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Continuous Random Variable

e ‘Formal’ definition: We say that X is a (real-valued) continuous r.v.
if there exists a nonnegative function f : R — [0, c0) such that for
any set A of real numbers

P(XEA):/Af(x)dx.

e f (x) is called the probability density function (pdf) of the r.v. X and
the associated (cumulative) distribution function is

Fx)=PrXx<x)= [ fy)dy

—00

so we have
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Example: Insurance Policy

@ A group insurance policy covers the medical claims of the employees
of a small company. The value, V/, of the claims made in one year is
described by

V =100, 000X

where X is a random variable with pdf

[ c(1-x)" fo<x<1
Fi) = { 0 otherwise

@ What is the conditional probability that V' exceeds 40,000 given that
V exceeds 10,0007
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Example: Insurance Policy

@ We are interested in

P(V > 40,000N V > 10,000)
P (V > 10,000)

P (V > 40,000)

P (V > 10,000)

P (V > 40,000] V > 10,000) =

where

v
P(V —P(1 X —p(x>_Y
(V>v) (100,000X > v) ( > 100‘000)

e First we need to determine c using fol f(x)dx =1; that is

1 B (l—u)5 l_c
/Of(x)dx = C[—5] =3

0
= c¢=25.
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Example: Insurance Policy

@ We need to compute the cdf Fx (x)of X which is given by

0 if x <0
Fx (x) = c[—@h:l—(l—x)S ifo<x<1
1 if x>1

@ So we are interested in

1—Fx(0.4) 0.078
1— Fx (0.1) 0590

P (V > 40,000 V > 10,000) = = 0.132.
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Example: Nuclear power plant

@ Assume a nuclear power plant has three independent safety systems.
These safety systems have lifetimes Xi, Xy, X3 in years which are
exponential r.v.s with respective parameters Ay = 1, A, = 0.5 and
Az = 0.1. Since their installation five years ago, these systems have
never been inspected. What is the proba that the nuclear power plant
is currently being operated without any working safety system?

@ The probability that the safety system i it is not working is

5
Pr(X; <5) = /\,-/ exp (—Aix) dx = 1 — exp (—A;5)
0

0.9933 ifi=1
= 09179 ifi=2
0.3935 ifi=3

@ Hence the probability that none of the system is working is simply

Pr(X; < 5)Pr (X, < 5)Pr (X3 < 5) = 0.3588
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Expectation of Continuous Random Variables

@ We define the expected valued of an r.v. X by

E(X):/O:Oxf(x)dx

@ More generally for any real-valued function g : R — R then

E(g(X) = [ g(x) fx)x

—00

e Uniform density. We have for ¢ < d and x € [c, d]
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Expectation of Continuous Random Variables

o Exponential density. We have for A > 0 and x >0
f(x) =Aexp(—Ax)
so

E(X) = /\/oox exp (—Ax) dx

_ A{ exp(_A/\x)} A/ exp AAx)d

1

>

e Even density. For f (x) = f (—x), we have
E(X) = fi) x f (x) dx—|—fooox f(x)dx

:fo x f(=x)dx+ [5 x f(x)dx
:_fowu f(u) dx+f0°°x f(x)dx=0
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Expectation of Continuous Random Variables

o Consider the pdf

1
f(x)=——5forx>0
(x+1)
then
0 1 © 1
E(XX+1) = / %dXZ/ dx
0 (x+1) o x+1
= |lim [Iog(x+1)]6’:oo

Hence we can conclude that E (X) is infinite in this case.

e Distributions such that E (X) is not finite are sometimes referred to
as heavy-tails; they appear a lot in finance, actuarial science etc.
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Example: Selling Printers

@ The lifetime of a printer costing 200% us exponentially distributed with
mean 2 years. The manufacturer agrees to pay a full refund to a buyer
if the printer fails during the first year following its purchase, and a
one-half refund if it fails during the second year. If the manufacturer
sells 100 printers, how much should it expect to pay in refunds?

@ Let T denote a printer lifetime then

f (1) = 5 e (—;) 100 (1)
s we have
P(T<1) = /Olf(t)dt:[exp(—t/2)](1]
— 1 exp(—1/2) = 0393,
P(l<T<2) = /12 F(t) dt = [exp (—t/2)]2
= exp(—1/2) —exp (—1) = 0.239.
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Example: Selling Printers

@ Let X; denote the refund associated to the ith printer sold. Then for
any i =1,...,100

200 with proba 0.393
X; = 100 with proba 0.239
0 with proba 0.368

so we have
E (X;) = 200 x 0.393 + 100 x 0.239 = 102.56.

@ The expected refund associated to the 100 printers sold is thus

100 100
E{Y Xi| =) E(X) =100 x 102.56 = 10, 256.
i=1 i=1
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Example: Failure Discovery

@ A device that continuously measures and records seismic activity is
placed in a remote region. The time, T, to failure of this device is
exponentially distributed with mean 3 years. Since the device will not
be monitored during its first two years of service, the time to discovery
of its failure is X = max( ) What is the expected value of X7

@ We use the formula E (g = [g(t)f(t)dtfor f(t) an
exponential of parameter 1/3 and g (t ) = max (t,2) so

E(X) = 5" max(t,2) Lexp () b

2 [0
=Jo 30 (—3) C2/t+ [y sexp (_é) dt -
= [2exp (—35)], — [texp (—5)], + [ yexp (—3) dt
= —2exp (—%) —|—2+2eXp( %) - [3exp (_%)];o
=2+3exp(—3) =354
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Variance of Continuous Random Variables

@ We define the variance as
Var[x] = E((X-E(X)))
= E(X?)-E(X)
e Uniform density. We have for f (x) = 2 for x € [c, d] and
E (X) = <t2. We also have

) d 3_ 3
E(X?) = / X f (x)dx = 1c/ X2dXId7C
(o] C

_ d— 3(d—c)
A 4d’+d
N 3
so
2, 2
Var [X] = c*+d°+cd  (ct+d)
3 4
(d—c)

12
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Example: Repair Cost and Insurance Payement

@ The owner of an automobile insures it against damage by purchasing
an insurance policy with a deductible of 250%. In the event that the
automobile is damaged, repair costs can be modeled by a uniform
random variables on the interval (0,1500). Determine the standard
deviation of the insurance payement in the event that the automobile
is damaged.

@ Let X be the repair cost and Y the insurance payement then

y_[0 if X < 250
T X—250 if X > 250

and we want to compute 4/ Var (Y).
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Example: Repair Cost and Insurance Payement

@ We have

1500 211500
E(Y) = Jo ﬁ(x—250) dxzﬁ [(X_250) ] = 521,

5

1500

E(Y?) = [0 L (x —250)%d zi[ —2503} — 434,028,
( ) 250 1500 (x )" dx 7500 (x ) 550 )

@ Finally, we obtain
Var (X) = E(Y?)—E(Y)® = 434,028 — 5212,
Var (Y) = 403.
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Variance of Continuous Random Variables

e Exponential density. We have f (x) = Aexp (—Ax) for A > 0 and
x > 0and E (X) = 1. We have

E(X?) = )\/oox2 exp (—Ax) dx
0

= A [Xzexp(—)&x)} —)\/ 2X7exp(—/\x) dx
0 0

—A A
2 2
A ( ) )L2

SO
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Median of Continuous Random Variables

@ The median of a continuous r.v. X of pdf f (x) is the number m such

that m - )
/ f(x)dx:/ f(x)dxzi;

—o0 m

that is the number m such that

1

Pr(Xgm):P(sz):E

@ For example, assume we look at a population of people. Let X be the

salary of a randomly chosen person from this population of pdf f (x),
and let m be the median salary of the population. This means that

half the population earns less than m dollars and half earns more than

m dollars.
e Uniform density. For ¢ < d, we have f (x) = ﬁ and the median is
m = <5<; i.e. in this case the median and E (X) are similar.
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Median of Continuous Random Variables

e Exponential density. We have f (x) = Aexp (—Ax) for A > 0 and
x > 0.

@ The median corresponds to the value

/ Aexp (—Ax) dx:/ Aexp (—Ax) dx = %
0 m
@ We have

/OOAexp(—)\X) dx = [exp(—Ax)]}

m

= exp(—Am)

and ) o 2
oy = L 1o
exp (—Am) 5 3

o In this case, the median and E (X) are different.
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