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Continuous Random Variable

Let X a (real-valued) continuous r.v.. It is characterized by its pdf
f : R ! [0,∞) which such that for any set A of real numbers

P (X 2 A) =
Z
A
f (x) dx .

and its distribution function

F (x) = Pr (X � x) =
Z x

�∞
f (y) dy .

For any real-valued function g : R ! R, we have

E (g (X )) =
Z ∞

�∞
g (x) f (x) dx
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Normal Random Variables

Also known as Gaussian random variables in the literature.

We say that X is a normal r.v. of parameters
�
µ, σ2

�
if its pdf is

f (x) =
1p
2πσ

exp

 
� (x � µ)2

2σ2

!
.

The normal distribution is often used to describe, at least
approximately, any variable that tends to cluster around the mean;
e.g. the heights of USA males are roughly normally distributed. A
histogram of male heights will appear similar to a bell curve, with the
correspondence becoming closer if more data are used.
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Properties of Normal Random Variables

It can indeed be checked thatZ ∞

�∞
exp

 
� (x � µ)2

2σ2

!
dx =

p
2πσ.

We have also
E (X ) = µ

and
Var (X ) = σ2

Hence µ is referred to as the mean and σ2 as the variance.
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The 68-95-99.7 Rule

We have

P (µ� σ � X � µ+ σ) � 0.68,

P (µ� 2σ � X � µ+ 2σ) � 0.95,

P (µ� 3σ � X � µ+ 3σ) � 0.997.

This helps doing quickly some approximate calculations.

The distribution of the scores of the more than 1.3 million high school
seniors in 2002 who took the SAT verbal exam is close to normal with�
µ, σ2

�
= (504, 1112).

Hence 95% of the SAT scores are between 504� 222 = 282 and
504+ 222 = 276. The other 5% of scores lie outside this range.
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Properties of Normal Random Variables

Let X be a normal r.v. of parameters
�
µ, σ2

�
and consider the new

r.v. Y such that
Y = aX + b

then we know that

E (Y ) = aE (X ) + b = aµ+ b,

Var (Y ) = a2Var (X ) = a2σ2.

A much stronger result is true, Y is a normal r.v. of parameters�
aµ+ b, a2σ2

�
.
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Properties of Normal Random Variables

For a > 0, we have

P (Y � y) = P (aX + b � y) = P
�
X � y � b

a

�
= FX

�
y � b
a

�
.

The chain rule tells us that [u (v (y))]0 = v 0 (y) � u0 (v (y)) so

fY (y) = 1
a fX

�
y�b
a

�
= 1

a
1p
2πσ

exp
�
� (

y�b
a �µ)

2

2σ2

�
= 1p

2πσa
exp

�
� (y�b�aµ)2

2σ2a2

�
For a < 0, we use

P (Y � y) = P (aX + b � y) = P
�
X � y � b

a

�
= 1�FX

�
y � b
a

�
and

fY (y) =
�1
a
fX

�
y � b
a

�
=

1p
2πσ jaj

exp

 
� (y � b� aµ)2

2σ2a2

!
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Cumulative Distribution Function

Consider X a normal r.v. of parameters
�
µ = 0, σ2 = 1

�
; known as

standard r.v. in the literature.

It is customary to denote Φ (x) the cdf of X ; i.e.

Φ (x) = P (X � x) = 1p
2π

Z x

�∞
exp

�
�y

2

2

�
dy .

Φ (x) does not admit an analytical expression but is tabulated for
x � 0.
One can easily show that

Φ (�x) = P (X � �x) = P (X � x) = 1�Φ (x)
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Standardizing normal variables

Let X a normal r.v. of mean µ and variance σ2.

De�ne the new r.v.

Z =
X � µ

σ

then Z is a standard normal r.v.

Hence

P (a � X � b) = P
�
a� µ

σ
� X � µ

σ
� b� µ

σ

�
= Φ

�
b� µ

σ

�
�Φ

�
a� µ

σ

�
.
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Example

Let X a normal r.v. of mean µ = 2 and variance σ2 = 25. Assume
you want to compute using the table of Φ (x) (a) P (1 � X � 4), (b)
P (X > 0) and (c) P

�
(X � 2)2 > 5

�
(a) We have

P (1 � X � 4) = P
�
1� 2
5

� X � 2
5

� 4� 2
5

�
= P

��1
5
� Z � 2

5

�
= Φ

�
2
5

�
�Φ

�
�1
5

�
= Φ

�
2
5

�
�
�
1�Φ

�
1
5

��
where Z is a normal r.v. of mean 0 and variance 1; i.e. a standard
normal r.v.
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Example

(b) We have

P (X > 0) = P
�
X � 2
5

>
�2
5

�
= P

�
Z >

�2
5

�
= 1�Φ

�
�2
5

�
= Φ

�
2
5

�
(c) We have

P
�
(X � 2)2 > 5

�
= P

 
(X � 2)2

25
>
1
5

!
= P

�
Z 2 >

1
5

�
= P

�
Z >

1p
5

�
+ P

�
Z < � 1p

5

�
= 1�Φ

�
1p
5

�
+Φ

�
� 1p

5

�
= 2

�
1�Φ

�
1p
5

��
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Example: Signal Transmission

A binary message - either 0 or 1 - is transmitted through the
atmosphere from A to B. The value 2 is sent when the message is 1
and the value -2 is sent when the message is 0. At the location B of
the receiver, the message received is corrupted by some channel noise;
that is if the signal X = x has been transmitted then at the receiver
we observe

R = x +N

where the noise is assumed to be a standard normal r.v.

At the receiver, the following decoding scheme is used. If R � 0.5
then we conclude that 1 has been transmitted. If R < 0.5 then we
conclude that 0 has been transmitted.

What is the probability of decoding correctly the transmitted message
when we transmit 0 and when we transmit 1?
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Example: Signal Transmission

If we transmit 0, then R = �2+N is an normal r.v. of mean �2 and
variance 1 so

P (R < 0.5) = P
�
R + 2
1

<
0.5+ 2
1

�
= P (Z < 2.5) = Φ (2.5) � 0.999

If we transmit 1, then R = 2+N is an normal r.v. of mean 2 and
variance 1 so

P (R > 0.5) = P
�
R � 2
1

>
0.5� 2
1

�
= P (Z > �1.5) = Φ (1.5) � 0.933

Generalization of this idea = Viterbi algorithm.
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Normal Approximation to the Binomial Distribution

Consider X a binomial r.v. of parameters n, p then we know that

E (X ) = np, Var (X ) = np (1� p) .

We have already seen that it is possible to approximate X by a
Poisson distribution of parameter λ = np.

As np ! ∞, it can be shown that X can be approximated by a
normal r.v. with µ = np and σ2 = np (1� p) so

P (a � X � b) = P
�
a� µ

σ
� X � µ

σ
� b� µ

σ

�
� Φ

�
b� µ

σ

�
�Φ

�
a� µ

σ

�
.
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Example: Bald men

If 10% of men are bald, what is the probability that fewer than 100 in
a random sample of 818 men are bald?

Let X be the number of bald men in a random sample of 818 men,
this is a Bernoulli r.v. of parameters p = 0.1 and n = 818.

We are interested in computing P (X � 100). We can use the
standard binomial but this is tiedous. We use the normal
approximation where

µ = np = 81.8, σ =
q
np (1� p) = 8.5802

so

P (0 � X � 100) = Φ
�
100� 81.8
8.5802

�
�Φ

��81.8
8.5802

�
� 0.983.
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Example: Threshold signal

Assume to transmit a random signal X which follows a normal
distribution

�
µ, σ2

�
. The receiver only detects signals above a given

threshold m so that what is observed is

Y =
�
X if X � m
0 if X < m

Compute the expected value of the received signal Y ?
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Example: Threshold signal

We have

E (Y ) =
R ∞
m x

1p
2πσ

exp
�
� (x�µ)2

2σ2

�
dx

=
R ∞
m (x � µ) 1p

2πσ
exp

�
� (x�µ)2

2σ2

�
dx + µ

R ∞
m

1p
2πσ

exp
�
� (x�µ)2

2σ2

�
dx

where we use x = (x � µ) + µ.

Now we have
R ∞
m

1p
2πσ

exp
�
� (x�µ)2

2σ2

�
dx = 1�Φ

�
m�µ

σ

�
andR ∞

m (x � µ) 1p
2πσ

exp
�
� (x�µ)2

2σ2

�
dx

=
h
�σ2p
2πσ

exp
�
� (x�µ)2

2σ2

�i∞

m

= σp
2π
exp

�
� (m�µ)2

2σ2

�
so

E (Y ) =
σp
2π

exp

 
� (m� µ)2

2σ2

!
+ µ

�
1�Φ

�
m� µ

σ

��
.
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Exercise: Stein�s identity

Let X a normal random variable of mean µ and variance σ2 then show

E [(X � µ) g (X )] = σ2E
�
g 0 (X )

�
when both sides exist.
We have

E [(X � µ) g (X )] =
Z ∞

�∞
g (x) (x � µ)

1p
2πσ

exp

 
� (x � µ)2

2σ2

!
dx

so by integration by parts

E [(X � µ) g (X )] =

"
g (x)� �σ2p

2πσ
exp

 
� (x � µ)2

2σ2

!#∞

�∞

+
Z ∞

�∞
g 0 (x) � σ2p

2πσ
exp

 
� (x � µ)2

2σ2

!
dx
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