Chapter 4

Problems: Q7,8,13,17,20,21,25,38,40,45,48,52,53,55,60,64,71,74,79
Theoretical Exercises: Q14,20,27,32

Problem

8. (a)
$$p(6) = 1 - (5/6)^2 = 11/36$$
, $p(5) = 21/64/6 + (1/6)^2 = 9/36$
 $p(4) = 21/63/6 + (1/6)^2 = 7/36$, $p(3) = 21/62/6 + (1/6)^2 = 5/36$
 $p(2) = 21/61/6 + (1/6)^2 = 3/36$, $p(1) = 1/36$

(d)
$$p(5) = 1/36$$
, $p(4) = 2/36$, $p(3) = 3/36$, $p(2) = 4/36$, $p(1) = 5/36$
 $p(0) = 6/36$, $p(-j) = p(j)$, $j > 0$

13.
$$p(0) = P\{\text{no sale on first and no sale on second}\}$$

= (.7)(.4) = .28
 $p(500) = P\{1 \text{ sale and it is for standard}\}$
= $P\{1 \text{ sale}\}/2$
= $[P\{\text{sale, no sale}\} + P\{\text{no sale, sale}\}]/2$
= $[(.3)(.4) + (.7)(.6)]/2 = .27$

$$p(1000) = P\{2 \text{ standard sales}\} + P\{1 \text{ sale for deluxe}\}$$

= $(.3)(.6)(1/4) + P\{1 \text{ sale}\}/2$
= $.045 + .27 = .315$

$$p(1500) = P\{2 \text{ sales, one deluxe and one standard}\}\$$

= (.3)(.6)(1/2) = .09

$$p(2000) = P\{2 \text{ sales, both deluxe}\} = (.3)(.6)(1/4) = .045$$

20. (a)
$$P\{x > 0\} = P\{\text{win first bet}\} + P\{\text{lose, win, win}\}\$$

= $18/38 + (20/38)(18/38)^2 \approx .5918$

- (b) No, because if the gambler wins then he or she wins \$1. However, a loss would either be \$1 or \$3.
- (c) $E[X] = 1[18/38 + (20/38)(18/38)^2] [(20/38)2(20/38)(18/38)] 3(20/38)^3 \approx -.108$

Problem

Recall =
$$P(X < b) = P(\lim_{n \to \infty} \{X \le b - \frac{1}{n}\})$$

= $\lim_{n \to \infty} P\{X \le b - \frac{1}{n}\}$

a)
$$P(X=1) = P(X \le 1) - P(X < 1) = F(1) - \lim_{n \to \infty} F(1 - \frac{1}{n})$$

 $= (\frac{1}{2} + \frac{1}{4}) - \lim_{n \to \infty} (\frac{1 - \frac{1}{n}}{4})$
 $= \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$
 $P(X=2) = P(X \le 2) - P(X < 2) = \frac{1}{6}$
 $P(X=3) = P(X \le 3) - P(X < 3) = \frac{1}{12}$

b)
$$P(\frac{1}{2} < X < \frac{3}{2}) = P(X < \frac{3}{2}) - P(X < \frac{1}{2})$$

$$= \lim_{N \to \infty} \left[\frac{1}{2} + \frac{\frac{3}{2} - \frac{1}{1}}{4} \right] - \frac{\frac{1}{2}}{4} = \frac{1}{2} + \frac{1}{4}$$

21. (a) E[X] since whereas the bus driver selected is equally likely to be from any of the 4 buses, the student selected is more likely to have come from a bus carrying a large number of students.

(b)
$$P{X = i} = i/148, i = 40, 33, 25, 50$$

 $E[X] = [(40)^2 + (33)^2 + (25)^2 + (50)^2]/148 \approx 39.28$
 $E[Y] = (40 + 33 + 25 + 50)/4 = 37$

25. (a)
$$\frac{1}{10}(1+2+...+10) = \frac{11}{2}$$

(b) after 2 questions, there are 3 remaining possibilities with probability 3/5 and 2 with probability 2/5. Hence.

$$E[\text{Number}] = \frac{2}{5}(3) + \frac{3}{5} \left[2 + \frac{1}{3} + 2\frac{2}{3} \right] = \frac{17}{5}.$$

The above assumes that when 3 remain, you choose 1 of the 3 and ask if that is the one.

38. (a)
$$E[(2+X)^2] = Var(2+X) + (E[2+X])^2 = Var(X) + 9 = 14$$

(b)
$$Var(4 + 3X) = 9 Var(X) = 45$$

40.
$$\binom{5}{4}(1/3)^4(2/3)^1 + (1/3)^5 = 11/243$$

45. with 3:
$$P\{pass\} = \frac{1}{3} \left[\binom{3}{2} (.8)^2 (.2) + (.8)^3 \right] + \frac{2}{3} \left[\binom{3}{2} (.4)^2 (.6) + (.4)^3 \right]$$

= .533

with 5:
$$P\{\text{pass}\} = \frac{1}{3} \sum_{i=3}^{5} {5 \choose i} (.8)^i (.2)^{5-i} + \frac{2}{3} \sum_{i=3}^{5} {5 \choose i} (.4)^i (.6)^{5-i}$$

= .3038

48. The probability that a package will be returned is $p = 1 - (.99)^{10} - 10(.99)^{9}(.01)$. Hence, if someone buys 3 packages then the probability they will return exactly 1 is $3p(1-p)^{2}$.

52. (a)
$$1 - e^{-3.5} - 3.5e^{-3.5} = 1 - 4.5e^{-3.5}$$

(b)
$$4.5e^{-3.5}$$

Since each flight has a small probability of crashing it seems reasonable to suppose that the number of crashes is approximately Poisson distributed.

- 53. (a) The probability that an arbitrary couple were both born on April 30 is, assuming independence and an equal chance of having being born on any given date, $(1/365)^2$. Hence, the number of such couples is approximately Poisson with mean $80,000/(365)^2 \approx .6$. Therefore, the probability that at least one pair were both born on this date is approximately $1 e^{-.6}$.
 - (b) The probability that an arbitrary couple were born on the same day of the year is 1/365. Hence, the number of such couples is approximately Poisson with mean $80,000/365 \approx 219.18$. Hence, the probability of at least one such pair is $1 e^{-219.18} \approx 1$.

$$55. \qquad \frac{1}{2}e^{-3} + \frac{1}{2}e^{-4.2}$$

60.
$$P\{\text{beneficial} | 2\} = \frac{P\{2|\text{beneficial}\}3/4}{P\{2|\text{ beneficial}\}3/4 + P\{2|\text{ not beneficial}\}1/4}$$
$$= \frac{e^{-3} \frac{3^2}{2} \frac{3}{4}}{e^{-3} \frac{3^2}{2} \frac{3}{4} + e^{-5} \frac{5^2}{2} \frac{1}{4}}$$

64. (a)
$$1 - \sum_{i=0}^{7} e^{-4} 4^{i} / i! \equiv p$$

(b)
$$1 - (1-p)^{12} - 12p(1-p)^{11}$$

(c)
$$(1-p)^{i-1}p$$

71. (a)
$$\left(\frac{26}{38}\right)^5$$

(b)
$$\left(\frac{26}{38}\right)^3 \frac{12}{38}$$

74. (a)
$$\left(\frac{2}{3}\right)^5$$

(b)
$$\binom{8}{5} \left(\frac{2}{3}\right)^5 \left(\frac{1}{3}\right)^3 + \binom{8}{6} \left(\frac{2}{3}\right)^6 \left(\frac{1}{3}\right)^2 + \binom{8}{7} \left(\frac{2}{3}\right)^7 \left(\frac{1}{3}\right) + \left(\frac{2}{3}\right)^8$$

(c)
$$\binom{5}{4} \left(\frac{2}{3}\right)^5 \frac{1}{3}$$

(d)
$$\binom{6}{4} \left(\frac{2}{3}\right)^5 \left(\frac{1}{3}\right)^2$$

79. (a)
$$P\{X=0\} = \frac{\binom{94}{10}}{\binom{100}{10}}$$

(b)
$$P\{X > 2\} = 1 - \frac{\binom{94}{10} + \binom{94}{9} \binom{6}{1} + \binom{94}{8} \binom{6}{2}}{\binom{100}{10}}$$

Theoretical Exercises

14. (a)
$$1 - \sum_{n=1}^{\infty} \alpha p^n = 1 - \frac{\alpha p}{1 - p}$$

(b) Condition on the number of children: For k > 0

$$P\{k \text{ boys}\} = \sum_{n=1}^{\infty} P\{k | n \text{ children}\} \alpha p^{n}$$
$$= \sum_{n=k}^{\infty} {n \choose k} (1/2)^{n} \alpha p^{n}$$

$$P\{0 \text{ boys}\} = 1 - \frac{\alpha p}{1 - p} + \sum_{n=1}^{\infty} \alpha p^n (1/2)^n$$

20. Let S denote the number of heads that occur when all n coins are tossed, and note that S has a distribution that is approximately that of a Poisson random variable with mean λ . Then, because X is distributed as the conditional distribution of S given that S > 0,

$$P\{X=1\} = P\{S=1 \mid S>0\} = \frac{P\{S=1\}}{P\{S>0\}} \approx \frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}}$$

27.
$$P\{X = n + k \mid X > n\} = \frac{P\{X = n + k\}}{P\{X > n\}}$$
$$= \frac{p(1-p)^{n+k-1}}{(1-p)^n}$$
$$= p(1-p)^{k-1}$$

If the first n trials are fall failures, then it is as if we are beginning anew at that time.

32.
$$P\{X=k\} = \frac{k-1}{n} \prod_{i=0}^{k-2} \frac{n-i}{n}, k > 1$$