a <0, we use

P(YSy)ZP(aX+b§y):p<X2y—b>:1_Fx<y—b>

and
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Cumulative Distribution Function

o Consider X a normal r.v. of parameters (y =0,02 = 1) : known as
standard r.v. in the literature.

@ It is customary to denote ® (x) the cdf of X; i.e.

e ® (x) does not admit an analytical expression but is tabulated for
x> 0.

@ One can easily show that

P(—x)=P(X<—x)=P(X>x)=1—-P(x)
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Standardizing normal variables

@ Let X a normal r.v. of mean p and variance 0.

@ Define the new r.v.
X—u

[

7 =

then Z is a standard normal r.v.

@ Hence

Pa<X<b) = P(a_ygx_ﬂgb_”>

March 2010 9 /18



o Let X a normal r.v. of mean y = 2 and variance ¢ = 25. Assume
you want to compute using the table of ® (x) (a) P (1 < X < 4), (b)

P (X >0) and (c) P ((x —2)2 > 5)
e (a) We have

P1<X<4) = P(

where Z is a normal r.v. of mean 0 and variance 1; i.e. a standard
normal r.v.
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Example: Signal Transmission

@ A binary message - either 0 or 1 - is transmitted through the
atmosphere from A to B. The value 2 is sent when the message is 1
and the value -2 is sent when the message is 0. At the location B of
the receiver, the message received is corrupted by some channel noise;
that is if the signal X = x has been transmitted then at the receiver
we observe

R=x+N

where the noise is assumed to be a standard normal r.v.

@ At the receiver, the following decoding scheme is used. If R > 0.5
then we conclude that 1 has been transmitted. If R < 0.5 then we
conclude that 0 has been transmitted.

@ What is the probability of decoding correctly the transmitted message
when we transmit 0 and when we transmit 17
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Example: Signal Transmission

o If we transmit 0, then R = —2 + N is an normal r.v. of mean —2 and
variance 1 so

R+2 05+2
P(R<05) = P( T2 +>

1 1
= P(Z<25)=®(25) ~ 0.999

o If we transmit 1, then R = 2 + N is an normal r.v. of mean 2 and
variance 1 so

1~ 1
= P(Z>-15)=®(15) ~0.933

P(R>05) = p(R_2 0_5_2>

o Generalization of this idea = Viterbi algorithm.
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Normal Approximation to the Binomial Distribution

o Consider X a binomial r.v. of parameters n, p then we know that
E(X) =np, Var (X)=np(1—p).

@ We have already seen that it is possible to approximate X by a
Poisson distribution of parameter A = np.

@ As np — o0, it can be shown that X can be approximated by a
normal r.v. with & = np and 02 = np (1 — p) so

o)

<o) e (%)
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Example: Bald men

@ If 10% of men are bald, what is the probability that fewer than 100 in
a random sample of 818 men are bald?

@ Let X be the number of bald men in a random sample of 818 men,
this is a Bernoulli r.v. of parameters p = 0.1 and n = 818.

@ We are interested in computing P (X < 100). We can use the
standard binomial but this is tiedous. We use the normal
approximation where

u=np=2818, o= ,/np(l—p)=28.5802

100 — 81.8 —81.8
PO<X<100) = &(——=) -
(0= X < 100) ( 8.5802 ) <8.5802>

0.983.

SO

Q
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Example: Threshold signal

@ Assume to transmit a random signal X which follows a normal
distribution (y, 02). The receiver only detects signals above a given
threshold m so that what is observed is

y_ [ X ifX=m
L0 ifX<m

@ Compute the expected value of the received signal Y7
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Example: Threshold signal

o We have
E(Y)=["x \/21—7wexp (
= Iy = Fmee (-5

where we use x = (x — u) + p.
o Now we have [ \ﬁanP< (x= )>dx—1 CID(mTf"> and
f:: (x—u) 217w exp ( (x 202) ) dx

= [Fee ()],
)

2

2

) o
)dx+ptf rgexp( (2_(7’;)2>dx
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Exercise: Stein's identity

e Let X a normal random variable of mean u and variance ¢ then show

E[(X—p)g(X)]=0’E [ (X)]
when both sides exist.
@ We have

ElX-me ()= [ g0 (=) ——eo (—“‘”)) o

so by integration by parts

E[(X-pwe(X)] =
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